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WILD AND EVEN POINTS IN GLOBAL FUNCTION FIELDS

BY
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Abstract. We develop a criterion for a point of a global function field to be a unique
wild point of some self-equivalence of this field. We show that this happens if and only
if the class of the point in the Picard group of the field is 2-divisible. Moreover, given a
finite set of points whose classes are 2-divisible in the Picard group, we show that there
is always a self-equivalence of the field for which this is precisely the set of wild points.
Unfortunately, for more than one point this condition is no longer necessary.

1. Introduction and related works. Hilbert-symbol equivalence (for-
merly known under the name reciprocity equivalence) appeared for the first
time in the early 90’s in papers by J. Carpenter, P. E. Conner, R. Litherland,
R. Perlis, K. Szymiczek and the first author (see e.g. [PSCL94]). It was orig-
inally introduced as a tool for investigating Witt equivalence of global fields
(two fields are said to be Witt equivalent when their Witt rings of similarity
classes of non-degenerate quadratic forms are isomorphic—roughly speaking,
Witt equivalent fields admit “equivalent” classes of orthogonal geometries).
Nowadays, it is known that Witt equivalence of fields is closely related to
étale cohomology. For fields of rational functions K = k(X), the relevant
groups are: H1(K,Z/2) ∼= K×/K×2, the group of square classes of K, and
H2(K,Z/2) ∼= Br2(K), the group of 2-torsion elements in the Brauer group
of K. When one passes to a finite extension of the field of rational functions,
i.e. to the function field of an algebraic curve X, the group PicX/2PicX
becomes relevant, too.

Recently, the theory of Hilbert-symbol equivalence developed into a re-
search subject by itself. It was generalized to higher-degree symbols (see e.g.
[CS97], [CS98]), to quaternion-symbol equivalence of real function fields (see
e.g. [Kop02]), as well to a ring setting (see e.g. [RC07]). One of the problems
considered in this theory is to describe self-equivalences of a given field.
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2 A. CZOGAŁA ET AL.

LetK be a global field of characteristic 6= 2 and letX denote the set of all
primes of K (i.e. classes of non-trivial places on K). A self-equivalence of K
is a pair (T, t), consisting of a bijection T : X ∼−→ X and an automorphism
t : K×/K×2 ∼−→ K×/K×2 of the square-class group of K satisfying the
condition

(λ, µ)p = (tλ, tµ)Tp for all p ∈ X and λ, µ ∈ K×/K×2.

Here, (·, ·)p denotes the Hilbert symbol

K×p /K
×2
p ×K×p /K×2p → {±1}.

Every self-equivalence of a global field induces an automorphism of its Witt
ring. Given a self-equivalence of a global field K, a prime p of K is called
tame if ordp λ ≡ ordTp tλ (mod 2) for all λ ∈ K. Otherwise p is called wild.
A few years ago, M. Somodi gave a full characterization of all finite sets of
wild primes in Q (see [Som06]) and in Q(i) (see [Som08]). His results were
recently generalized to a broad class of number fields by two of the present
authors [CR14]).

In this paper, we consider the same question for global function fields,
i.e. algebraic function fields in one variable over finite fields. Hence from now
on, K is a global function field of characteristic 6= 2 and a (finite) field Fq
is the full field of constants of K. We may think of K as a field of rational
functions on some smooth, irreducible complete curve X. The closed points
of X are identified with non-trivial places of K. We shall never explicitly
refer to the generic point of X. Thus, in what follows, we use the word
“point” to mean “closed point”. We denote the set of closed points again
by X. We show (Theorem 4.7) that a point p ∈ X is a unique wild point
for some self-equivalence of K if and only if its class in the Picard group
of X is 2-divisible (i.e. belongs to the subgroup 2PicX). One implication
of this theorem still holds even when we increase the number of points;
this way we obtain a complete counterpart (Theorem 4.8) for function fields
of the results from [Som06, Som08, CR14]. These two results establish a
direct link between the property of being wild (for some self-equivalence)
and 2-divisibility in the Picard group of K. For this reason, we develop in
Section 3 some criteria for the class of a point p ∈ X to be 2-divisible in
PicX. In particular, we show (Theorem 3.7) that a point of a hyperelliptic
curve (of odd degree) is 2-divisible in PicX (hence is a unique wild point
of some self-equivalence) if and only if its norm over the rational function
field is represented by the norm of the field extension K/Fq(x). This in turn
implies that for such curves, wild points always exist (Proposition 3.11).

We use the following notation. Given a function field K and a point
p ∈ X, we denote by Op the associated valuation ring, by Kp the completion
of K and by K(p) the residue field. The degree [K(p) : Fq] of the residue
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field of p over the full field of constants is called the degree of p and denoted
deg p. Given a non-empty, open subset Y ⊆ X, we write OY :=

⋂
p∈Y Op

and
EY := {λ ∈ K× | ∀p∈Y ordp λ ≡ 0 (mod 2)}

This set is a union of cosets of K×2 and we denote its image in the square-
class group of K by EY := EY /K

×2. Further, when Y is a proper subset,
we consider the subset of EY consisting of all those functions that are local
squares everywhere outside Y , namely

∆Y := EY ∩
⋂
p/∈Y

K×2p = EX ∩
⋂
p/∈Y

K×2p .

This set again contains full square classes of K and so we write ∆Y :=
∆Y /K

×2. In the special case when Y is of the form X \ {p}, we abbreviate
the notation by writing Ep, Ep, ∆p and ∆p for EX\{p}, EX\{p}, ∆X\{p} and
∆X\{p}, respectively.

The square-class group F×q /F×2q has order 2. We write ζ ∈ Fq ⊂ K for a
fixed generator of this group, with the convention that ζ = −1 whenever −1
is not a square in K (i.e. card(Fq) ≡ 3 (mod 4)). Abusing notation slightly,
we tend to use the same symbols λ, µ, . . . to denote elements of the field
and their classes in the square-class group of this field. Likewise, the fraktur
letters p, q, . . . denote, depending on the context, either points of K or their
classes in PicX or PicOY . Divisors, as well as their classes in the Picard
group, are always written additively.

