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Abstract. We present a generalization of a polynomial factorization algorithm that works with
ideals in maximal orders of global function fields. The method presented in this paper is intrinsic
in the sense that it does not depend on the embedding of the ring of polynomials into the Dedekind
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1. Introduction

Let R be a Dedekind domain. A fundamental and well known property of Dedekind domains is that
every ideal a C R has a unique factorization into a product of powers of prime ideals. There are cases
when this factorization is algorithmically computable. For instance, ifR = ZK is the ring of algebraic
integers (i.e. the integral closure of Z) in some algebraic number field K = Q(ϑ), then a suitable
algorithm can be found e.g. in [1, Algorithm 2.3.22] or [2, §2.2]. The algorithms can be adapted also
to global function fields. They depend however on knowing an embedding of the ring of integers (or
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polynomials) intoR. In this paper we discuss the problem of performing the computations intrinsically
in the monoid of R-ideals without relaying on these embeddings. The procedure of factoring ideals,
that we propose, resembles a method of factoring polynomials over finite fields. We show how to
generalize known algorithms for polynomial factorization to make them work with ideals in maximal
orders of global function fields. The ideal to be factored passes through a three-stage process: radical
decomposition, distinct degree factorization and equal degree factorization.

The algorithms presented in [1, 2] are quite efficient, hence the aim of developing intrinsic methods
is not so much to reduce the computation time but rather to construct algorithm that do not dependent
on the particular structure of global fields and so have potential to be generalized to other rings. In
particular the first step of the process, namely the radical decomposition, can be performed in any
Dedekind domain in which three elementary operation on ideals are computable. This class of rings
include coordinate rings of smooth, algebraically irreducible curves over a computable, perfect field
(see Proposition 2.2). Some early experiments of the authors suggest that the algorithms presented
here can be generalized to compute primary decomposition of ideals in affine algebras. This subject
need further investigation, though.

The paper is organized as follows. In Section 2 we discuss the radical decomposition of ideals,
which is an analog of a square-free factorization of polynomials. Given an ideal a C R, this procedure
produces a list of radical ideals g1, . . . , gm such that a is a product of their respective powers. Next,
in Section 3 we show how to factor a radical ideal (i.e. any of the ideals g1, . . . , gm) into a product
of (radical) ideals such that each one of these new ideals is a product of primes of the same residual
degree. Finally in Section 4 we present a variant of Cantor–Zassenhaus algorithm (Algorithm 3)
capable of factoring radical ideals with prime divisors of a fixed degree. The algorithms discussed in
this paper were implemented by the authors in a computer algebra system Magma [3]. In the closing
section we presented two examples obtained with our implementation.

In the whole paper the letter R always denotes a (fixed) Dedekind domain with a field of frac-
tions K. For readers convenience our notation follows the one used in [4], in particular fraktur letters
are used to denote ideals. All the ideals in this paper are integral ideals.

2. Radical decomposition of ideals

Let R be a Dedekind domain and a C R be an ideal in R. Assume that a factors into primes as

a = pk11 · · · p
ks
s , (1)

where p1, . . . , ps are distinct (and unknown) prime ideals and k1, . . . , ks > 0 their multiplicities.
Collate the factors of equal multiplicities. For any j ≤ m := max{k1, . . . , ks} denote

gj :=
⋂

1≤i≤s
ki=j

pi.

This way we may write a as a product analogous to a square-free factorization of a polynomial:

a = g1 · g22 · · · gmm. (2)
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We shall call (2) the radical decomposition of the ideal a. The name is justified by the following
observation.

Observation 2.1. Ideals g1, . . . , gm are radical.

Indeed, radicals are preserved by intersection (see e.g. [4, Ch. 1]), hence

rad(gj) = rad
( ⋂
ki=j

pi

)
=
⋂
ki=j

rad(pi) =
⋂
ki=j

pi = gj .

In our settings, the ideals g1, . . . , gm play roles analogous to square-free factors of a polynomial in
case of the square-free factorization, so that we shall call them radical factors of a.

The following operations are the basic building blocks for our first algorithm:

• given an ideal a compute its radical rad a,

• given two ideals a and b compute their sum a+ b and the colon ideal (a : b) = {x | xb ⊆ a}.

We shall say thatR is a ring with computable ideal arithmetic if all the three operations are computable
for ideals of R.

Proposition 2.2. Let k be a perfect, computable field and C := {F = 0} be a smooth, geometri-
cally irreducible algebraic curve over k, defined by a bivariate polynomial F ∈ k[X,Y ]. Then the
coordinate ring R = k[C] = k[X,Y ]/〈F 〉 admits computable ideal arithmetic.

