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6 GAME APPROACH TO UNIVERSALLYKURATOWSKI-ULAM SPACESANDRZEJ KUCHARSKI AND SZYMON PLEWIKAbstra
t. We 
onsider a version of the open-open game, indi-
ating its 
onne
tions with universally Kuratowski-Ulam spa
es.From [2℄ and [3℄ topologi
al arguments are extra
ted to show that:Every I-favorable spa
e is universally Kuratowski-Ulam, Theorem8; If a 
ompa
t spa
e Y is I-favorable, then the hyperspa
e exp(Y )with the Vietoris topology is I-favorable, and hen
e universallyKuratowski-Ulam, Theorems 6 and 9. Notions of uK-U and uK-U∗spa
es are 
ompared.
1. Introdu
tionThe following theorem was proved (in fa
t) by K. Kuratowski andS. Ulam, see [7℄ and 
ompare [6℄ p. 246:Let X and Y be topologi
al spa
es su
h that Y has 
ountable π-weight.If E ⊆ X × Y is a nowhere dense set, then there is P ⊆ X of �rst
ategory su
h that the se
tion Ex = {y : (x, y) ∈ E} is nowhere densein Y for any point x ∈ X \ P .In [8℄ one 
an �nd less general formulation of the Kuratowski UlamTheorem:If E is a plane set of �rst 
ategory, then Ex is a linear set of �rst
ategory for all x ex
ept a set of �rst 
ategory.In the literature a set of the �rst 
ategory is usually 
alled a meagerset. The Kuratowski Ulam Theorem holds for any meager (nowheredense) set E ⊆ X×Y , where the Cartesian produ
t X×Y is equippedwith the Ty
honov topology and π-weight of Y is less than additivityof meager sets in X, 
ompare [3℄, [6℄ or [8℄.1991 Mathemati
s Subje
t Classi�
ation. Primary: 54B20, 54E52, 91A44; Se
-ondary: 54B10, 91A05.Key words and phrases. Open-open game, I-favorable spa
e, uK-U spa
e, uK-U∗spa
e. 1
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The above formulations of the Kuratowski Ulam Theorem suggeststwo notions of universally Kuratowski-Ulam spa
es whi
h one 
ouldstudy.A spa
e Y is universally Kuratowski-Ulam (for short, uK-U spa
e),whenever for any topologi
al spa
e X and a meager set E ⊆ X × Y ,the set
{x ∈ X : {y ∈ Y : (x, y) ∈ E} is not meager in Y }is meager in X, see D. Fremlin, T. Natkanie
 and I. Re
ªaw [3℄. The
lass of uK-U spa
es has been investigated in [3℄, [4℄ and [15℄.A spa
e Y is universally Kuratowski-Ulam∗ (for short, uK-U∗ spa
e),whenever for a topologi
al spa
e X and a nowhere dense set E ⊆ X×Ythe set

{x ∈ X : {y ∈ Y : (x, y) ∈ E} is not nowhere dense in Y }is meager in X, see D. Fremlin [4℄.Any uK-U∗ spa
e is uK-U spa
e. A proof of this is standard. Indeed,suppose that a spa
e Y is uK-U∗, and X is a topologi
al spa
e. If E ⊆
X×Y is a meager set, then there exist nowhere dense sets En ⊆ X×Ysu
h that E0 ∪ E1 ∪ . . . ⊇ E. Put

Pn = {x ∈ X : {y ∈ Y : (x, y) ∈ En} is not nowhere dense in Y }.Ea
h set Pn is meager, hen
e P = P0 ∪ P2 ∪ . . . ⊆ X is meager. Sin
e
Ex ⊆ E0

x ∪ E1
x ∪ . . . (re
all that En

x = {y ∈ Y : (x, y) ∈ En}), then Exis meager for ea
h x ∈ X \ P .The 
onverse is not true: There is a dense in itself and 
ountableHausdor� spa
e whi
h is not uK-U∗; see "6. Examples (b)" in [4℄.Any 
ountable and dense in itself spa
e is meager in itself, and hen
ehas to be uK-U. The spa
e C[ωω] of all 
ompa
t non-empty subsets ofthe irrationals equipped with the Pixley-Roy topology has a separable
ompa
ti�
ation, see A. Szyma«ski [13℄. One 
an 
he
k that ωω×C[ωω]does not satisfy the Kuratowski Ulam Theorem, hen
e C[ωω] is notuK-U∗, and any dense subspa
e of a 
ompa
ti�
ation of C[ωω] is notuK-U∗, too. So, some 
ompa
ti�
ation of C[ωω] 
ontains a 
ountableHausdor� spa
e whi
h is uK-U and not uK-U∗. Natural examples of
ountable spa
es whi
h are not uK-U∗ are spa
es of type Seq, 
ompare[14℄. They are not uK-U∗ by similar arguments whi
h work with C[ωω],or with Example 1 in [3℄. 2