2. Preliminaries. Recall that if Kp is a local field, then the square-class
group of Kp consists of four elements: 1, up, πp and upπp, where πp is the
class of a uniformizer and up is the class of a unit which is not a square (see
e.g. [Lam05, Theorem VI.2.2]). We call up the p-primary unit. If (T, t) is a
self-equivalence of K, then t factors over all the local square-class groups by
[PSCL94, Lemma 4]. In particular, it maps 1 ∈ K×p /K×2p to 1 ∈ K×Tp/K

×2
Tp . If

it also maps up to uTp, then it is necessarily tame by the pigeonhole principle.
Thus we have proved:

Observation 2.1. A self-equivalence (T, t) is wild at a point p ∈ X if
and only if ordTp tup ≡ 1 (mod 2).

The primary unit up may also be characterized by using Hilbert symbols
as follows:

(up, λ)p = (−1)ordp λ for every λ ∈ K×p .
The Hilbert symbol (·, ·)p can be viewed as a non-degenerate F2-inner prod-
uct on K×p /K×2p , provided the additive group F2 is identified with the mul-
tiplicative group {±1}. The following observation is now immediate:
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Observation 2.2. Let p, q ∈ X be two points of K such that −1 ∈
K2

p ∩K2
q . Then the isomorphism τ : K×p /K

×2
p → K×q /K

×2
q defined by

τ(up) = uqπq, τ(πp) = πq

is an isometry of the inner product spaces

(K×p /K
×2
p , (·, ·)p) and (K×q /K

×2
q , (·, ·)q

)
.

Below we gather some results concerning 2-ranks of the class groups:
either the Picard group PicX of a complete curve X or the Picard group
PicOY for some fixed open subset ∅ 6= Y ( X. Recall that the latter group
can be identified with the ideal class group ClOY of the coordinate ring OY
of Y , as OY is a Dedekind domain.

We begin with a proposition that is not new: the first assertion was
proved in [Czo01, p. 607] and the second in [Czo01, Lemma 2.1]. The third
assertion is a simple consequence of the previous two. We state the result
explicitly only for ease of reference.

Proposition 2.3. Let ∅ 6= Y ( X be a proper open subset of X. Then

(1) rk2 EY = rk2 PicOY + card(X \ Y );
(2) rk2 ∆Y = rk2 PicOY ;
(3) rk2(EY /∆Y ) = card(X \ Y );

An identity similar to (1) above can also be proved for a complete curve.

Lemma 2.4. rk2 EX = 1 + rk2 Pic
0X.

Proof. Let H be the subgroup of Pic0X consisting of elements of order 2.
The map

EX → H, λ 7→ 1
2 divK λ =

∑
p∈X

1
2 ordp λ · p,

is a surjective homomorphism with kernel F×q ·K×2. Thus, rk2(EX/F×q K×2)
= rk2 Pic

0X. The groups F×q K×2/K×2 and F×q /F×2q are isomorphic and the
2-rank of F×q /F×2q equals 1. This proves the lemma.

Now, we consider the case when we have two open subsets Z ⊂ Y ⊂ X.

Lemma 2.5. If ∅ 6= Z ⊂ Y ( X are two proper open subsets of X, then

(1) rk2 PicOZ = rk2 PicOY − rk2〈{p+ 2PicOY | p ∈ Y \ Z}〉;
(2) rk2 EZ = rk2 PicOY − rk2〈{p+ 2PicOY | p ∈ Y \ Z}〉+ card(X \ Z).

Proof. Since Z ⊂ Y , we have OZ ⊃ OY , and by functoriality there is a
natural morphism PicOY → PicOZ . It is clearly an epimorphism, since the
class of a divisor

∑
p∈Z npp is the image of the class of any divisor of the

form
∑

p∈Z npp +
∑

q∈Y \Z nqq. This epimorphism induces an epimorphism
of the quotient groups PicOY /2PicOY � PicOZ/2PicOZ , whose kernel
is generated by the set {p + 2PicOY | p ∈ Y \ Z}. This proves the first
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assertion of the lemma; the second follows immediately from the first one
and Proposition 2.3.

It is natural to compare the 2-rank of Pic0X with the 2-rank of the
class group PicOY of a proper open subset Y ( X. Below we formulate two
relevant results for the case Y = X \ {p}.

Lemma 2.6. Let ζ ∈ Fq be a fixed generator of the square-class group
F×q /F×2q of the full field of constants of K. If p ∈ X is a point of odd degree,
then

(1) EX = Ep = 〈ζ〉 ⊕∆p;
(2) rk2 Pic

0X = rk2 PicOp.

Proof. Let λ ∈ Ep. Since the degree of the principal divisor divK λ is 0,
we have

ordp λ · deg p = −
∑
q6=p

ordq λ · deg q.

Now, ordq λ is even for every q 6= p, since λ ∈ Ep. On the other hand, deg p
is odd by assumption. It follows that ordp λ is even, too. Hence λ ∈ EX
and so we have proved that Ep ⊆ EX . The other inclusion is trivial and
the equality Ep = 〈ζ〉 ⊕∆p follows from Proposition 2.3 and the fact that
ζ is not a local square at a given point if and only if this point has an odd
degree. This proves (1); and (2) follows immediately from Lemma 2.4 and
Proposition 2.3(1).

Proposition 2.7. If p ∈ X is any point, then

rk2 PicOp =

{
rk2 Pic

0X if p /∈ 2PicX,
1 + rk2 Pic

0X if p ∈ 2PicX.

The proof is postponed to the next section.

