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Abstract

In this paper we show that the rings of regular functions on two real
algebraic functions �elds over the same real closed �eld are Witt equivalent
(i.e. their Witt rings are isomorphic) if and only if the curves have the
same number of semi-algebraically connected components. Moreover, in the
second part of the paper, we prove that every strong isomorphism of Witt
rings of rings of regular functions can be extended to an isomorphism of Witt
rings of �elds of rational functions. This extension is not unique, in general.

The set of similarity classes of nonsingular bilinear forms over a �xed commu-
tative ring A, equipped with operations induced by the orthogonal sum and the
tensor product, has a natural structure of a ring. This ring is called the Witt ring
WA of A. The Witt ring encodes numerous information of its ground ring. Unfor-
tunately the complete theory of Witt rings is known only over �elds (c.f. [8, 13]).
The theory of Witt rings over integral domains has been intensively developed
since 1970s by many authors (see e.g. [9]). This case is far more challenging than
the previous one. So far the most progress has been done for Dedekind domains�
hence of dimension one. The ultimate question in algebraic theory of quadratic
forms is: when the Witt rings of two rings A and B are isomorphic? If this is the
case we say that rings A, B are Witt equivalent. This problem is di�cult even over
�elds and has been investigated in more than 40 scienti�c papers. So far it has
been solved only in a very few cases. The three main are: �elds having no more
than 32 square classes (see [2]), global �elds � this area has been most actively
investigated in previous years (see e.g. [10, 15, 14]) and �elds of rational functions
on algebraic curves (see [6, 5, 7]). The pursue for criteria of Witt equivalence of
rings has started only recently (see e.g. [11, 12]).

In this paper we cope with the problem of Witt equivalence of rings of regular
functions on two smooth complete real curves. We prove that (see Theorem 3.1)
two such rings are Witt equivalent if and only if the underlying curves consist
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of equal numbers of semi-algebraically connected components. If this is the case,
the isomorphism of the Witt rings of rings of regular functions is obtained by
restricting the tame Harrison map (see [6] for the de�nition) of their �elds of
fractions. Moreover we show (see Theorem 3.3) that every strong isomorphism of
Witt rings of two rings of regular functions can be extended (in a non-unique way)
to an isomorphism of Witt rings of �elds of rational functions. The proof of the
latter result occupies the subsection 3.1. The paper is organized as follows. In
Section 1 we introduce all the necessary terminology and gather the needed tools.
In Section 2 we present a number of results concerning the structure of the Witt
ring of the ring of regular functions on a real curve. These results can hardly be
considered new, since the similar ones (but formulated for a coarser object) may be
found in [4]. Hence, we omits most of the proofs in this section. Finally, Section 3
constitutes the kernel of this paper and is completely devoted to our main results
mentioned above.

1 Preliminaries

Let k be a real closed �eld. It will silently remain �xed throughout this whole
paper. The letters K, L will always denote the formally real algebraic function
�elds over k. Let Ω(K) be a set of all points of K trivial on k. The completion
of K with respect to a point p ∈ Ω(K) is denoted by Kp while its residue �eld

by K(p). The associated valuation is denoted by ordK
p . Among all the points

p ∈ Ω(K) we select those having the formally real (hence isomorphic to k) residue
�elds. Following [3, 4] we call such points real and we write γ(K) for the set of
all the real points of K. It is a real algebraic curve over k. The �eld K can be
treated as the �eld of rational functions on this curve.