The open-open game and I-favorable spa
es were introdu
ed by P.Daniels, K. Kunen and H. Zhou [2℄. A spa
e is I-favorable if, and onlyif it has a 
lub �lter, see [2℄. Topi
s of almost the same kind like I-favorable spa
es were 
onsidered by E. V. Sh
hepin [11℄, L. Heindorfand L. Shapiro [5℄, and by B. Bal
ar, T. Je
h and J. Zapletal [1℄. In[11℄ were introdu
ed κ-metrizable spa
es; in [5℄ were 
onsidered regu-larly �ltered algebras; in [1℄ were 
onsidered semi-Cohen algebras. ABoolean algebra B is semi-Cohen (regularly �ltered) if, and only if [B]ωhas a 
losed unbounded set of 
ountable regular subalgebras (
ontainsa 
lub �lter). Semi-Cohen algebras and I-favorable spa
es are 
orre-sponding 
lasses, 
ompare [1℄ and [5℄.Every dyadi
 spa
e is uK-U spa
e, see [3℄. We extend this fa
t byshowing that any I-favorable spa
e is uK-U∗, Theorem 8. Additionally,we show that any hyperspa
e exp(Dλ) is uK-U∗ spa
e, Corollary 10.2. The gameThe following game was invented by P. Daniels, K. Kunen and H.Zhou [2℄. Two players take turns playing with a topologi
al spa
e X. Around 
onsists of Player I 
hoosing a non-empty open set U ⊆ X; andPlayer II 
hoosing a non-empty open set V ⊆ U . Player I wins if theunion of all open sets whi
h have been 
hosen by Player II is dense in
X. This game was 
alled the open-open game. If the open-open game ofun
ountable length is being played with a spa
e of 
ountable 
ellularity(for example, some Seq spa
es), then Player II 
ould be for
ed to 
hoosedisjoint sets at ea
h round. In 
onsequen
e, Player I wins any su
hgame. Thus, any open-open game is not trivial under some restri
tionswhi
h imply that Player I 
an not win always. For example, roundsare played for ea
h ordinal less than some given ordinal α. From here,we 
onsider 
ases when games have the least in�nite length i.e. α = ω.Let us 
onsider the following game. Player I 
hooses a �nite family
A0 of non-empty open subsets of X. Then Player II 
hooses a �nitefamily B0 of non-empty open subsets of X su
h that for ea
h U ∈ A0there exists V ∈ B0 with V ⊆ U . Similarly at the n-th round Player I
hooses a �nite family An of non-empty open subset of X. Then PlayerII 
hooses a �nite family Bn of non-empty open subsets of X su
h thatfor ea
h U ∈ An there exists V ∈ Bn with V ⊆ U . If for any naturalnumber k the union ⋃

{Bk ∪ Bk+1 ∪ . . .} is a dense subset of X, thenPlayer I wins; otherwise Player II wins.3



The spa
e X is I-favorable whenever Player I 
an be insured, by
hoosing his familiesAn judi
iously, that he wins no matter how PlayerII plays. In this 
ase we say that Player I has a winning strategy.Player I has a winning strategy whenever any �nite family of openand disjoint subsets of X he 
an 
onsider as Bn, and then Player Iknows his (n+1)-th round, i.e. he knows how to de�ne A0 = σ(∅) and
An+1 = σ(B0,B1, . . . ,Bn). Any winning strategy would be de�ned asfun
tion

(B0,B1, . . . ,Bn) 7→ σ(B0,B1, . . . ,Bn),where all families Bn and σ(B0,B1, . . . ,Bn) are �nite and 
onsists ofnon-empty open sets; and for any game with su

eeding rounds σ(∅),
B0, σ(B0), B1, σ(B0,B1), . . . ,Bn, σ((B0,B1, . . . ,Bn) ea
h union ⋃