3. 2-divisibility of classes of prime divisors. This section is devoted
to the following problem: If p ∈ X is a point, when is the class of p in PicX
divisible by 2 (i.e. lying in 2PicX)? Points having this property will be called
2-divisible or briefly, albeit less formally, even. The results of this section not
only have direct applications in the rest of this paper, but (at least some
of them) are of independent interest. Let us begin with the following basic
observation.

Observation 3.1. If p ∈ X is an even point, then deg p is an even
integer.

This follows immediately from the fact (see e.g. [Lor96,CorollaryVII.7.10])
that the epimorphism deg : DivK � Z factors through the subgroup of
principal divisors, inducing awell defined group epimorphism deg : PicX�Z.
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It is well known (see e.g. [Lor96, Proposition VII.7.12]) that for a field of
rational functions this map is actually an isomorphism. Hence, in such a field,
even points are precisely the points of even degrees. Of course, this is not so
in general. For example, if K is the function field of an elliptic curve over F3

given in Weierstrass normal form by the polynomial y2 − x3 + x, then there
are exactly six points of degree 2 and twelve points of degree 4 in K but
none (!) of them is 2-divisible in PicX (verified (1) using Magma [BCP97]).
Thus, we have to search for some other criteria of 2-divisibility.

Proposition 3.2. A point p ∈ X is 2-divisible in PicX if and only if
there exists an element λ ∈ Ep such that ordp λ ≡ 1 (mod 2).

Proof. Assume that p is an even point; this means that

p+ divK λ =
∑
q∈X

2nq · q

for some nq ∈ Z almost all zero and some λ ∈ K. It is clear that λ satisfies
the assertion.

Conversely, assume the existence of λ ∈ Ep of odd order at p, say ordp λ =
2k + 1. Write the divisor of λ as

divK λ = (2k + 1)p+
∑
q∈X
q6=p

2nqq

for some k ∈ Z and nq ∈ Z almost all zero. Therefore, in the Picard group
of K,

p = divK λ− 2
(
kp+

∑
q∈X
q6=p

nqq
)
.

In particular p ∈ 2PicX, as claimed.

We will need the following, rather basic, fact from group theory, which
we believe is well known to experts but we are not aware of any convenient
reference.

Lemma 3.3. Let G be a finite abelian group. If H is a subgroup of G,
then

rk2G/H ≥ rk2G− rk2H.

Proof. The 2-rank of a finite abelian group A is just the dimension of
the F2-vector space A⊗Z F2. Take a short exact sequence

0→ H → G→ G/H → 0

(1) The source codes for Magma of all the counterexamples are available at the second
author’s web page http://z2.math.us.edu.pl/perry/papers.

http://z2.math.us.edu.pl/perry/papers
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and tensor it with F2. We obtain the exact sequence of F2-vector spaces

H ⊗Z F2 → G⊗Z F2 → G/H ⊗Z F2 → 0.

Let I be the image of the first homomorphism in the above sequence. Clearly
dimF2(H ⊗Z F2) ≥ dimF2 I and we have

dimF2(G⊗Z F2)− dimF2(H ⊗Z F2) ≤ dimF2(G⊗Z F2)− dimF2 I

= dimF2((G/H)⊗Z F2).

Proof of Proposition 2.7. Let d := deg p. It follows from [Ros02, Propo-
sition 14.1] that the following sequence is exact:

0→ Pic0X → PicOp → Zd → 0.

Therefore PicOp/Pic
0X is isomorphic to Zd and so their 2-ranks are equal.

Lemma 3.3 asserts that

1 ≥ rk2 Zd ≥ rk2 PicOp − rk2 Pic
0X.

Consequently,

(1) rk2 PicOp ≤ 1 + rk2 Pic
0X.

Lemma 2.4 asserts that rk2 EX = 1+rk2 Pic
0X, while Proposition 2.3 states

that rk2 PicOp = rk2 Ep−1. Clearly EX ⊆ Ep. If p /∈ 2PicX, then EX = Ep

by Proposition 3.2, hence

rk2 PicOp = rk2 Pic
0X.

On the other hand, if p ∈ 2PicX, then EX ( Ep, again by Proposition 3.2.
Thus

rk2 PicOp > rk2 Pic
0X,

and the assertion follows from (1).

One immediate consequence of Proposition 2.7 is the following criterion
for 2-divisibility.

Proposition 3.4. Let p ∈ X be any point. Then p is 2-divisible in PicX
if and only if every function having even order everywhere on X is a local
square at p (i.e. if EX = ∆p).

Proof. Think of ∆p as a subspace of the F2-linear space EX . Lemma 2.4
asserts that rk2 EX = 1+ rk2 Pic

0X, while rk2 ∆p = rk2 PicOp by Proposi-
tion 2.3. Now, it follows from Proposition 2.7 that rk2 PicOp = 1+rk2 Pic

0X
= rk2 EX if and only if p ∈ 2PicX. Consequently, dimF2 ∆p = dimF2 EX ,
and so ∆p is the full space EX , if and only if p is even.

So far we have been considering 2-divisibility in the Picard group of the
complete curve. The next proposition deals with 2-divisibility in PicOY (or
equivalently in ClOY ), that is, over some proper open subset Y of X.
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Proposition 3.5. Let ∅ 6= Y ( X be a proper open subset and p ∈ Y .
Then p is 2-divisible in PicOY if and only if ∆Y ⊂ K×2p .

Proof. By assumption there exists λ ∈ K× such that divOY
λ = p+ 2D

for some OY -divisorD ∈ DivOY . Fix µ ∈ ∆Y . Then, for every q ∈ X\Y , the
element µ is a local square at q, hence the quaternion algebra

(λ,µ
Kq

)
splits.

