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Abstract. We derive a Mahler-type upper bound for the Krasner’s constant
of a monic polynomial.

One of the classical problems in the theory of polynomials is to estimate the
minimal distance between two distinct roots of a given polynomial. This problem
can be traced back essentially to Cauchy (see e.g. [3, Eq. (48), p. 398]) and it has
been extensively studied in the last half century by numerous authors.

Let f = f0 + f1x + · · · + fnx
n be a (non-constant) polynomial with complex

coefficients and ξ1, . . . , ξn ∈ C be all its roots, It is customary to denote

sep(f) := min
{
|ξi − ξj | : i 6= j

}
, rsep(f) := min

{
|ξi − ξj | : i 6= j, ξi, ξj ∈ R

}
respectively: the minimal distance between roots and the minimal distance between
real roots. In early 1960s Mahler derived a lower bound for sep(f). Namely he
proved (see [6]):

(1) sep(f) >

√
3|∆f |

n
n+2
2 · ‖f‖n−1

,

where n = deg f is the degree, ∆f = (−1)n(n−1)/2 · f−1n · res(f, f ′) denotes the
discriminant and ‖f‖ = |f0| + · · · + |fn| is the 1-norm of the vector of coefficients
of f . A similar formula for rsep(f) was proved by Rump in [9]. Recently Herman,
Hong and Tsigaridas in [4] improved Mahler’s result finding a formula which is
well-behaved with respect to a linear scaling of roots. Some other formulas were
developed in [1, 7, 8]. Beside distances between isolated roots, another problem
being investigated is a bound for a distance between clusters of roots. We refer the
reader to [2] for a survey of recent results.

The goal of this short note is to show that the arguments of Mahler—after only
minor adjustments—continue to work if we replace C by a valued field. Let (K, v)
be a valued field and f ∈ K[x] a non-constant polynomial over K. Classical results
mentioned above concern polynomials over C, hence the roots of f lie in the field
of constants for free. It is not so in an arbitrary valued field, hence we assume1

that K contains all the roots of f . Say f = lc(f) · (x− ξ1) · · · (x− ξn). A valuative
counterpart of sep and rsep is called the Krasner constant. It is defined by a
formula:

kras(f) := max
{
v(ξi − ξj) : i 6= j

}
.
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1Alternatively one may take an extension of v to the splitting field L of f and perform all the

computations in L instead of K.
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Our goal is to find an upper bound for kras(f) in spirit of (1). As in the original
Mahler’s paper, the main tool is Hadamard’s inequality.

Proposition 1 (Valuative Hadamard’s inequality). Let M = (mij) be a square
matrix of size n× n with entries in a valued field (K, v). Then

v(detM) ≥
∑
j≤n

min
i≤n

{
v(mij)

}
.

Proof. The proof of the valuative version of version of Hadamard’s inequality is
even simpler than the standard one. All we need is the Laplace expansion formula
and the following basic property of minimum:

min
i≤n

{∑
j≤n

aij

}
≥
∑
j≤n

min
i≤n

{
aij
}
.

In order to prove Hadamard’s inequality we proceed by induction on the size of the
matrix. For n = 1 the inequality (in fact an equality, in this case) holds trivially,
since detM = m11.

Assume that the proposition is true for matrices of size (n−1)×(n−1). Compute

v(detM) = v
(∑
i≤n

(−1)i+n ·min · detMin

)
≥ min

i≤n

{
0 + v(min) + v(detMin)

}
≥ min

i≤n

{
v(min)

}
+ min

i≤n

{
v(detMin)

}
≥ min

i≤n

{
v(min)

}
+ min

i≤n

{ ∑
j≤n−1

min
k≤n−1

v(mk′j)
}
.

