# Yet another proof of the quadratic reciprocity law 

by<br>Alfred CzogaŁa and PrzemysŁaw Koprowski (Katowice)

Among all mathematical results it is the quadratic reciprocity law which possibly has the highest number of published proofs. The web page http:// www.rzuser.uni-heidelberg.de/~hb3/fchrono.html lists a total of 246 (at the time of writing) distinct proofs. In this paper we present yet another proof, based on some basic facts from group theory. The group-theoretical approach to the subject is not completely new. To the best of our knowledge the first proof of this genre was presented in [2]. The idea of our proof is to some extent inspired by Rousseau's proof [3].

If $(G,+)$ is a finite abelian group, then the quotient group $G / 2 G$ can be treated as a linear space over $\mathbb{F}_{2}$. Recall that 2-rank of $G$, denoted rank ${ }_{2} G$, is the dimension of this vector space. Equivalently, since every finite abelian group is a direct sum of cyclic groups, the 2-rank of $G$ is the number of cyclic summands of even orders. Denote by $G_{2}$ the subgroup of $G$ consisting of all elements of orders not exceeding 2 :

$$
G_{2}:=\{g \in G \mid 2 g=0\} .
$$

Then $G_{2}$ is an elementary 2 -group isomorphic to $G / 2 G$. It follows that the 2-rank of $G$ is the dimension of $G_{2}$ treated as an $\mathbb{F}_{2}$-linear space. In particular $G_{2}$ is isomorphic to $\mathbb{F}_{2}^{\mathrm{rank}_{2} G}$ and we have:

Observation 1. With the above notation, $\operatorname{rank}_{2} G=\log _{2}\left|G_{2}\right|$.
Lemma 2. Let $(G,+)$ be a finite abelian group and $a:=\sum_{g \in G} g$ the sum of all elements in $G$.

- If $\operatorname{rank}_{2} G \neq 1$, then $a=0$.
- If $\operatorname{rank}_{2} G=1$, then a has order 2 in $G$.

[^0]Proof. Let $G_{2}$ be as above. For every $g \in G \backslash G_{2}$, we have $g \neq-g$. Combining such elements into pairs $(g,-g)$ we obtain

$$
a=\sum_{g \in G} g=\sum_{g \in G_{2}} g
$$

In particular, if $G$ has an odd number of elements, then $\operatorname{rank}_{2} G=0$ and $a=0$, as claimed.

Now assume that $|G|$ is even and denote $m:=\operatorname{rank}_{2} G$. Recall that the linear spaces $G_{2}$ and $\mathbb{F}_{2}^{m}$ are isomorphic. If $m=1$, then $\sum_{v \in \mathbb{F}_{2}} v=1$ and so $a=\sum_{g \in G_{2}} g$ is the unique element of $G$ of order 2 . On the other hand, if $m>1$ then for every $i \leq m$ in the vector space $\mathbb{F}_{2}^{m}$ there are precisely $2^{m-1}$ vectors whose $i$ th coordinate is 1 . It follows that the $i$ th coordinate of $\sum_{v \in \mathbb{F}_{2}^{m}} v$ equals $2^{m-1} \cdot 1=0$, so this sum is the null vector. Using our isomorphism $G_{2} \cong \mathbb{F}_{2}^{m}$ we see that $a=\sum_{g \in G_{2}} g=0$, as desired.

From now on let $p, q$ be two distinct (but fixed) prime numbers. Denote by $G$ the direct product $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{q}^{\times}$of invertibles modulo $p$ and modulo $q$. Consider the subgroup $\Gamma:=\{(1,1),(-1,-1)\}$ of $G$ and set $\bar{G}:=G / \Gamma$.

Lemma 3. With the above notation:

- If $p \equiv q \equiv 1(\bmod 4)$, then $\operatorname{rank}_{2} \bar{G}>1$.
- If either $p \equiv 3(\bmod 4)$ or $q \equiv 3(\bmod 4)$, then $\operatorname{rank}_{2} \bar{G}=1$.

Proof. The group $G=\mathbb{F}_{p}^{\times} \times \mathbb{F}_{q}^{\times}$is isomorphic to $A=C_{p-1} \times C_{q-1}$, where $C_{k}:=\mathbb{Z} / k \mathbb{Z}$ is a cyclic group with $k$ elements. The isomorphism maps $\Gamma$ onto the subgroup $B:=\{(0,0),((p-1) / 2,(q-1) / 2)\}$ of $A$.

Using Observation 1, let us compute the 2-rank of $\bar{G}$ by counting the number of elements of order $\leq 2$ in $A / B$. If $p \equiv q \equiv 1(\bmod 4)$, then $A / B$ contains at least three such elements, namely the cosets (modulo $B$ ) of $(0,0)$, $((p-1) / 2,0) \equiv(0,(q-1) / 2)$ and $((p-1) / 4,(q-1) / 4)$. Therefore $\operatorname{rank}_{2} \bar{G}=$ $\operatorname{rank}_{2}(A / B)>1$.