On the other hand, if q ∈ Y \{p}, then both µ and λ are q-adic units modulo
K×2q and so again

(λ,µ
Kq

)
splits. Consequently, the quaternion algebras

(λ,µ
Kq

)
split for all q ∈ X, except possibly p. It follows from Hilbert’s reciprocity
formula that in that case also

(λ,µ
Kp

)
splits. But µ is arbitrary, which implies

that λ must be a local square at p.
Conversely, let Z = Y \ {p}. Since µ ∈ K×2p for every µ ∈ ∆Y by

assumption, we have ∆Y = ∆Z and it follows from Proposition 2.3(2) that

rk2 PicOY = rk2 PicOZ .

Consequently, p ∈ 2PicOY , by Lemma 2.5.

Finally, we present a proposition connecting 2-divisibility in the Picard
group of a complete curve with 2-divisibility over its open subset.

Proposition 3.6. Let p, q be points of X with deg p even and deg q odd.
Then

p ∈ 2PicX ⇔ p ∈ 2PicOX\{q}.

Proof. Let Y := X\{q}. If p is 2-divisible in PicX, then p = divK λ+2D
for some λ ∈ K and D ∈ DivK. Drop any occurrences of q in D and the
principal divisor divK λ, to get OY -divisors D′ and divOY

λ. Therefore, over
OY , we have

p = divOY
λ+ 2D′ ∈ DivOY ,

and so p ∈ 2PicOY .
Conversely, assume that p ∈ 2PicOY ; this means that there are λ ∈ K

and OY -divisor D ∈ DivOY such that

divOY
λ = p+ 2D ∈ DivOY .

Passing from Y to the complete curve X, write

divK λ = p+ 2D+ ordq λ · q.

Compute the degrees of both sides to get

0 = deg p+ 2degD+ ordq λ · deg q.

We have assumed that deg q is odd, while deg p is even, hence ordq λ must
be even too, say ordq λ = 2k for some k ∈ Z. Thus, divK λ = p+2(D+ kq),
which means that p is even, as desired.
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All the above results are of rather general nature and are valid for any
global function field. It should not come as a big surprise that if we concen-
trate on function fields of a special type, more can be proved. Recall that a
smooth curve X whose affine part Xaff is defined by a polynomial y2−f(x) is
called hyperelliptic when deg f ≥ 4, elliptic when deg f = 3 and conic when
deg f ≤ 2. In what follows, we will deal with elliptic and hyperelliptic curves
in a uniform fashion, and we shall call all curves of this form “hyperelliptic”,
treating elliptic curves as a special case of hyperelliptic ones. We warn the
reader, however, that this is not standard terminology.

Let K/F be an extension of function fields and π : X � Y be the corre-
sponding morphism of their associated (smooth) curves. Recall (cf. [Lor96,
Ch. VII, §7]) that a norm is a function NormK/F : DivK → DivF given by

(2) NormK/F

(∑
i

aipi

)
:=
∑
i

aif(pi/π(pi))π(pi),

where f(p/π(p)) is the inertia degree of p over π(p). If Y aff is the affine
part of Y , OF = Fq[Y aff] is the ring of functions regular on Y aff and OK =
int.clK OF is the integral closure ofOF inK, then NormK/F |DivOK

restricted
to DivOK is a morphism DivOK → DivOF . If additionally F = Fq(x) is
a field of rational functions, then to every point p of Y = P1Fq one may
unambiguously assign either a monic polynomial p ∈ Fq[x] with a single zero
at p and no other zeros, or a function 1/x when p is the point at infinity.
This constitutes a morphism DivF → F× from the group of divisors to the
multiplicative group of the field F . Composing it over NormK/F , we arrive
at the map normK/F : DivK → F×, which (harmlessly abusing notation)
we shall again call a norm. In what follows, we shall prefer normK/F to
NormK/F since the former allows us to compare the norm of a divisor with
values of the standard norm of the field extension normK/F : K× → F×.

Theorem 3.7. Let K be a function field of a smooth hyperelliptic curve
X of odd degree and p ∈ X be a point of even degree. Then p is 2-divisible
in PicX if and only if normK/F p is representable by normK/F : K× → F×,
where F is a field of rational functions. In other words,

p ∈ 2PicX ⇔ ∃λ∈K normK/F p = normK/F λ.

The proof of this theorem will be divided into Lemmas 3.8–3.10, in which
K = qf(Fq[x, y]/(y2 − f(x))) is always a function field of a hyperelliptic
curve X with its affine part defined by the polynomial y2 − f(x); further
F = Fq(x) is a field of rational functions in x and OK = int.clFq[x]. We
denote by : K → K the unique non-trivial F -automorphism of K. The
ring OK is a Dedekind domain, hence its Picard group can be identified
with its ideal class group ClOK .



10 A. CZOGAŁA ET AL.

The first lemma is basically a recap of [BS66, Theorem III.8.7]. Unfortu-
nately, in [BS66] it is proved only for number fields, hence for completeness
we explicitly state and prove its function field counterpart.

Lemma 3.8. If the normK/F D of a divisor D ∈ DivOK equals 1, then
the class of D lies in 2PicOK .

Proof. We closely follow [BS66, proof of Theorem III.8.7]. Write the di-
visor D in the form

D =

m∑
i=1

(aipi + bipi) +

n∑
j=1

cjqj ,

where the points qj = qj are fixed under the action of and the pi 6= pi are
not. Then normK/F pi = normK/F pi = pi and normK/F qj = q

fj
j for some

monic polynomials pi, qj ∈ Fq[x], fj ∈ {1, 2}, i ≤ m, j ≤ n. Therefore

1 = normK/F D =
m∏
i=1

pai+bii ·
n∏
j=1

q
cj
j .

Now, all the polynomials are irreducible and pairwise distinct and Fq[x] is a
UFD, hence all the exponents must vanish. In particular cj = 0 for every j
and ai = −bi for every i. Consequently,

D =

m∑
i=1

ai(pi − pi),

but pi + pi = divOK
p, hence pi = −pi in PicOK . All in all, we write the

class of D as
m∑
i=1

2aipi ∈ 2PicOK .