On the curve γ(K) we consider Euclidean topology (see [1]) induced by the
ordering of k (note that in [3, 4] this topology is called �strong topology�). The
curve γ(K) consists of a �nite number of semi-algebraically connected components
γK
1 , . . . , γ

K
N . With every real point p ∈ γ(K) we associate two orderings P+(p) and

P−(p) of the �eld K compatible with p:

P+(p) =
{
f ∈ K :

∨
p′∈γ(K)

∧
q∈(p,p′)

f(q) > 0
}

P−(p) =
{
f ∈ K :

∨
p′∈γ(K)

∧
q∈(p′,p)

f(q) > 0
}

(Note that the left/right neighborhoods (p′, p), (p, p′) are relative to an orientation
of the curve γ(K), which we assume to be �xed.) This permits us o introduce the
notion of a signature of a square class. Namely for any square class f ∈ K̇/K̇2 (to
simplify the notation we use the same symbol f to denote both an element of the
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�eld and its square class) we de�ne:

sgnK
p f :=


1, if f ∈ P+(p) ∩ P−(p),
0, if either f ∈ P+(p) ∩

(
−P−(p)

)
or f ∈

(
−P+(p)

)
∩ P−(p),

−1, if −f ∈ P+(p) ∩ P−(p).

(In [3, 4] this function is denoted by τp.) We have an immediate observation which
we formulate explicitly for future references.

Observation 1.1. sgnK
p f = 0 if and only if ordK

p f ≡ 1 (mod 2).

Now let RK := {f ∈ K : ordK
p f ≥ 0 for every p ∈ γ(K)} be the subring of the

�eld K consisting of all the functions regular on γ(K). It is a Dedekind domain,
hence its Witt ring WRK injects into the Witt ring WK of its �eld of fractions
(see [9, Corollary IV.3.3]). In fact we know that the following result is true:

Theorem 1.2 ([4, Theorem 11.2]). If the curve γ(K) consists of N semi-algebraically
connected components γK

1 , . . . , γ
K
N , then the following sequence is exact:

0 →WR
iK−−−→WK

∂K−−−→
⊕

p∈γ(K)

WK(p) λK−−−→ ZN → 0.

Here iK : WRK ↪→WK is the canonical injection induced by the inclusion RK ⊂
K. Next, for every p ∈ γ(K) the map ∂p : WK → WK(p) ∼= Z is the second
residue homomorphism and ∂K denotes the compound map. Finally

⊕
WK(p) ∼=

Z(γ(K)) and λK : Z(γ(K)) → ZN is the epimorphism de�ned by

λK

(
(ap)p∈γ(K)

)
:=

( ∑
p∈γK

1

ap, . . . ,
∑

p∈γK
N

ap

)
.

In the rest of this paper we tend to identify WRK with its image under the
canonical injection WRK ↪→ WK and so we conveniently treat WRK as the
subring of WK. De�ne the subgroup EK < K̇/K̇2 by

EK :=
{
f ∈ K̇/K̇2 : ordK

p f ≡ 0 (mod 2) for all p ∈ γ(K)
}
.

Observation 1.1 allows us to rewrite this condition in the following way:

EK :=
{
f ∈ K̇/K̇2 : sgnK

p f 6= 0 for all p ∈ γ(K)
}
.

Consequently, the signature of the square class f belonging to EK is constant on
every semi-algebraically connected component γK

i . So we denote it by sgnK
i f (see

also Proposition 2.1 below). Now, by Theorem 1.2, a unary form 〈f〉 lies in WRK

if and only if it belongs to the kernel of ∂K and this is the case if and only if f is
the class of a unit at the completion Kp for every p ∈ γ(K). This, in turn, means
that f belongs to EK . So we have:
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Corollary 1.3. Let f ∈ K̇/K̇2 be a square class, then f ∈ EK if and only if the
unary form 〈f〉 belongs to WRK , i.e.

f ∈ EK ⇐⇒ 〈f〉 ∈WRK .

The above corollary suggests that it may be fruitful to investigate the subset
of WRK consisting of all the classes of unary forms. Thus, we de�ne

〈EK〉 :=
{
〈f〉 ∈WK : f ∈ EK

}
⊂WRK .

Notice that 〈EK〉 is closed under multiplication but not under addition hence it is
not a subgroup of the �Witt group� WRK .