{Bk ∪
Bk+1 ∪ . . .} is a dense subset of X.Our de�nition of I-favorable spa
e is equivalent to the similar def-inition stated in [2, p. 209℄. In fa
t, if An = {U1, U2, . . . , Uk}, thenPlayer I should play k-rounds 
hoosing U1, U2, . . . , Uk, su

essively. IfPlayer I has a strategy σ whi
h for
ed Player II to 
hoose families Bksu
h that ⋃

{B0 ∪B1 ∪ . . .} is a dense subset of X, then Player I 
oulddivide the set of natural numbers onto in�nite many of pairwise disjointin�nite pie
es. Then Player I 
ould play at ea
h pie
e following σ, andhe obtains the winning strategy. In 
onsequen
e, for the de�nition ofI-favorable spa
es one 
an use the open-open game, or the topologi
alversion of the game G4, see [2, p. 219℄.Many 
ases when Player II 
an be insured that he wins no matterhow Player I plays were 
onsidered in [2℄ or [13℄. By Theorem 8 spa
es
Seq are not I-favorable. However, one 
an 
he
k dire
tly that Player II
ould always win a game with any Seq: Any Seq has a tiny sequen
e,
ompare [13℄, and therefore Player II has winning strategy.Let us re
all a few 
omments a

ording to [2℄. Any spa
e with 
ount-able π-weight is I-favorable. Indeed, if {W0, W1, . . .} is a π-base for X,then Player I 
hooses An su
h that always there exists U ∈ An and
U ⊆ Wn. If a spa
e X has un
ountable 
ellularity, then X is notI-favorable. Indeed, there exists an un
ountable family W of open anddisjoint subsets of X, and Player II 
an 
hoose Bn su
h that always⋃
Bn interse
ts �nite many members of W. Another example is a reg-ular Baire spa
e X with a 
ategory measure µ su
h that µ(X) = 1(for more details see [8, p. 86 - 91℄). Any su
h X is not I-favorable,sin
e Player II 
an 
hoose Bn su
h that always µ(

⋃
Bn) < 1

2n+2 . This4



follows µ (X \ (
⋃
{B0 ∪ B1 ∪ . . .})) ≥ 1

2
. Therefore the 
omplement

X \ (
⋃
{B0 ∪ B1 ∪ . . .}) has to have non empty interior.3. On I-favorable spa
esA topologi
al 
hara
terization of I-favorable spa
es is applied to de-s
ribe dire
t proofs of some know fa
ts. Moreover, we show that ifa 
ompa
t spa
e X is I-favorable, then the hyperspa
e exp(X) withthe Vietoris topology is I-favorable. We extra
t topologi
al versions ofarguments used in [2℄ and [3℄.For any Cantor 
ube Dλ �x the following notation. Let λ be a
ardinal number, D = {0, 1}, and let Dλ be equipped with the produ
ttopology. The produ
t topology is generated by subsets {q ∈ Dλ :

q(α) = k}, where α ∈ λ and k ∈ D. If f : Y → D and Y ∈ [λ]<ω, then
Wf = {q ∈ Dλ : f ⊆ q}. All sets Wf 
onstitute an open base.Example 1. The Cantor 
ube Dλ is I-favorable.Proof. Player I put A0 = {Dλ}. If a family B0 is de�ned, thenPlayer I 
hooses base open sets Wq ⊆ Q for any Q ∈ B0 and put
A1 = {Wf : f ∈ DJ1}, where J1 =

⋃
{dom (q) : Wq ⊆ Q ∈ B0}.Player I wins, whenever at the n-th round he always 
hooses base sets

Wq ⊆ Q for any Q ∈ Bn−1, and put An = {Wf : f ∈ DJn}, where
Jn =

⋃
{dom (q) : Wq ⊆ Q ∈ Bn−1}. Any su
h played game de�neda sequen
e J1 ⊆ J2 ⊆ . . . of �nite subsets of λ. Fix a base set Wfwhere f ∈ DJ , i.e. J = dom(f). Take a natural number n su
h that

J ∩ Jn = J ∩ Jn+1, and next take q ∈ DJn su
h that fun
tions f and
q are 
ompatible on the set J ∩ Jn = dom(f) ∩ dom(q). There exists
q∗ ∈ DJn+1 su
h that