We are now in a position to prove the direct implication of Theorem 3.7.

Lemma 3.9. If deg p ∈ 2Z and normK/F p ∈ normK/F K
×, then p is

even.

Proof. By the assumption of the theorem, the degree of X is odd, and it
follows from [Lor96, Lemma V.10.15] that X has a unique point at infinity
(denote it ∞K) and this point is ramified. In particular, deg∞K = 1 /∈ 2Z
and so p and ∞K are distinct. If the inertia degree of p (in K/F ) equals 2,
then normK/F p = p2 for some monic p ∈ Fq[x]. This means that divK p =
p− 2∞K . Therefore p = divK p+ 2∞K ∈ 2PicX.

From now on, we assume that p 6= ∞K and the inertia degree of p
equals 1. Hence, normK/F p = p and by assumption there exists λ ∈ K such
that p = normK/F λ = λλ. Take a divisor D := p − divOK

λ ∈ DivOK .



WILD AND EVEN POINTS IN GLOBAL FUNCTION FIELDS 11

Clearly

normK/F D =
normK/F p

normK/F λ
= 1,

and so the previous lemma asserts thatD ∈ 2PicOK . Since∞K is the unique
point at infinity and deg∞K = 1, therefore [Lor96, Proposition VIII.9.2]
implies that PicOK is isomorphic to Pic0K. Hence, passing withD to PicX,
we have p − divK λ + 2k∞K ∈ 2PicX for some k ∈ Z. In particular p ∈
2PicX, as desired.

We now prove the opposite implication of Theorem 3.7.

Lemma 3.10. The norm normK/F p of every even point lies in
normK/F K

×.

Proof. Take p ∈ X and assume that it is 2-divisible in PicX. Thus, there
are D ∈ DivK and λ ∈ K such that

p = 2D+ divK λ.

Compute the norms of both sides to get

normK/F p = normK/F (2D+ divK λ) = (normK/F D)2 · normK/F λ.

If λ = a+ by for some a, b ∈ F , then normK/F λ = a2 − b2f , therefore

normK/F p = (ac)2 − (bc)2f,

where c = normK/F D ∈ F . In particular normK/F p ∈ normK/F K
×.

The proof of Theorem 3.7 is now complete.

Remark 1. Note that the condition deg f /∈ 2Z occurs only in the proof
of Lemma 3.9. Therefore, the implication

p ∈ 2PicX ⇒ normK/F p ∈ normK/F K
×

holds even without this assumption. Nevertheless, for the other implication
this condition is indispensable. Indeed, take

K = qf
(
F5[x, y]/(y

2 − x4 + x+ 1)
)
.

Using Magma one checks that there are a total of eight points ofK of degree 2
that are not 2-divisible in PicX, but their norms lie in normK/F K

×.

Remark 2. The assumption that deg p is even is also essential. Take the
field

K = qf
(
F13[x, y]/(y

2 + 12x3 + x2 + 3x+ 10)
)
.

As mentioned in the proof of Lemma 3.9, the field K has the unique point
at infinity ∞K and deg∞K = 1. On the other hand, normK/F ∞K = 1/x ∈
normK/F K

×. Again this example was checked using Magma.

The criterion in the above theorem lets us show that even points do exist.
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Proposition 3.11. Let K be a function field of a (smooth) hyperelliptic
curve given by a polynomial y2 − f(x). If f ∈ Fq[x] is monic of odd degree,
then there are infinitely many points of K that are 2-divisible in PicX.

Proof. As observed in the proof of Lemma 3.9, K has unique point at
infinity (denoted ∞K). This point is ramified and the Picard group PicOK
of OK = int.clK Fq[x] is isomorphic to Pic0X. Let f = f1 · · · fn be the
decomposition of f into irreducible monic factors. Fix a non-zero M ∈ N
and take an irreducible polynomial q0 ∈ Fq[x] of even degree strictly greater
than M and prime to charFq. Take an extension Fq(α0) of Fq, where α0 is
a root of q0. Clearly, Fq(α0) 6= Fq since the degree of q0 is even and greater
than M 6= 0. Denote

λ1 := f1(α0), . . . , λn := fn(α0)

and consider the field Fq(β) := Fq(α0,
√
λ1, . . . ,

√
λn). Further, let p ∈ Fq[x]

be the minimal polynomial of β. Take p ∈ X to be a point ofK dominating p.
Clearly the degree of p is even and we have

(3)
(
f1
p

)
= · · · =

(
fn
p

)
= 1.

If the inertia degree of p equals 2, then p = divOK
p in DivOK , hence p = 0

in PicOK ∼= Pic0X. It follows that the class of p in PicX ∼= Pic0X ⊕ Z
can be written as (0,deg p), and so clearly belongs to 2PicX. Thus, assume
that the inertia degree f(p/p) of p is 1.

We claim that normK/F p ∈ normK/F K, in other words, p = normK/F p
is represented over F = Fq(x) by the quadratic form 〈1,−f〉. This is equiva-
lent to saying that the form ϕ := 〈1,−f,−p〉 is isotropic over Fq(x). By the
local-global principle, it suffices to show that the form is locally isotropic in
every completion of Fq(x).

First, take the completion at infinity, F∞. By the assumption,− ord∞ f =
deg f /∈ 2Z, while − ord∞ p = deg p ∈ 2Z. Decompose the form ϕ⊗ F∞ into
the sum 〈1,−p〉⊗F∞ ⊥ 〈−f〉⊗F∞, where the first summand has cooefficients
of even order and the second of odd order. A well known consequence of
Springer’s theorem (see e.g. [Lam05, Proposition VI.1.9]) asserts that ϕ⊗F∞
is isotropic if and only if the residue form of 〈1,−p〉 is isotropic. But the latter
is just 〈1,−1〉, hence trivially isotropic, since p is monic.