Now, �x a single point pi in every component γK
i of γ(K). Recall (c.f. [3,

�6]) that for every two distinct points p, q belonging to the same component
γK

i there exists an element χ(p,q) of K such that χ(p,q) is de�nite on γ \ {p, q},
positive de�nite on γ \ γi and ful�lls ∂pχ = −1, ∂qχ = 1. Following [3] we call χ
an interval function for the pair (p, q). An interval function is unique only upto
multiplication by a totally positive element (see [3, �6]). Hence, in what follows, for
every p, pi ∈ γK

i , we assume that χ(p,pi) is an arbitrarily chosen and �xed interval

function associated with the pair (p, pi). The group of square classes K̇/K̇2 may
be treated as a F2-vector space. The subgroup EK is its subspace. We identify its
completion:

Lemma 1.4. The F2-vector space K̇/K̇
2 decomposes into

K̇/K̇2 = EK ⊕ linF2{χ(p,pi) ∈ K̇/K̇
2 : p ∈ γK

i , 1 ≤ i ≤ N}.

Proof. Take any square class f ∈ K̇/K̇2 and let

p1,1, . . . , p1,n1 , p2,1, . . . , p2,n2 , . . . , pN,nN
, pi,j ∈ γK

i

be all the points of γ(K) where f has an odd valuation and so changes sign.

Consider now a square class f̂ ∈ linF2{χ(p,pi) ∈ K̇/K̇2 : p ∈ γK
i , 1 ≤ i ≤ N} given

by the condition

f̂ :=
∏

1≤i≤N
1≤j≤ni
pi,j 6=pi

χ(pi,j ,p).

Then f̂ changes sign precisely at the same points as f does. Hence the product
f · f̂ has the constant sign on every semi-algebraically connected component. Thus
f · f̂ ∈ EK .

Of course the notion of the notion of a real curve, semi-algebraically connected
components, local signatures, . . . etc. can be�in the same manner as above�
de�ned over L. Therefore we denote Ω(L), γ(L), γL

i , Lp, L(p), ordL
p , sgnL

p , WRL,
EL to be the L-counterparts of the objects de�ned above for K. If it is clear from
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the context which �eld we discuss, we tend to omit the letters K and L. All the
terminology and notation used in this paper and not introduced so far is standard
and follows the convention established by [1, 8, 3, 4]. As it was mentioned before, in
order to simplify the notation, we use the same symbol to denote both an element
of the �eld and its square class. Likewise, we use the same symbol for a quadratic
form and its Witt class. Throughout all this paper an orientation of γ(K) (resp.
γ(L)) is arbitrarily chosen and �xed. Intervals on both curves are silently de�ned
with respect to this �xed orientation.

2 Structure of the Witt group WR

We discuss here the structure of the Witt group WR of the ring R of regular
functions on γ. All the results presented in this section are fully analogous to
the ones presented in [4]. In [4], however, they were formulated and proved for a
coarser group. Thus, we feel obligated to state all of the results explicitly in our
di�erent set-up. On the other hand, since the proofs are completely analogous, we
feel free to reduce some of them to only short sketches and to omit the rest, giving
instead the references to the original theorems.

Proposition 2.1 ([4, Proposition 10.3]). Let ϕ be an element of the Witt ring
WK. If ϕ ∈ WR, then ϕ has a constant signature on every semi-algebraically
connected component of γ.

For ϕ denote by sgni ϕ the signature of ϕ on γi (1 ≤ i ≤ N).

Proposition 2.2 ([4, Theorem 10.4 (i)]). Every element ϕ of WR is uniquely
determined by its discriminant discϕ and its signatures sgn1, . . . , sgnN on the
components γ1, . . . , γN of γ.

Consider now a subset S ⊆WR de�ned

S :=
{
〈1,−f〉 : f ∈ ΣK2

}
.

Clearly S is a subgroup of WR. Moreover, 2 · S = {0}. We claim that S is the
nil-radical of WR.