Here k′ equals either k if k < i or k + 1 otherwise. Further we have:

≥ min
i≤n

{
v(min)

}
+
∑

j≤n−1

min
i≤n

{
min
k≤n−1

{
v(mk′j)

}}
= min

i≤n

{
v(min)

}
+
∑

j≤n−1

min
i≤n

{
v(mij)

}
=
∑
j≤n

min
i≤n

{
v(mij)

}
. �

Let (K, v) be a valued field and f = f0+f1x+· · ·+fnxn ∈ K[x] be a non-constant
polynomial. The Gauss valuation of f is

vf := min
0≤i≤n

vfi.

We generalize the notion of the Mahler measure as follows. Assume that f factors
into linear terms over K, say f = fn · (x− ξ1) · · · (x− ξn) for some ξ1, . . . , ξn ∈ K.
Set

mf := vfn +
∑
i≤n
vξi<0

vξi.

We shall call mf the valuative Mahler measure of f . The roots of the polynomial
do not change when the polynomial is multiplied by a nonzero constant. Since
eventually we are interested in the valuation of a difference between two distinct
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roots of f , we will assume that f is monic. In this case the valuative Mahler
measure is just the sum of valuations of the roots of f that fall outside Ov, where
Ov = {a ∈ K : va ≥ 0}, is the valuation ring associated with v. The next lemma is
a valuative analog of [5, Eq. (6)].

Lemma 2. Let f be a non-constant monic polynomial. If mf 6= 0, then

deg f · vf ≤ mf ≤ vf0.

Proof. It follows from the assumption mf 6= 0, that there is at least one root ξ of f
such that ξ /∈ Ov. We then have

−ξn = f0 + f1ξ + · · ·+ fn−1ξ
n−1.

Computing the valuations of both sides we obtain

n · vξ ≥ min
i<n
{v(fiξ

i)} = min
i<n
{vfi + i · vξ}

≥ min
i<n
{vfi}+ min

i<n
{i · vξ} = min

i<n
{vfi}+ (n− 1)vξ

The polynomial f is monic, hence vfn = 0 and so we have

vξ ≥ min
i≤n
{vfi} = vf

for every root ξ of f not in Ov. Let d ≥ 0 be the number of such roots. It follows
that

0 > mf =
∑
ξi /∈Ov

vξi ≥ d · vf ≥ n · vf.

This proves one inequality. The other one is an immediate consequence of Viète’s
formulas. �

A well known formula for the discriminant of a monic polynomial says that
∆f =

∏
i<j(ξi − ξj)2, thus we have

v∆f = 2
∑
i<j

v(ξi − ξj).

Consequently, if we a priori know that v(ξi − ξj) is non-negative for every i 6= j,
then we instantly obtain an estimate

kras(f) ≤ 1

2
v∆f .

The following theorem shows that a similar inequality holds unconditionally.

Theorem 3 (Valuative Mahler’s inequality). Let f be a non-constant monic poly-
nomial of degree n ≥ 2 over a valued field (K, v). Then

kras(f) ≤ 1

2
v∆f − n · (n− 1) ·min{0, vf},

where ∆f is the discriminant of f .

Proof. The proof is very similar to the proof of the original Mahler’s inequality,
presented in [6]. If f has a multiple root, then kras(f) = v∆f = ∞ and the
assertion holds trivially. Thus, we may freely assume that f is square-free. Fix
two distinct roots ξ, ζ ∈ K of f . Without loss of generality we may assume that
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vξ ≤ vζ. We need to consider two cases. First assume that vξ < 0, i.e. ξ /∈ Ov.
Renumber the roots of f in the following manner:

ξ1 := ξ, ξ2, . . . , ξm /∈ Ov and ξm+1, . . . , ξn ∈ Ov.

Let Vξ1,...,ξn be the Vandermonde matrix associated to the roots of f . Subtraction
of rows does not alter the determinant, hence we have

det Vξ1,...,ξn = det


0 ξ − ζ ξ2 − ζ2 · · · ξn−1 − ζn−1
1 ξ2 ξ22 · · · ξn−12
...

...
...

...
1 ξn ξ2n · · · ξn−1n

 .