An ∋ Wq ⊇ V ⊇ Wq∗ ∈ An+1,where V ∈ Bn. Fun
tions f and q∗ are 
ompatible on the set
J ∩ Jn = dom(f) ∩ dom(q∗) = J ∩ Jn+1.Therefore Wf meets Wq∗ , and hen
e ∅ 6= Wf∩Wq∗ ⊆ Wf∩V ⊆ V . Sin
e

n 
ould be arbitrarily large and V ∈ Bn, then ea
h ⋃
{Bk ∪Bk+1 ∪ . . .}has to be a dense subset of X. �We have repeated a spe
ial 
ase of Theorem 1.11, see [2℄. Our proofof Example 1 expli
itly de�nes a winning strategy. But if families

A0,A1, . . . have been de�ned simultaneously, then Player I would lose.5



This would not happen when X has 
ountable π-base. However for
X = Dλ, where λ is un
ountable, this is possible. Indeed, if PlayerI �xes ea
h family An, then Player II 
ould 
hoose a �nite family
B∗

n su
h that for any U ∈ An there exists a base subset Wq ∈ B∗

nwith Wq ⊆ U . Put Jn =
⋃
{dom (q) : Wq ∈ B∗

n}, and take an index
α ∈ λ \ (J0 ∪ J1 ∪ . . .). Afterwards Player II put

Bn = {V ∩ {q ∈ Dλ : q(α) = 1} : V ∈ B∗

n}.No member of Bn meets {q ∈ Dλ : q(α) = 0}. In fa
t, we get thefollowing.Remark 2. For ea
h sequen
e (A0,A1, . . .) 
onsisting of �nite non-empty families of open subsets of Dλ, there is a 
orresponding sequen
e
(B0,B1, . . .) 
onsisting of �nite non-empty families Bn of non-emptyopen sets su
h that ea
h Bn re�nes An, and yet the union B0 ∪B1 ∪ . . .is not dense. �Countable subsets of λ are important in our proof of Example 1.Any J ∈ [λ]ω �xes the 
ountable family of base sets

CJ = {Wf : f : Y → D and Y ∈ [J ]<ω},whi
h ful�lls the following 
ondition:For any open V ⊆ Dλ there is W ∈ CJ su
h that if U ∈ CJ and
U ⊆ W , then U ∩ V 6= ∅.This 
ondition may be 
onsidered in an arbitrary topologi
al spa
e Xwith a �xed π-base Q. A

ording to de�nitions [2, p. 208℄ a family
C ⊂ [Q]ω is 
alled a 
lub �lter whenever:(1) The family C is 
losed under ω-
hains with respe
t to in
lusion,i.e. if P1 ⊆ P2 ⊆ . . . is an ω-
hain whi
h 
onsists of elements of C,then P1 ∪ P2 ∪ . . . ∈ C;(2) For any 
ountable subfamily A ⊆ Q, where Q is the π−base �xedabove, there exists P ∈ C su
h that A ⊆ P;(3) For any non-empty open set V and ea
h P ∈ C there is W ∈ Psu
h that if U ∈ P and U ⊆ W , then U meets V , i.e. U ∩ V 6= ∅.Conditions (1) − (3) are extra
ted from properties of Cantor 
ubesused in Example 1. The following two lemmas repeat Theorem 1.6, see[2℄.Lemma 3. If a topologi
al spa
e has a 
lub �lter, then it is I-favorable.6



Proof. Without lost of generality one 
an assume that any Bn willbe 
ontained in Q. Let A0 = {X}. If B0 has been de�ned, thenPlayer I 
hooses P0 ∈ C su
h that B0 ⊆ P0, by (2). Enumerate
P0 = {V 0

0 , V 0
1 , . . .} and put A1 = {V 0

0 }. If families Bn and Pn−1 havebeen de�ned, then Player I 
hooses Pn ∈ C su
h that Bn ∪ Pn−1 ⊆ Pn,using (2) again. Let Pn = {V n
0 , V n

1 , . . .}, and put An+1 = {V i
j : i 6

n and j 6 n}. By Condition (1), let P0 ∪P1 ∪ . . . = P∞ ∈ C. We shallshow that any union ⋃
{Bk∪Bk+1∪. . .} is a dense subset of X. Supposethat V is a non-empty open set su
h that V ∩