Proposition 2.3 ([4, Theorem 10.4 (ii)]). S = NilWR.

Sketch of the proof. The inclusion S ⊆ NilWR follows from the fact that:

NilWR = WR ∩NilWK =
{
ϕ ∈WR : sgni = 0 for 1 ≤ i ≤ N

}
.

As for the other inclusion, take any ϕ ∈ NilWR. Let 〈f1, . . . , fn〉 be a diagonal-
ization of ϕ over the �eld K. Let further f be the discriminant of ϕ. For every
1 ≤ i ≤ N we have sgni ϕ = 0 and hence at almost every point p ∈ γ exactly half
of fj 's are negative, the other half is positive. Consequently, sgnp f = 1 at every
p ∈ γ. Thus the Witt classes (in WR) of ϕ and 〈1,−f〉 are equal, but clearly
〈1,−f〉 ∈ S.
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Fix now z1, . . . , zN ∈ E such that sgni zi = −1 and sgnj zi = 1 for j 6= i.

Proposition 2.4 ([4, Theorem 10.4 (iii)]). The fundamental ideal IR / WR has
a decomposition

IR =
N⊕

i=1

Z[〈1,−zi〉]⊕NilWR.

Sketch of the proof. Take any ϕ ∈ IR. If sgni ϕ = 0 for all 1 ≤ i ≤ N then
ϕ ∈ NilWR. Thus, assume that not all of sgni ϕ are null. We have sgni ϕ ≡ dimϕ
(mod 2) and so sgni ϕ is even for 1 ≤ i ≤ N . Take now ϕ̂1, . . . , ϕ̂N de�ned by the
formula

ϕ̂i := (sgni ϕ/2) · 〈1,−zi〉.

Let further ψ̂ := ϕ̂1 + · · ·+ ϕ̂N . For almost every p ∈ γi, if p ∈ γi, then we have

sgnp discϕ = (−1)sgni ϕ sgnp disc ψ̂.

Therefore discϕ = g · disc ψ̂, for some g ∈ ΣK2. Thus, by the Witt theorem we
get

ϕ = ψ̂ + 〈1,−g〉 ∈
N⊕

i=1

Z[〈1,−zi〉]⊕NilWR.

The above proposition allows us to write down the structure ofWR explicitely.
We us the following result in the next section.

Corollary 2.5. The Witt group WR has the decomposition:

WR = Z[〈1〉]⊕
N⊕

i=1

Z[〈1,−zi〉]⊕NilWR.

Corollary 2.6. The Witt ring WR is generated (as a ring) by the set {〈f〉 : f ∈
E}.

3 Main results

We are now ready to state our main result. Consider two formally real algebraic
function �elds K, L both having the same real closed �eld of constants k. The
associated curves will be denoted γ(K), γ(L) and the rings of regular functions
RK , RL.

Theorem 3.1. Let γ(K), γ(L) be two non-empty, smooth, complete real curves
over a common real closed �eld k. Then the rings RK , RL of functions regular on
γ(K), γ(L) are Witt equivalent if and only if γ(K) and γ(L) has the same number
of semi-algebraically connected components.
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Proof. Let Φ : WRK → WRL be an isomorphism. Then Φ maps the nil-radical
of RK onto the nil-radical of RL and preserves the rank of free Z-modules. De-
composing now RK and RL according to Corollary 2.5 we see that γ(K) and γ(L)
must have the same number of semi-algebraically connected components.