Take now a completion Fs of F at the place associated to some irreducible
polynomial s different from p and not dividing f . Using [Lam05, Proposi-
tion VI.1.9], we see that ϕ ⊗ Fs is again isotropic, because its residue form
has dimension 3 (over a finite field) and therefore is isotropic.

Next, consider the completion Fp of F at the place associated to p. We
know that all fi’s are squares modulo p, and so is f itself. Consequently,
〈1,−f〉 ⊗ Fp is isotropic, hence ϕ ⊗ Fp is isotropic, too. Finally, take the
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fi-adic completion Ffi for some monic irreducible factor fi of f . We have(fi
p

)
= 1 by 3, and Dedekind’s quadratic reciprocity law says that(

p

fi

)
·
(
fi
p

)
= (−1)(card(Fq)−1)(deg fi·deg p)/2,

but deg p is even and it follows that
( p
fi

)
= 1. Thus, ϕ⊗Ffi is again isotropic.

All in all, ϕ is isotropic over F , which proves our claim. Theorem 3.7 asserts
now that p is even. It is immediate that takingM := deg p and repeating the
above construction, we ultimately produce an infinite sequence of 2-divisible
points in K.

4. Main results. In this section, we prove our two main results: Theo-
rem 4.7, showing that a point is even if and only if it is a unique wild point
for some self-equivalence, and its partial generalization, Theorem 4.8. First,
however, we need the following lemma, generalizing Proposition 3.5.

Lemma 4.1. Let ∅ 6= Y ( X be a proper open subset and p1, . . . , pn ∈ Y .
Then p1, . . . , pn are linearly independent (over F2) in PicOY /2PicOY if and
only if there are λ1, . . . , λn ∈ ∆Y linearly independent in ∆Y and such that
for every 1 ≤ i ≤ n,

λi /∈ K2
pi and λi ∈

⋂
j 6=i

K2
pj .

Proof. We proceed by induction on n. For n = 1 the assertion follows
from Proposition 3.5. Suppose that n > 1 and the assertion holds true for
n−1. Classes of p1, . . . , pn are linearly independent in PicOY /2PicOY , and
so in particular p1 is not 2-divisible in PicOY . Proposition 3.5 asserts that
there exists µ ∈ ∆Y such that µ /∈ K2

p1 . Take a subset Z := Y \ {p1} of Y .
By Lemma 2.5, we have rk2 PicOZ = rk2 PicOY − 1. Clearly, ∆Z ⊂ ∆Y

with µ ∈ ∆Y \ ∆Z . Moreover, p2, . . . , pn remain linearly independent in
PicOZ/2PicOZ .

It follows from the inductive hypothesis that there are λ2, . . . , λn ∈ ∆Z

linearly independent in ∆Z and such that for every 2 ≤ i ≤ n,

λi /∈ K2
pi and λi ∈

⋂
j 6=i
j≥2

K2
pj .

By the very definition of ∆Z , all λi’s for i ≥ 2 lie in K2
p1 . Let

λ1 := µ ·
∏
i>1

λεii , where εi =

{
0 if µ ∈ K2

pi ,
1 if µ /∈ K2

pi .

It is now immediate that λ1 ∈
⋂
j 6=1K

2
pj while λ1 /∈ K2

p1 . This proves one
implication. The other one follows from [Czo01, Lemma 2.1].
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Lemma 4.2. Let p ∈ 2PicX be an even point. Then for any other even
point q ∈ 2PicX, the set Ep \ EX is contained in a square class of the
completion Kq.

Proof. Since ∆p = EX by Proposition 3.4, EX is a subgroup of Ep of
index (Ep : EX) = 2 by Proposition 2.3. Take any λ, µ ∈ Ep \ EX ; then
λ ·EX = µ ·EX and so λ · µ ∈ EX = ∆q ⊂ K×2q .

We define a relation on the set of 2-divisible points: p ∈ 2PicX is re-
lated to q ∈ 2PicX, written p ^ q, when Ep \ EX ⊂ K×2q . Unfortunately
this relation—although symmetric—is neither reflexive nor transitive (see
Remark 3 below).

Lemma 4.3. The relation ^ is symmetric.

Proof. Take λ ∈ Ep \ EX and µ ∈ Eq \ EX . Assume that p ^ q, so
that λ ∈ K×2q . Take any point r distinct from both p and q; then a local
quaternion algebra

(λ,µ
Kr

)
splits, since ordr λ ≡ ordr µ ≡ 0 (mod 2). Next, also(λ,µ

Kq

)
splits, because λ is a square in Kq. It follows from Hilbert’s reciprocity

law that
(λ,µ
Kp

)
splits as well. But ordp λ ≡ 1 (mod 2), hence µ must be a

local square at p. Consequently, Eq \ EX is contained in K×2p and so q is
related to p.

Remark 3. While it is obvious (and harmless) that ^ is not reflexive,
it is less obvious that in general it is not transitive. Take the function field of
an elliptic curve X over F3 given by the equation y2 = x3 + x− 1. Consider
the points p, q, r ∈ X, where p is the common zero of x and x3 + x; q is the
common zero of x4 + x2 +2x+1 and y+ x2 +2x; and r is the common zero
of x4 + x2 +2x+1 and y+2x2 + x. Then, using Magma one can check that
p^ q and p^ r, but q and r are not related.