⋃
{Bk ∪Bk+1 ∪ . . .} = ∅.By (3) 
hoose V i

j ∈ P∞ su
h that if U ∈ P∞ and U ⊆ V i
j , then

U ∩ V 6= ∅. Take m > max{i, j, k}. There exists W ∈ Bm+1 ⊆ P∞su
h that W ⊆ V i
j , hen
e W ∩ V 6= ∅. But W ∈ Bk ∪ Bk+1 ∪ . . ., a
ontradi
tion. �Lemma 4. If a topologi
al spa
e is I-favorable, then it has a 
lub �ltersu
h that any of its elements is 
losed under �nite interse
tion.Proof. LetQ be a �xed π-base, whi
h is 
losed under �nite interse
tion,and let σ be a winning strategy for Player I. For ea
h 
ountable family

R ∈ [Q]6ω let R1 be the 
losure under �nite interse
tion of R and thefamily
⋃

{σ(F0,F1, . . . ,Fk) : {F0,F1, . . . ,Fk} ⊂ [R]<ω and k ∈ ω}.By indu
tion, let Rn+1 be the 
losure under �nite interse
tion of Rnand
⋃

{σ(F0,F1, . . . ,Fk) : {F0,F1, . . . ,Fk} ⊂ [Rn]<ω and k ∈ ω}.A desired 
lub �lter C 
onsists of all unions R1 ∪ R2 ∪ . . ., where
R ∈ [Q]6ω. By the de�nition any element of C is 
losed under �-nite interse
tion. Consider an ω-
hain P1 ⊆ P2 ⊆ . . . in C. Let
P1 ∪ P2 ∪ . . . = R. If F0,F1, . . . ,Fk are �nite families 
ontained in
R, then there exists n su
h that F0 ∪ F1 ∪ . . . ∪ Fk ⊆ Pn and
σ(F0,F1, . . . ,Fk) ⊆ Pn+1. This follows R ∈ C, i.e. Condition (1)holds. Condition (2) follows dire
tly from the de�nition of C. Supposethat P ∈ C and an open set V ful�ll the negation of (3). Then, PlayerII 
hooses families 
onsisting of sets disjoint with V . In 
onsequen
e,he wins the game σ(∅),B0, σ(B0),B1, . . ., a 
ontradi
tion. �The next 
orollary was proved in [2, Corollary 1.7℄.Corollary 5. Any produ
t of I-favorable spa
es is I-favorable.7



Proof. Consider a produ
t ∏
{Xα : α ∈ T}, where any Xα is I-favorable. Let Cα be a 
lub �lter whi
h witnesses that Xα is I-favorable,where Qα is a π-base needed in Condition (2). Fix λ ∈ [T ]ω and

Pα ∈ Cα for ea
h α ∈ λ. Let P(λ) be the family of all ∏
{Wα : α ∈ S},where S ∈ [λ]<ω and Wα ∈ Pα ∈ Cα. The family C = {P(λ) : λ ∈ [T ]ω}is a desired 
lub �lter. �In [2, p. 210℄ it was proved that dyadi
 spa
es are I-favorable. ButL. Shapiro [9℄ show that some hyperspa
es over dyadi
 spa
es 
an benon-dyadi
. For example, exp(Dω2) is a non-dyadi
 spa
e. For somefa
ts and notions 
on
erning a hyperspa
e with the Vietoris topology,whi
h are not de�ned here, see [6℄. Now, prove the following.Theorem 6. If a 
ompa
t spa
e X is I-favorable, then the hyperspa
e

exp(X) with the Vietoris topology is I-favorable, too.Proof. Fix a π-base Q 
losed under �nite interse
tion, and a 
lub �lter
C for X. If n is a natural number and V1, V2, . . . , Vn are open subsetsof X, then let < V1, V2, . . . , Vn > denotes the family of all 
losed sets
A ⊆ V1 ∪ V2 ∪ . . . ∪ Vn su
h that A ∩ Vi 6= ∅ for 1 6 i 6 n. The family