To prove the opposite implication, suppose that γ(K), γ(L) have the same
number N of semi-algebraically connected components. Every component is Nash-
di�eomorphic to a circle, thus there is a homomorphism T : γ(K) → γ(L) mapping
components of γ(K) onto the components of γ(L). Using [6, Corollary 3.9] we may
�nd an isomorphism t : K̇/K̇2 → L̇/L̇2 such that:

a. t preserves minus one: t(−1) = −1;

b. the pair (T, t) preserves quaternion-symbols in the sense that for every p ∈
γ(K) and every two rational functions f, g on γ one has:(

f, g

Kp

)
= 1 ⇐⇒

(
tf, tg

LTp

)
= 1;

c. the pair (T, t) preserves the parity of valuations and local signatures, i.e. for
every rational function f ∈ K and every point p ∈ γ one has:

ordp f ≡ ordTp tf (mod 2) and sgnp f = sgnTp tf ;

d. the map Ψt : WK → WL de�ned by the condition Ψt〈f1, . . . , fn〉 :=
〈tf1, . . . , tfn〉 is an isomorphism of Witt rings.

We claim that the isomorphism Ψt of Witt rings of the �elds K, L maps the Witt
ring WRK onto WRL. Indeed, take ϕ ∈ WRK . Fix a point q ∈ γ(L) and let
p := T−1q be its inverse image. It follows from the exactness of Knebusch�Milnor
exact sequence (c.f. Theorem 1.2) that ∂pϕ = 0. Let 〈f1, . . . , fl, pfl+1, . . . , pfn〉
be a diagonalization of ϕ over K such that p is a p-uniformaizer and all fi's are
p-adic units. Then,

sgnp〈fl+1, . . . , fn〉 = ∂pϕ = 0.

Now using condition c above, we see that ordq tfi ≡ ordp fi ≡ 0 (mod 2) and
ordq tp ≡ ordp p ≡ 1 (mod 2). In other words,

〈tf1, . . . , tfl, tptfl+1, . . . , tptfn〉

is a diagonalization of Ψtϕ over L with all tfi's being q-adic units and tp being a
q-uniformizer. Using c again, we see that

∂qΨtϕ = sgnq〈tfl+1, . . . , tfn〉 = sgnp〈fl+1, . . . , fn〉 = 0.

It follows that for every point q ∈ γ(L) the Witt class Ψtϕ lays in the kernel
of ∂q. Hence the Knebusch�Milnor exact sequence (see Theorem 1.2) shows that
Ψtϕ ∈ ker⊕∂L = WRL.
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It is worth to note that in the above prove we have shown that in the above
prove we have shown that the isomorphism of Witt rings WRK

∼= WRL of rings
of regular function on real curves implies the isomorphism of associated exact
sequences. Indeed, consider Knebusch�Milnor exact sequences associated toWRK

and WRL:

SK : 0 →WRK
iK−−−→WK

⊕∂K−−−−→
⊕

WKp
λK−−−→ ZN → 0

SL : 0 →WRL
iL−−−→WL

⊕∂L−−−−→
⊕

WL q
λL−−−→ ZM → 0

It follows that if either ends of above sequences are isomorphic (i.e. eitherWRK
∼=

WRL or N = M) then the whole sequences are isomorphic, as well.

Corollary 3.2. Under the above assumptions, the following conditions are equiv-
alent:

• N = M ;

• WRK
∼= WRL;

• SK
∼= SL.

Theorem 3.1 is existential in nature�the Witt equivalence of rings of regular
functions implies that the curves have the same number of semi-algebraically con-
nected components and this in turn, as we have shown in the proof of the theorem,
implies the existence of an isomorphism Ψt of Witt rings WK, WL of the �elds,
which factors over the Witt rings WRK , WRL of rings of regular functions. The
theorem does not say, however, if the restriction Ψt

∣∣
WRK

is identical to the origi-
nal isomorphism Φ or whether the two isomorphisms are at least correlated in any
way. It is, thus, natural to ask the following question:

Can the isomorphism of the Witt ringsWRK , WRL of rings of regular
functions be extended to an isomorphism of Witt rings WK, WL of
their quotient �elds?