Let us now recall the notion of small equivalence. Let ∅ 6= S ⊂ X be
a finite (hence closed) subset of X. We say that S is sufficiently large if
rk2 PicOX\S = 0. If S ⊂ X is a sufficiently large set of points of K, then a
triple (TS , tS , (tp | p ∈ S)) is called (cf. [PSCL94, §6]) a small S-equivalence
of the field K if

(SE1) TS : S → X is injective,
(SE2) tS : EX\S → EX\TSS is a group isomorphism,
(SE3) for every p ∈ S the map tp : K×p /K

×2
p → K×TSp/K

×2
TSp

is an isomor-
phism of local square-class groups preserving Hilbert symbols, in the
sense that

(x, y)p = (tpx, tpy)TSp for all x, y ∈ K×p /K×2p ;
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(SE4) the following diagram commutes:

(4)

EX\S
iS−−−−→

∏
p∈S K

×
p /K

×2
pytS y∏

p∈S tp

EX\TSS
iTSS−−−−→

∏
p∈S K

×
TSp

/K×2TSp

where the maps iS =
∏

p∈S ip and iTSS =
∏

q∈TSS iq are the diagonal
homomorphisms with

ip : EX\S → K×p /K
×2
p , iq : EX\TSS → K×q /K

×2
q .

We say that the local isomorphism tp : K×p /K
×2
p → K×TSp/K

×2
TSp

is tame
when

ordp λ ≡ ordTSp tpλ (mod 2) for every λ ∈ K×p /K×2p .

The next result follows from [PSCL94, Theorem 2 and Lemma 4]:

Theorem 4.4. Every small S-equivalence (TS , tS , (tp | p ∈ S)) of the
field K can be extended to a self-equivalence (T, t) of K tame on X \ S.
Moreover, the self-equivalence (T, t) is tame at p ∈ S if and only if the local
isomorphism tp is tame.

Remark 4. In the case considered in this paper (that is, over global
function fields) any local square-class group K×p /K

×2
p consists of just four

elements {1, up, πp, upπp}, with ordp up ≡ 0 (mod 2) and ordp πp ≡ 1 (mod 2).
For two square classes λ, µ ∈ K×p /K×2p , λ, µ 6= 1, the Hilbert symbol can be
computed with the formula

(λ, µ)p = 1 ⇔ λ = µ.

Therefore, every bijection of the local square-class groups mapping squares to
squares is an isomorphism and preserves the Hilbert symbols. Consequently,
the condition (SE3) is always satisfied for this type of fields.

Proposition 4.5. Let K be a global function field and X an associated
smooth curve. Let p, p1, . . . , pl be 2-divisible points such that pi ^ pj for
every i 6= j. Then there is a self-equivalence (T, t) of K such that:

• p is the unique wild point of (T, t), i.e. W(T, t) = {p};
• T preserves the selected points in the sense that

Tp = p and Tpi = pi for i = 1, . . . , l;

• for every pi ^ p, the isomorphism t restricted to the local square-class
group K×pi/K

×2
pi is the identity;

• for every pi Y^ p, the isomorphism t restricted to the local square-class
group K×pi/K

×2
pi is a transposition of the square classes of odd orders.
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Proof. Take an open subset Y := X \ {p, p1, . . . , pl} of X and let m :=
rk2 PicOY . Observe that

rk2 ∆Y = rk2 PicOY = rk2 PicOp − rk2〈p1 + 2PicOp, . . . , pl + 2PicOp〉
= rk2 PicOp = rk2 ∆p,

where the first and the last equalities follow from Proposition 2.3, the second
follows from Lemma 2.5, while the third one is due to the fact that every pi is
2-divisible in PicX, and consequently also in PicOp. Therefore, the F2-linear
spaces ∆p and ∆Y are equal, but the former is just EX by Proposition 3.4.
All in all, ∆Y = EX .

Take a basis q1, . . . , qm of PicOY /2PicOY . Lemma 4.1 asserts that there
are elements µ1, . . . , µm ∈ ∆Y linearly independent in ∆Y and such that
µi ∈ K×2qj if and only if i 6= j. Clearly, they form a basis of ∆Y = EX . Now,
rk2(Ep/EX) = 1 by Propositions 3.4 and 2.3. Likewise, rk2(Epi/EX) = 1 for
every i = 1, . . . , l. Therefore, there are square-classes

λ ∈ Ep \EX , λ1 ∈ Ep1 \EX , . . . , λl ∈ Epl \EX .

By assumption pi ^ pj for all 1 ≤ i 6= j ≤ l, hence every λi is a local square
at every pj for j 6= i. Multiplying by appropriate µj ’s if necessary, we may
assume without loss of generality that λ, λ1, . . . , λl are local squares at qj
for every j = 1, . . . ,m.

Denote
S := {p, p1, . . . , pl, q1, . . . , qm}

and let Z := X \ S ⊂ Y. It follows from Lemma 2.5 that rk2 PicOZ = 0 and
so S is a sufficiently large set. We claim that the set

B := {λ, λ1, . . . , λl, µ1, . . . , µm}

forms a basis of the F2-linear space EZ . First, we show that it is linearly
independent. Suppose it is not. Thus

ν := λa ·
l∏

i=1

λbii ·
m∏
j=1

µ
cj
j

is a square in K for some a, b1, . . . , bl, c1, . . . , cm ∈ F2. This means that
0 ≡ ordp ν ≡ a (mod 2), since all the other elements have even order at p,
consequently a = 0. Similarly, for every 1 ≤ i ≤ l, 0 ≡ ordpi ν ≡ bi (mod 2)
so also b1 = · · · = bl = 0. Finally, c1 = · · · = cm = 0, because µ1, . . . , µm
are linearly independent in ∆Y , a subspace of EX . Further, Proposition 2.3
asserts that

dimF2 EZ = rk2 PicOZ + card(S) = card(B),

proving that B is a basis of EZ .
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Observe that if p is related to every point pi, i = 1, . . . , l, then a p-
primary unit u does not belong to EZ . On the other hand, if p Y^ pi for
some i ∈ {1, . . . , l}, then the element λi obtained above is a p-primary unit
(and symmetrically λ is a pi-primary unit).

