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Yet another proof of the quadratic reciprocity law

by

Alfred Czogała and Przemysław Koprowski (Katowice)

Among all mathematical results it is the quadratic reciprocity law which
possibly has the highest number of published proofs. The web page http://
www.rzuser.uni-heidelberg.de/∼hb3/fchrono.html lists a total of 246 (at the
time of writing) distinct proofs. In this paper we present yet another proof,
based on some basic facts from group theory. The group-theoretical approach
to the subject is not completely new. To the best of our knowledge the first
proof of this genre was presented in [2]. The idea of our proof is to some
extent inspired by Rousseau’s proof [3].

If (G,+) is a finite abelian group, then the quotient group G/2G can be
treated as a linear space over F2. Recall that 2-rank of G, denoted rank2G,
is the dimension of this vector space. Equivalently, since every finite abelian
group is a direct sum of cyclic groups, the 2-rank of G is the number of cyclic
summands of even orders. Denote by G2 the subgroup of G consisting of all
elements of orders not exceeding 2:

G2 := {g ∈ G | 2g = 0}.

Then G2 is an elementary 2-group isomorphic to G/2G. It follows that the
2-rank of G is the dimension of G2 treated as an F2-linear space. In partic-
ular G2 is isomorphic to Frank2 G

2 and we have:

Observation 1. With the above notation, rank2G = log2 |G2|.

Lemma 2. Let (G,+) be a finite abelian group and a :=
∑

g∈G g the sum
of all elements in G.

• If rank2G 6= 1, then a = 0.
• If rank2G = 1, then a has order 2 in G.
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Proof. Let G2 be as above. For every g ∈ G \ G2, we have g 6= −g.
Combining such elements into pairs (g,−g) we obtain

a =
∑
g∈G

g =
∑
g∈G2

g.

In particular, if G has an odd number of elements, then rank2G = 0 and
a = 0, as claimed.

Now assume that |G| is even and denote m := rank2G. Recall that the
linear spaces G2 and Fm

2 are isomorphic. If m = 1, then
∑

v∈F2
v = 1 and

so a =
∑

g∈G2
g is the unique element of G of order 2. On the other hand,

if m > 1 then for every i ≤ m in the vector space Fm
2 there are precisely

2m−1 vectors whose ith coordinate is 1. It follows that the ith coordinate
of
∑

v∈Fm
2
v equals 2m−1 · 1 = 0, so this sum is the null vector. Using our

isomorphism G2
∼= Fm

2 we see that a =
∑

g∈G2
g = 0, as desired.

From now on let p, q be two distinct (but fixed) prime numbers. Denote
by G the direct product F×p × F×q of invertibles modulo p and modulo q.
Consider the subgroup Γ := {(1, 1), (−1,−1)} of G and set G := G/Γ .

Lemma 3. With the above notation:

• If p ≡ q ≡ 1 (mod 4), then rank2G > 1.
• If either p ≡ 3 (mod 4) or q ≡ 3 (mod 4), then rank2G = 1.

Proof. The group G = F×p ×F×q is isomorphic to A = Cp−1×Cq−1, where
Ck := Z/kZ is a cyclic group with k elements. The isomorphism maps Γ onto
the subgroup B := {(0, 0), ((p− 1)/2, (q − 1)/2)} of A.

Using Observation 1, let us compute the 2-rank of G by counting the
number of elements of order ≤ 2 in A/B. If p ≡ q ≡ 1 (mod 4), then A/B
contains at least three such elements, namely the cosets (modulo B) of (0, 0),
((p−1)/2, 0) ≡ (0, (q−1)/2) and ((p−1)/4, (q−1)/4). Therefore rank2G =
rank2(A/B) > 1.

On the other hand, if either p ≡ 3 (mod 4) or q ≡ 3 (mod 4), then the
only elements of A/B whose orders do not exceed 2 are the cosets of (0, 0)
and ((p− 1)/2, 0). Thus, in this case rank2G = rank2(A/B) = 1.

Borrowing an idea from [3], we consider a set L of representatives of all
cosets of Γ in G. Let

L := {(k mod p, k mod q) : 0 < k < pq/2, p - k, q - k}.
The following fact was proved in [3]. We re-prove it here to make this paper
self-contained.

Lemma 4. The product of all elements of L equals(
(−1)(q−1)/2 ·

(
q

p

)
, (−1)(p−1)/2 ·

(
p

q

))
.
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Proof. The definition of L is symmetric in p, q, and so is the assertion
of the lemma. Hence it suffices to prove the equality at the first coordinate.
Indeed,∏
(k,k)∈L

k =

∏
k<pq/2, p - k k∏

k<pq/2, q | k k

=

( ∏
0<k<p

k
)
·
( ∏
0<k<p

(p+ k)
)
· · ·
( ∏
0<k<p

( q−3
2 · p+ k

))
(q)(2q) · · ·

(p−1
2 · q

) ·
∏

0<k<p/2

(
q − 1

2
·p+k

)
.

Each product in the numerator is equal to (p − 1)!, and hence to −1 by
Wilson’s theorem. Analogously, the last product is equal to

(p−1
2

)
!. Finally,

the denominator equals

(q)(2q) · · ·
(
p− 1

2
· q
)

= q(p−1)/2 ·
(
p− 1

2

)
! =

(
q

p

)
·
(
p− 1

2

)
!

by Euler’s criterion. All in all, the formula simplifies to (−1)(q−1)/2 ·
( q
p

)
.

We are now ready to present the new proof of the quadratic reciprocity
law.

Proof of the quadratic reciprocity law. We will consider all the possible
remainders of p, q modulo 4. First assume that p ≡ q ≡ 1 (mod 4). Then
rank2G > 1 by Lemma 3, and so Lemma 2 implies that the product of all
elements from L lies in Γ . Thus, both coordinates are either all 1 or all −1.
In particular, the first coordinate is the same as the second one, hence

(−1)(q−1)/2
(
q

p

)
= (−1)(p−1)/2

(
p

q

)
by Lemma 4. This shows that

( q
p

)
=
(p
q

)
.

Conversely, assume that at least one of the two primes is congruent to 3
modulo 4. Then rank2G = 1, and so by Lemma 2 the product of all elements
of L has order 2 in the quotient group G. Thus the product equals (1,−1) ·Γ
= (−1, 1) · Γ . In particular, the two coordinates are opposite to each other:

(−1)(q−1)/2
(
q

p

)
= −(−1)(p−1)/2

(
p

q

)
.

Now, if p 6≡ q (mod 4), then (−1)(q−1)/2 = −(−1)(p−1)/2 and again we have( q
p

)
=
(p
q

)
. On the other hand, if p ≡ q ≡ 3 (mod 4), then (−1)(q−1)/2 =

(−1)(p−1)/2 and so
( q
p

)
= −

(p
q

)
. This concludes the proof.
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that Lemma 2 appeared earlier in his paper on Wilson’s theorem (see [1,
Lemma 2.1]). We wish to thank him for pointing this out.
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Abstract (will appear on the journal’s web site only)
We present a new proof of the celebrated quadratic reciprocity law. Our

proof is based on group theory.
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