We do not know the answer to this question in such a generality. However, if we

assume that the isomorphism WRK
u−−→WRL is strong (in a sense which we will

promptly de�ne) the answer turns out to be a�rmative.
Recall that the isomorphism of Witt rings of two �elds is called strong if it

maps classes of unary forms onto classes of unary forms. In our case, when we
deal with projective modules, the notion of dimension of the form is a bit fuzzy.
But the following notion seems to be justi�ed by Corollary 1.3. We shall say that

the isomorphism Φ : WRK
u−−→WRL is strong if it maps 〈EK〉 onto 〈EL〉.

Theorem 3.3. If an isomorphism Φ : WRK
u−−→WRL is strong, then there exists

a strong isomorphism Ψt : LWK
u−−→WL extending Φ (i.e. Ψt

∣∣
WRK

≡ Φ).
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3.1 Proof of Theorem 3.3

Let Φ : WRK
u−−→WRL be a strong isomorphism. Using Theorem 3.1 we see that

γ(K) and γ(L) have the same number of semi-algebraically connected components.
Denote this number by N . The isomorphism Φ is assumed to map 〈EK〉 onto 〈EL〉
and so the conditions

tf := g ⇐⇒ Φ〈f〉 = 〈g〉

de�nes a group isomorphism t : EK → EL. Observe that Φ, being an isomorphism
of rings, maps nilradical NilWRK onto the nilradical NilWRL. It follows from
Proposition 2.3 that t maps ΣK2 ⊆ EK onto ΣL2 ⊆ EL. Let z1, . . . , zN ∈ EK be
�xed in the same way as in Proposition 2.4. The following lemma shows that they
are mapped to their counterparts in EL.

Lemma 3.4. For every 1 ≤ i ≤ N there is 1 ≤ j ≤ N such that

sgnL
k tzi =

{
−1, if k = j,

1, if k 6= j.

Proof. Take a form 〈1,−zi〉. It belongs to IRK and so Φ〈1,−zi〉 ∈ IRL. Thus,
using Proposition 2.4, we have

Φ〈1,−zi〉 = ki,1〈1,−z′′i 〉+ · · ·+ ki,N 〈1,−z′′N 〉+ ε1,−g,

where ji,1, . . . , ki,N ∈ Z, z′′1 , . . . , z′′N ∈ EL are �xed in the same way as in Proposi-
tion 2.4 but for the curve γL this time, i.e.:

sgnL
k z

′′
j =

{
−1, if k = j,

1, if k 6= j.

further ε ∈ {0, 1} and g is a sum of squares. First we show that every ki,j is
either zero or one. Indeed, square the form 〈1,−zi〉 in WRK . We have 〈1,−zi〉2 =
2〈1,−zi〉. Now Φ, as a ring homomorphism, preserves multiplication. Thus we
obtain:

2ki,1〈1,−z′′i 〉+ · · ·+ 2ki,N 〈1,−z′′N 〉
= Φ

(
2〈1,−zi〉

)
= Φ

(
〈1,−zi〉2

)
= 2k2

i,1〈1,−z′′i 〉+ · · ·+ 2k2
i,N 〈1,−z′′N 〉.

Therefore k2
i,j = ki,j for every 1 ≤ j ≤ N and so ki,j ∈ {0, 1}.

Now, we show that all but one ki,j 's are null. Suppose otherwise. Let for
some 1 ≤ i1 ≤ N the image Φ〈1,−zi1〉 has two non-zero coordinates in the free Z-
module Z[〈1,−z′′1 〉]⊕ · · · ⊕Z[〈1,−z′′N 〉], then using Dirichlet's pigeonhole principle
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there is another element 〈1,−zi2〉 such that Φ〈1,−zi2〉 has at least one the same
non-zero coordinate. Let for example

Φ〈1,−zi1〉 = 〈1,−z′′a 〉+ other terms

Φ〈1,−zi2〉 = 〈1,−z′′a 〉+ other terms.

Then

0 = Φ(0) = Φ
(
〈1,−zi1〉 · 〈1,−zi2〉

)
= Φ〈1,−zi1〉 · Φ〈1,−zi2〉

= 2〈1,−z′′a 〉+ other terms 6= 0.