On the other hand, if either $p \equiv 3(\bmod 4)$ or $q \equiv 3(\bmod 4)$, then the only elements of $A / B$ whose orders do not exceed 2 are the cosets of $(0,0)$ and $((p-1) / 2,0)$. Thus, in this case $\operatorname{rank}_{2} \bar{G}=\operatorname{rank}_{2}(A / B)=1$.

Borrowing an idea from [3], we consider a set $\mathcal{L}$ of representatives of all cosets of $\Gamma$ in $G$. Let

$$
\mathcal{L}:=\{(k \bmod p, k \bmod q): 0<k<p q / 2, p \nmid k, q \nmid k\} .
$$

The following fact was proved in [3]. We re-prove it here to make this paper self-contained.

Lemma 4. The product of all elements of $\mathcal{L}$ equals

$$
\left((-1)^{(q-1) / 2} \cdot\left(\frac{q}{p}\right),(-1)^{(p-1) / 2} \cdot\left(\frac{p}{q}\right)\right)
$$

Proof. The definition of $\mathcal{L}$ is symmetric in $p, q$, and so is the assertion of the lemma. Hence it suffices to prove the equality at the first coordinate. Indeed,

$$
\prod_{(k, k) \in \mathcal{L}} k=\frac{\Pi_{k<p q / 2}, p+k}{} k
$$

$$
=\frac{\left(\prod_{0<k<p} k\right) \cdot\left(\prod_{0<k<p}(p+k)\right) \cdots\left(\prod_{0<k<p}\left(\frac{q-3}{2} \cdot p+k\right)\right)}{(q)(2 q) \cdots\left(\frac{p-1}{2} \cdot q\right)} \cdot \prod_{0<k<p / 2}\left(\frac{q-1}{2} \cdot p+k\right)
$$

Each product in the numerator is equal to $(p-1)$ !, and hence to -1 by Wilson's theorem. Analogously, the last product is equal to $\left(\frac{p-1}{2}\right)$ !. Finally, the denominator equals

$$
(q)(2 q) \cdots\left(\frac{p-1}{2} \cdot q\right)=q^{(p-1) / 2} \cdot\left(\frac{p-1}{2}\right)!=\left(\frac{q}{p}\right) \cdot\left(\frac{p-1}{2}\right)!
$$

by Euler's criterion. All in all, the formula simplifies to $(-1)^{(q-1) / 2} \cdot\left(\frac{q}{p}\right)$.
We are now ready to present the new proof of the quadratic reciprocity law.

Proof of the quadratic reciprocity law. We will consider all the possible remainders of $p, q$ modulo 4 . First assume that $p \equiv q \equiv 1(\bmod 4)$. Then $\operatorname{rank}_{2} \bar{G}>1$ by Lemma 3, and so Lemma 2 implies that the product of all elements from $\mathcal{L}$ lies in $\Gamma$. Thus, both coordinates are either all 1 or all -1 . In particular, the first coordinate is the same as the second one, hence

$$
(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{q}\right)
$$

by Lemma 4 . This shows that $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$.
Conversely, assume that at least one of the two primes is congruent to 3 modulo 4. Then $\operatorname{rank}_{2} \bar{G}=1$, and so by Lemma 2 the product of all elements of $\mathcal{L}$ has order 2 in the quotient group $\bar{G}$. Thus the product equals $(1,-1) \cdot \Gamma$ $=(-1,1) \cdot \Gamma$. In particular, the two coordinates are opposite to each other:

$$
(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)=-(-1)^{(p-1) / 2}\left(\frac{p}{q}\right)
$$

Now, if $p \not \equiv q(\bmod 4)$, then $(-1)^{(q-1) / 2}=-(-1)^{(p-1) / 2}$ and again we have $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$. On the other hand, if $p \equiv q \equiv 3(\bmod 4)$, then $(-1)^{(q-1) / 2}=$ $(-1)^{(p-1) / 2}$ and so $\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)$. This concludes the proof.

Acknowledgements. The authors were informed by Chandan Dalawat that Lemma 2 appeared earlier in his paper on Wilson's theorem (see [1, Lemma 2.1]). We wish to thank him for pointing this out.

## References

[1] Ch. Dalawat, Wilson's theorem, J. Théor. Nombres Bordeaux 21 (2009), 517-521.
[2] W. Duke and K. Hopkins, Quadratic reciprocity in a finite group, Amer. Math. Monthly 112 (2005), 251-256.
[3] G. Rousseau, On the quadratic reciprocity law, J. Austral. Math. Soc. Ser. A 51 (1991), 423-425.

Alfred Czogała, Przemysław Koprowski Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice, Poland
E-mail: alfred.czogala@us.edu.pl
przemyslaw.koprowski@us.edu.pl

Abstract (will appear on the journal's web site only)
We present a new proof of the celebrated quadratic reciprocity law. Our proof is based on group theory.


[^0]:    2010 Mathematics Subject Classification: 11A15, 20K01.
    Key words and phrases: quadratic reciprocity law.
    Received 21 March 2018; revised 30 June 2018.
    Published online *.

