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Abstract. We show a method for constructing a polynomial inter-
polating roots’ multiplicities of another polynomial, that does not use
companion matrices. This leads to a modification to Guersenzvaig–
Szechtman square-free decomposition algorithm that is more efficient
both in theory and in practice.

The problem of computing the square-free decomposition of a polynomial
is well established in the realm of computational algebra. There are efficient
algorithms for this task developed nearly half a century ago by: R. Tobey [6],
E. Horowitz [3], D. Musser [5] and D. Yun [7]. Recently, N. Guersenzvaig and
F. Szechtman invented a completely new algorithm (see [2]). They associate
to a given polynomial f its roots-multiplicity polynomial Mf . The authors
presented a formula, for constructing Mf , based on the companion matrix
of the radical of f . The aim of this note is to show that Mf can be obtained
much more efficiently without using the companion matrix.

For readers convenience (and to some discomfort of the author), in this
paper we use the same notation as N. Guersenzvaig and F. Szechtman did.
Let F be a fixed field of characteristic 0. Given a monic polynomial f ∈
F [X], the square-free decomposition of f is an expression

(1) f = P1 · P 2
2 · · ·Pmm ,

where each Pk ∈ F [X] for k ∈ {1, . . . ,m} is monic and square-free. Let S(f)
be the set of all the roots of f (in some algebraically closed field). For every
root α ∈ S(f), denote by m(α) the multiplicity of α, so that

f =
∏

α∈S(f)

(X − α)m(α).

By Lagrange interpolation formula, there is a unique polynomial Mf of
minimal degree such that Mf (α) = m(α) for every root α of f . Once the
polynomial Mf is found, the square free factors P1, . . . , Pm of f can be
computed by the formula [2, Eq. (1.5)]:

Pk = gcd(Mf − k, r) for k ∈ {1, . . . ,m}.

Thus, all we need is an efficient method for constructing Mf .
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Guersenzvaig and Szechtman proposed the following procedure. The rad-
ical r := rad f is a polynomial

r =
∏

α∈S(f)

(X − α) =
f

gcd(f, f ′)
.

The radical is square-free, hence its degree, denote it by s := deg r, equals
the cardinality of S(f) = S(r). Suppose that r has a form r = r0 + r1X +
· · ·+ rs−1X

s−1 +Xs. Let

Cr :=


0 −r0

1
. . .

...
. . . 0 −rs−2

1 −rs−1


be a companion matrix of r and set

P :=
f ′

gcd(f, f ′)
.

The fact that the radical is square-free implies that it is relatively prime to its
derivative. Therefore, by Bézout identity, there are polynomials g, h ∈ F [X]
such that

(2) r′ · g + r · h = 1 and deg g < deg r, deg h < deg r′.

For any polynomial p, deg p < s, by [p] denote a column vector of its coeffi-
cients, zero-appended to length s, if needed.

Theorem 1 ([2, Theorem 2.1]). With the above notation

(A) [Mf ] = P (Cr) · [g].

We claim that Mf can be constructed more efficiently. To this end we
need:

Lemma 2. For every root α ∈ S(f) one has

P (α) = m(α) · r′(α).

Proof. Compute the derivative of r:

r′ =
∑

α∈S(f)

∏
β∈S(f)
β 6=α

(X − β).

It follows that for every root α of f we have

(3) r′(α) =
∏

β∈S(f)
β 6=α

(α− β).

Next, compute the derivative of f :

f ′ =
∑

α∈S(f)

(
m(α) · (X − α)m(α)−1 ·

∏
β∈S(f)
β 6=α

(X − β)m(β)
)
.
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It follows that the polynomial P can be expressed in a form

P =
f ′

gcd(f, f ′)
=
r · f ′

f

=

∑
α∈S(f)

(
m(α) · (X − α)m(α)−1 ·

∏
β 6=α

(X − β)m(β)
)

∏
α∈S(f)

(X − α)m(α)−1

=
∑

α∈S(f)

(
m(α) ·

∏
β∈S(f)
β 6=α

(X − β)
)
.

Consequently, evaluating P at a root α, we have

P (α) = m(α) ·
∏

β∈S(f)
β 6=α

(α− β)

and the thesis follows from Eq. (3). �

Proposition 3. The polynomial Mf is the remainder of the product P · g
modulo r:

(B) Mf =
(
P · g mod r

)
.

Proof. Denote the right-hand-side of formula (B) by µ. We must show that
µ = Mf . Since deg µ < deg r = s, it suffices to show that the two polyno-
mials agree at s distinct points, namely the roots of f (hence also r). Take
any root α ∈ S(f), then by Lemma 2 and Eq. (2) we may write

µ(α) = P (α) · g(α) = m(α) · r′(α) · g(α) = m(α) · (1− r · h)(α) = m(α).

This shows that these two polynomials are identical. �

Let us now recall Guersenzvaig–Szechtman algorithm.

Algorithm. Given a monic polynomial f , over a field of characteristic 0,
this algorithm computes its square-free decomposition (1).

(a) Construct polynomials

P :=
f ′

gcd(f, f ′)
, r :=

f

gcd(f, f ′)

and find polynomials g, h satisfying Eq. (2);
(b) build the polynomial Mf using either formula (A) or formula (B);
(c) for k = 1, 2, . . . and as long as

∑
j≤k j ·degPj < deg f , compute k-th

square-free factor of f :

Pk := gcd
(
Mf − k, r

)
.
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Complexity analysis. As it is a common practice, let M(n) denote the time
complexity of computing a product of two polynomials of degree n. For long
polynomial multiplication M(n) = O(n2), while for fft-based multiplication
M(n) = O(n · lg n). (Here lg = log2 stands for logarithm of base 2.) Recall
that s = deg r and let n := deg f . It is clear that s = O(n). If one uses
fast gcd, then step (a) of the algorithm has time complexity O

(
M(n) lg n

)
.

The same applies to every iteration in step (c). The number of iterations
equals m = O(n0.5), the number of square-free factors of f . Hence the
complexity of step (c) is O

(
n0.5 ·M(n) · lg n

)
= O

(
n1.5 · (lg n)2

)
, when using

fast polynomial multiplication and O(n2.5 lg n) for long multiplication. It
remains to analyze the time complexity of step (b), the one for which we
propose a new formula.

Observe that in order to construct Mf with formula (A), one needs to
evaluate the polynomial P on the matrix Cr. Using Horner scheme, this
requires s products of s × s square matrices. Thus, with standard ma-
trix arithmetic, Eq. (A) needs s + s4 scalar multiplications. Using fast
matrix multiplication (see e.g. [4, 8]), the asymptotic complexity (the ac-
tual number of scalar products is hard to count) of that formula is about
O(s3.37) = O(n3.37). Therefore, if formula (A) is in use, step (b) asymptoti-
cally dominates the running time of the whole algorithm.

On the contrary, formula (B) needs only s + M(s) scalar products and
so it has the asymptotic complexity of O(s lg s) = O(n lg n), if one uses fast
polynomial multiplication (respectively O(s2) = O(n2) for long multiplica-
tion). Consequently, with formula (B), step (b) no longer dominates the
time complexity of the algorithm.

In order to compare both formulas in real-life situations, they were im-
plemented in computer algebra system Magma [1] and evaluated on random
polynomials of different degrees. Table 1 presents the running times. The
code can be downloaded from author’s website http://z2.math.us.edu.

pl/perry/papersen.html

Conclusion. The modification of Guersenzvaig–Szechtman algorithm pre-
sented in this note leads to a procedure that is faster than the original one
both theoretically and empirically.
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