This contradiction shows that indeed every 〈1,−zi〉 is mapped onto 〈1,−z′′j 〉 +
〈1,−g〉 for some 1 ≤ j ≤ N and g ∈ ΣL2 (and form di�erent i's, the corresponding
j's di�er too). Now, we have

0 = 〈1,−z′′j 〉 · 〈1,−g〉 = 〈1, 1,−z′′j ,−g〉 − 〈1,−z′′j g〉.

Therefore
〈1,−z′′j g〉 = 〈1,−z′′j 〉+ 〈1,−g〉 = Φ〈1,−zi〉

and so, by the de�nition of t, we have tzi = z′′j g.

It follows from the above lemma that t induces a permutation i 7→ j =: τ(i) of
the set {1, . . . , N}. We may treat it as the bijection of γK

i 7→ γL
τ(i) of the sets of

components of γ(K) and γ(L). We may �nd a homeomorphism T : γ(K) → γ(L)
such that TγK

i = γL
τ(i). Fix a single point pi in every component γK

i of γ(K) and

let qτ(i) := Tpi ∈ γL
τ(i). We may now de�ne a F2-linear isomorphism t̂ : K̇/K̇2 u−−→

L̇/L̇2 of a F2-vector spaces that extends t. Recall that by Lemma 1.4 we have a
decomposition

K̇/K̇2 = EK ⊕ linF2{χ(p,pi) ∈ K̇/K̇
2 : p ∈ γK

i , 1 ≤ i ≤ N},

likewise for L̇/L̇2:

L̇/L̇2 = EL ⊕ linF2{χ(p,pi) ∈ L̇/L̇
2 : p ∈ γL

i , 1 ≤ i ≤ N}.

Let t̂
∣∣
EK

:= t and de�ne t̂ on the basis of the other summand by the condition:

t̂χ(p,pi) := χ(Tp,qi).

By linearity this de�ne t̂ on the whole F2-vector space K̇/K̇
2. Clearly t̂ is a group

isomorphism and t̂ preserves local signatures in the sense that:∧
p∈γ(K)

∧
f∈K̇/K̇2

sgnK
p f = sgnL

Tp t̂f. (3.5)
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Consequently, t̂ preserves the parity of valuation, as well∧
p∈γ(K)

∧
f∈K̇/K̇2

ordK
p f ≡ ordL

Tp t̂f (mod 2).

We claim that t̂ is a Harrison map (i.e. t̂(−1) = −1 and 〈f, g〉 represents 1 over K
if and only if 〈t̂f, t̂g〉 represents 1 over L). Indeed, Φ〈−1〉 = Φ(−〈1〉) = 〈−1〉 and
so t̂(−1) = t(−1) = −1. For the second condition, take f, g ∈ K̇/K̇2 such that 1
is represented by 〈f, g〉 over K. This means that the form ϕ := 〈1,−f,−g, fg〉 is
hyperbolic over K and so it is hyperbolic over every completion Kp for p ∈ γ(K).
Take p ∈ γ(K) such that neither f nor g changes sign at p�almost every p will
do. The form ϕ is hyperbolic in Kp if and only if sgnK

p f = − sgnK
p g. It follows

from Eq. (3.5) that sgnL
q t̂f = − sgnL

q t̂g for almost every q ∈ γ(L). Thus, by the

means of the Witt theorem (c.f. [4, Theorem 9.5]) the form 〈1,−t̂f,−t̂g, t̂f t̂g〉
is hyperbolic over L. Consequently 〈t̂f, t̂g〉 represents 1 over L. This proves the
claim. It is well known that if t̂ is a Harrison map, then the mapping 〈f1, . . . , fn〉 7→
〈t̂f1, . . . , t̂fn〉 is a strong isomorphism of Witt rings of �elds. Denote it Ψt. It is
clear from the construction, that Ψt

∣∣
WRK

≡ Φ.
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