Divide the first m rows of Vξ1,...,ξn (i.e. the rows corresponding to the roots of f
not in Ov) by ξn−11 , . . . , ξn−1m , respectively. Denote the resulting determinant by Q.
We have

Q =
det Vξ1,...,ξn

(ξ1 · · · ξm)n−1
= det



0 ξ−ζ
ξn−1 · · · ξn−2−ζn−2

ξn−1
ξn−1−ζn−1

ξn−1

ξ
−(n−1)
2 ξ

−(n−2)
2 · · · ξ−12 1

...
...

...
...

ξ
−(n−1)
m ξ

−(n−2)
m · · · ξ−1m 1

1 ξm+1 · · · ξn−2m+1 ξn−1m+1
...

...
...

...
1 ξn · · · ξn−2n ξn−1n


.

Finally, divide the first row of the above matrix by ξ − ζ and denote the resulting
entries by q0, . . . , qn−1. This way we have

(2)
Q

ξ − ζ
= det



q0 q1 · · · qn−2 qn−1

ξ
−(n−1)
2 ξ

−(n−2)
2 · · · ξ−12 1

...
...

...
...

ξ
−(n−1)
m ξ

−(n−2)
m · · · ξ−1m 1

1 ξm+1 · · · ξn−2m+1 ξn−1m+1
...

...
...

...
1 ξn · · · ξn−2n ξn−1n


,

where q0 = 0 and

qk =
ξk − ζk

(ξ − ζ) · ξn−1
= ξk−n + ξk−1−nζ + · · ·+ ξ1−nζk−1

for k ≥ 1. All the entries of the above matrix, except possibly the ones in the
first row, lie in Ov. Therefore the valuative Hadamard’s inequality (applied to the
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transposed matrix) yields

vQ− v(ξ − ζ) ≥ min
0≤k≤n−1

vqk + 0

= min
0≤k≤n−1

v

( k−1∑
i=0

ξk−i−nζi
)

≥ min
0≤k≤n−1

{
min

0≤i≤k−1

{
(k − i− n) · vξ + i · vζ

}}
≥ min

0≤k≤n−1

{
(k − n)vξ

}
= −vξ > 0.

The polynomial f is monic by assumption, consequently its discriminant equals
(det Vξ1,...,ξn)2. Combining these two facts with the definition of Q we obtain

v(ξ − ζ) < vQ =
1

2
v∆f − (n− 1) ·mf .

Now Lemma 2 yields

v(ξ − ζ) <
1

2
v∆f − n · (n− 1) ·min{0, vf}.

In the case vξ ≥ 0 the proof runs along the same lines except that—when
computing Q—we do not divide the first row of the matrix by ξn−1. It follows that
the elements q0, . . . , qn−1 in Eq. (2) are given by the formula

q0 = 0 and qk =
ξk − ζk

ξ − ζ
= ξk−1 + ξk−2ζ + · · ·+ ζk−1.

Consequently vqk ≥ (k − 1) · vξ ≥ 0 for every k ≥ 1 and vq0 =∞. Therefore

vQ− v(ξ − ζ) ≥ min
1≤k≤n−1

vqk ≥ min
1≤k≤n−1

(k − 1)vξ = 0.

Like in the previous case we obtain

v(ξ − ζ) ≤ 1

2
v∆f − n · (n− 1) ·min{0, vf}.

The inequality holds for every two distinct roots ξ, ζ of f and so its right-hand-side
provides an upper bound for kras(f). �

Remark. If the valuation v(ξi− ξj) between two roots ξi, ξj of a given polynomial f
is constant (i.e. independent of i, j), then clearly

kras(f) = v(ξi − ξj) =
v∆f

2 deg f
for all i 6= j.

It is an interesting question, whether for an arbitrary polynomial f of degree n ≥ 2,
there is an upper bound for kras(f) that depends on v∆f/2n rather than v∆f/2.
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