Q∗ = {< V1, V2, . . . , Vn >: Vi ∈ Q for 1 6 i 6 n}is a π-base for exp(X). For any P ∈ C, let
P∗ = {< V1, V2, . . . , Vn >: Vi ∈ P for 1 6 i 6 n}.We shall 
he
k that the family C∗ = {P∗ : P ∈ C} is a 
lub �lter for

exp(X). Then the result follows from Lemma 3.By de�nitions C∗ ful�lls 
onditions (1) and (2) and any family
P∗ ∈ C∗ is 
losed under �nite interse
tion. Consider an open set
< V1, V2, . . . , Vn >⊆ exp(X) and a family P ∈ C. For 1 6 i 6 n,by (3), 
hoose Wi ∈ P su
h that if U ∈ P and U ⊆ Wi, then U meets
Vi. If

< W1, W2, . . . , Wn >⊇< U1, U2, . . . , Um >∈ P∗,then �x U
j
i ∈ {U1, U2, . . . , Um} with U

j
i ⊆ Wi. Sin
e P is 
losed under�nite interse
tion, then U

j
i ∩Wi ∈ P. By (3) 
hoose xi ∈ Vi ∩Wi ∩ U

j
ifor 1 6 i 6 n. Similarly, 
hoose y

j
i ∈ Vi ∩ Uj ∩ Wi whenever Uj meets

Wi. The 
losed (�nite) set
{xi : 1 6 i 6 n} ∪ {yj

i : 1 6 j 6 m and 1 6 i 6 n} ⊆ Xbelongs to the interse
tion < V1, V2, . . . , Vn > ∩ < U1, U2, . . . , Um >. Itfollows that (3) holds for exp(X). �8



Spe
ial 
ases of Theorem 6 
ould be dedu
ed in another way. L.Shapiro observed that exp(Dλ) is 
o-absolute with Dλ, see [10, Theo-rem 4℄ and [12, p.17-18℄. Therefore one 
ould obtain that exp(Dλ) isI-favorable by [2, Fa
t 1.3℄.One 
an 
he
k that if there is a 
lub �lter C for exp(X) su
h thatany P ∈ C 
onsists of base sets of the form < V1, V2, . . . , Vn >,then families 
onstitute all Vi su
h that Vi ∈ {V1, V2, . . . , Vn}, where
< V1, V2, . . . , Vn >∈ P 
onsists of a 
lub �lter for X. This gives the
onverse of Theorem 6. 4. On uK-U∗ spa
esIn this note the next theorem is main novelty. Closed nowhere densesets are valid for uK-U∗ properties. Now, it will be 
onvenient for us touse open and dense subsets of X × Y , instead of nowhere dense ones.In the proof of Theorem 7 Player II uses an obvious fa
t: If a densesubset E ⊆ X × Y is open, then for any non-empty open sets U of
X and V1, V2, . . . Vn of Y there exist non-empty open sets U∗ ⊆ U and
V ∗

1 ⊆ V1, V
∗

2 ⊆ V2 . . . V ∗

n ⊆ Vn su
h that always U∗ × V ∗

i ⊆ E.Theorem 7. Suppose X and Y are topologi
al spa
es, where Y is I-favorable. If a set E ⊆ X × Y is open and dense with respe
t to theprodu
t topology, then there exists a meager subset P ⊆ X su
h thatthe se
tion
Ex = {y ∈ Y : (x, y) ∈ E}is dense in Y for all x ∈ X \ P .Proof. If Player I has 
hosen a �nite family A0 of open and disjointsubsets of Y , then Player II 
hooses an open set Q0 ⊆ X and a �nitefamily B0(Q0) of open and disjoint subset of Y su
h that for ea
h

U ∈ A0 there exists V ∈ B0(Q0) with V ⊆ U and Q0 × V ⊆ E.Afterwards Player I 
hooses a �nite family A1(Q0) of open and dis-joint subsets of Y in a

ordan
e with to his winning strategy at theround following after A0, B0(Q0).Assume that open sets X ⊇ Q0 ⊇ Q1 ⊇ . . . ⊇ Qn−1 and �nite fam-ilies A0,B0(Q0),A1(Q0), . . . ,Bn−1(Qn−1),An(Qn−1) are de�ned. ThenPlayer II 
hooses an open set Qn ⊆ Qn−1 and a �nite family Bn(Qn) ofopen and disjoint subset of Y su
h that for ea
h U ∈ An(Qn−1) thereexists V ∈ Bn(Qn) with V ⊆ U and Qn × V ⊆ E.9