Construct a triple (TS , tS , (tr | r ∈ S)) in the following way:

• let TS : S → S be the identity;
• define the automorphism tS : EZ → EZ by fixing its values on the basis B:

– tS(λ) := λ,

– tS(λi) :=

{
λi if p^ pi,
λλi if p Y^ pi,

– tS(µj) := µj for j = 1, . . . ,m;

• finally, the automorphisms of the local square-class groups are given as
follows:

– tp is the transposition (u, uλ) on K×p /K
×2
p = {1, u, λ, uλ} (recall that

u = λi (mod K×2p ) whenever p Y^ pi),
– for a point pi related to p, take tpi to be the identity on K×pi/K

×2
pi ,

– for a point pi not related to p, let tpi be a “tame transposition” (λi, λλi)
on the group K×pi/K

×2
pi = {1, λ, λi, λλi},

– for the remaining points q1, . . . , qm, let tqj be the identity on the corre-
sponding square-class group.

The commutativity of the diagram (4) is now immediate. It follows that the
triple (TS , tS , (tr | r ∈ S)) is a small equivalence and Theorem 4.4 asserts
that it can be extended to a self-equivalence (T, t) of K tame on Z. Since
only tp is wild, p is the unique wild point of (T, t).

Lemma 4.6. Let K be a global function field and X an associated smooth
curve, and let (T, t) be a self-equivalence of K. If (T, t) has a unique wild
point p, then p ∈ 2PicX.

Proof. By the assumption W(T, t) = {p}. Denote q := Tp. Suppose
that p is not 2-divisible. Thus, Proposition 3.2 shows that every element
of Ep has even order at p, in particular Ep = EX . Now, it follows from
Proposition 2.3(3) that there is an element λ ∈ K such that EX = Ep =
〈λ〉 ⊕∆p. Clearly, ordp λ ≡ 0 (mod 2) and λ is not a local square at p, that
is, λ is a p-primary unit.

As p is a wild point of (T, t), we have ordq tλ ≡ 1 (mod 2) by Obser-
vation 2.1. It follows from Proposition 3.2 that q is an even point of K. It
is straightforward to show that tEp = ETp = Eq. In particular, the 2-ranks
must agree:

rk2 Ep = rk2 Eq.
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Use Proposition 2.3 to express these 2-ranks as

rk2 PicOp + 1 = rk2 PicOq + 1.

Now, q is 2-divisible in PicX, while p is not. Proposition 2.7 asserts that the
left-hand side equals rk2 Pic0X+1, while the right-hand side is rk2 Pic0X+2.
This is clearly a contradiction.

Combining Proposition 4.5 with the above lemma, we arrive at our first
main result.

Theorem 4.7. LetK be a global function field andX an associated smooth
curve. Given a point p ∈ X, the following two conditions are equivalent:

• p is 2-divisible in PicX;
• p is the unique wild point of some self-equivalence of K.

Looking at Proposition 4.5 obviously shows that if we have a set of even
points and each of them is related to all the others, then we can build a
number of self-equivalences, each wild at precisely one of these points and
preserving the rest. Then the wild set of the composition of all these self-
equivalences consists of all our (related) even points. It turns out that this
is still true even when not all the points are related. Theorem 4.8 below not
only generalizes one implication of Theorem 4.7, but also constitutes a direct
counterpart of [CR14, Theorem 1.1] for the case of global function fields.

Theorem 4.8. Let K be a global function field and X be its associated
smooth curve. Given finitely many points p1, . . . , pn ∈ X that are 2-divisible
in PicX, there is a self-equivalence (T, t) of K such that p1, . . . , pn are pre-
cisely its wild points, i.e. W(T, t) = {p1, . . . , pn}.

Proof. We proceed by induction on n. The case n = 1 simply boils down
to Theorem 4.7. Hence, suppose that the assertion holds for all sets of car-
dinality n − 1 and consider a set of n even points {p1, . . . , pn} ⊂ X. Since
p1 is even, Proposition 4.5 asserts that there exists a self-equivalence (T1, t1)
of K such that p1 is the unique wild point of (T1, t1) and T1p1 = p1. Denote
the images of the remaining points by q2 := T1p2, . . ., qn := T1pn. We claim
that q2, . . . , qn are all 2-divisible in PicX.

In order to prove the claim, observe first that since p1 is even, ∆p1 = EX

by Proposition 3.4. Moreover (T1, t1) is tame on X \ {p1}, therefore t1Ep1 =

ET1p1 = Ep1 . It follows that also t1∆p1 = t1(Ep1∩K×2p1 ) = Ep1∩K×2p1 = ∆p1 ,
as every self-equivalence preserves local squares. Consequently,

tEX = t1∆p1 = ∆p1 = EX .

Take now any point pi with i > 1 and write

EX = t1EX = t1∆pi = t1(EX ∩K×2pi ) = t1EX ∩ t1K×2pi = EX ∩K×2qi = ∆qi .

It follows from Proposition 3.4 that qi ∈ 2PicX, as claimed.
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By the inductive hypothesis, there exists a self-equivalence (T2, t2) of K
with wild set W(T2, t2) = {q2, . . . , qn}. The composition

(T, t) = (T2 ◦ T1, t2 ◦ t1)

is now the desired self-equivalence ofK with wild setW(T, t)={p1, . . . , pn}.

Remark 5. The above theorem generalizes only one of the implications
of Theorem 4.7 to sets having more than one point. This is all we can do,
since the opposite implication no longer holds for larger sets. The simplest
counterexample we are aware of is probably the following: Let K be the
function field of the elliptic curve over F5 given in Weierstrass normal form
by the polynomial y2+x3+x+2. Take two points: p ∼ (1, 1) and q ∼ (1, 4).
Then neither of them is even, since both are rational. Nevertheless, there
exists a self-equivalence of K that is wild precisely at these two points. We
will discuss the structure of bigger wild sets in another paper.

Acknowledgments. We wish to thank the anonymous reviewer for pro-
viding a corrected proof of Lemma 3.3 and for useful comments that im-
proved the overall exposition of the paper.
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