Afterwards Player I 
hooses a �nite family An+1(Qn) of open anddisjoint subsets of Y in a

ordan
e with his winning strategy in theround following after A0,B0(Q0), . . . ,Bn−1(Qn−1),An(Qn−1),Bn(Qn).Let W0 be some maximal family of open and disjoint subsets of Xfrom whi
h Player II 
ould 
hoose at start as sets Q0. Suppose thatfamilies W0,W1, . . . ,Wn−1 are de�ned. Let WQ
n be a maximal familyof open and disjoint subsets of X whi
h Player II 
ould 
hoose atthe round following afterA0,B0(Q0), . . . ,Bn−1(Qn−1),An(Qn−1), where

Q0 ⊇ Q1 ⊇ . . . ⊇ Qn−1 and Qi ∈ Wi, for 0 ≤ i ≤ n − 1. Put
Wn =

⋃
{WQ

n : Q ∈ Wn−1}.By the indu
tion families W0,W1, . . . are de�ned. Any ⋃
Wn is anopen dense subset of X. If always Qn ∈ Wn and x ∈ Q0 ∩ Q1 ∩ . . .,then any union

⋃
{Bk(Qk) ∪ Bk+1(Qk+1) ∪ . . .}is a dense subset of Y sin
e the winning strategy of I for
es moves

B0(Q0),B1(Q1), . . . with a su
h property. But V ∈ Bn(Qn) implies
Qn × V ⊆ E. Therefore Ex should be dense in Y . Families Wn aremaximal and 
onsists of open sets, so ⋃

Wn is always open and densein X. Hen
e for any
x ∈

⋃
W0 ∩

⋃
W1 ∩ . . .the set Ex should be dense in Y . Let P = X \ (

⋃
W0∩

⋃
W1∩ . . .). �Apply the above theorem to indi
ate 
onne
tions between games anduniversally Kuratowski-Ulam spa
es.Theorem 8. Every I-favorable spa
e is uK-U∗.Proof. Suppose that a spa
e Y is I-favorable, and X is a topologi
alspa
e. If D ⊆ X × Y is nowhere dense, then it's 
losure is nowheredense, too. Apply Theorem 7 with E = X × Y \ cl D. �Thus, there has been given an argument whi
h suggests that anadequate meaning of universally Kuratowski-Ulam spa
es should beuK-U∗ spa
es, 
ompare [4℄. There exist non-dyadi
 and 
ompa
t spa
eswhi
h are uK-U∗.Theorem 9. If a 
ompa
t spa
e Y is I-favorable, then the hyperspa
e

exp(Y ) with the Vietoris topology is uK-U∗.10



Proof. The hyperspa
e exp(Y ) is I-favorable by Theorem 6. So, one
ould apply Theorem 8. �Corollary 10. If λ > ω1, then the hyperspa
e exp(Dλ) is uK-U∗ andnon-dyadi
.Proof. For any 
ardinal λ > ω1 the hyperspa
e exp(Dλ) is non-dyadi
,by [9℄. The Cantor 
ube Dλ is I-favorable and hen
e exp(Dλ) is I-favorable by Theorem 6. Theorem 9 implies that exp(Dλ) is uK-U∗. �5. Final remarksIn [10, Theorem 1℄ L. Shapiro showed that any dyadi
 spa
e is 
o-absolute with a �nite disjoint union of Cantor 
ubes or is 
o-absolutewith the one point 
ompa
ti�
ation of 
ountable many Cantor 
ubes.Therefore, any dyadi
 spa
e is 
o-absolute with some I-favorable spa
e.One 
an 
he
k this using the de�nition of I-favorable spa
e. So, one 
anreprove [2, Theorem 1.11℄ using [2, Fa
t 1.3℄. In other words, any dyadi
spa
e is I-favorable sin
e it is 
o-absolute with a I-favorable spa
e.This and Theorem 8 give a proof that dyadi
 spa
es are universallyKuratowski-Ulam. We have reproved Corollary 3 from [3℄. Similarly,by Theorem 8, and Corollary 5.5.5 [5℄, and Proposition 5.5.6 [5℄ oneobtains that any spa
e whi
h is 
o-absolute with a κ-metrizable spa
eis uK-U∗, 
ompare [11℄, [5, p. 44℄. However, we do not know: Doesthere exist a 
ompa
t universally Kuratowski-Ulam spa
e whi
h is notI-favorable?A
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