The proof of the proposition needs to be preceded by a lemma. Let κ : k[X,Y ] � R be the
canonical epimorphism. By superscripts ·c, ·e we shall denote respectively the ideal contraction and
extension with respect to κ.

Lemma 2.3. Keep the assumptions of the proposition. If a, b C R are two ideals, then

ace = a, rad(a) =
(
rad(ac)

)e
, (a : b) = (ac : bc)e.

Proof:
The inclusion ace ⊆ a holds always (see e.g. [4, Proposition 1.17]). The other inclusion follows from
the fact that κ is an epimorphism. Consequently we have

rad(a) =
(
rad(a)

)ce
=
(
rad(ac)

)e
,

where the last equality follows from [4, Exercise 1.18]. Likewise we may write

(ac : bc)e ⊆ (ace : bce) = (a : b) = (a : b)ce ⊆ (ac : bc)e.

This concludes the proof. ut
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Proof of Proposition 2.2
If we do not insist on obtaining the 2-generators representation of the result, the computation of the
sum a + b of two ideals can be as simple as a concatenation of their lists of generators. Next, an
algorithm for computing a quotient of two ideal in a multivariate polynomial ring is well known and
so it follows from the above lemma that one may compute the quotient of ideals in R. Finally, being
a Dedekind domain, the ring R has dimension one. Consequently every nontrivial ideal a C R lifts
to a zero-dimensional ideal A C k[X,Y ]. The radical of a zero-dimensional ideal in a multivariate
polynomial ring over a perfect field is computable using Seidenberg’s formula (see [5]). Thus, the
radical of a is computable, as well by the previous lemma. ut

We are now ready to present an algorithm for the radical decomposition. The reader may wish
to observe that it is a generalization of Musser’s algorithm [6] for the square-free factorization of
polynomials over a field of characteristic zero.

Algorithm 1: Radical decomposition of an ideal
Input: An ideal a in a Dedekind domain R with computable ideal arithmetic.
Output: Radical factors g1, . . . , gm of a.
// Initialization
a0 ← a;
i← 1;
b1 ← rad(a);
a1 ← (a0 : b1);
// Main loop
while bi 6= R do

bi+1 ← ai + bi;
ai+1 ← (ai : bi+1);
gi ← (bi : bi+1);
i← i+ 1;

end
return g1, . . . , gi;

Before we show the correctness of the algorithm, we present a slightly technical lemma that gives
an explicit description of ideals ai and bi constructed during the execution of the algorithm.

Lemma 2.4. Keep the notation as in Algorithm 1. The ideals ai and bi satisfy:

ai = gi+1 · g2i+2 · · · gm−im and bi = gi · gi+1 · · · gm.

Proof:
We proceed by induction. The assertion is trivially true for a0 and b1. Assume that the two formulas
hold for ideals ai−1 and bi. Take any x ∈ gi+1 · g2i+2 · · · gm−im and y ∈ bi = gi · gi+1 · · · gm. Then
their product xy lies in gi · g2i+1 · · · gm−i+1

m = ai−1. Hence x ∈ (ai−1 : bi) = ai proving an inclusion
ai ⊇ gi+1 · g2i+2 · · · gm−im .
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Conversely, take x ∈ ai = (ai−1 : bi). Fix any prime ideal p dividing ai−1 and let k := ordp(a)
be the multiplicity of p in the factorization (1) of a. By the inductive hypothesis, the ideal p divides bi
and k− i+1 is the multiplicity of p in the factorization of ai−1. By the strong approximation theorem
(see e.g. [7, Corollary 10.5.11]) there exists an element y ∈ R such that

ordp y = 1 and ordq y ≥ 1 for all q | bi.

In particular, y is an element of bi and y /∈ p2. By the definition of the colon ideal, xy ∈ x · bi ⊆
ai−1 ⊆ pk−i+1. It follows that the p-adic valuation of the product xy is at least k − i+ 1. Therefore,
we have

k − i+ 1 ≤ ordp(xy) = ordp x+ 1.

Consequently ordp x ≥ k − i, which means that x ∈ pk−i. As this holds for every prime p divid-
ing ai−1, we see that

x ∈
⋂
p|a

ordp(a)≥i

pordp(a)−i =
∏
p|a

ordp(a)≥i

pordp(a)−i =
∏
k≥i

(∏
p|a

ordp(a)=k

p

)k−i
= R · gi+1 · g2i+2 · · · gm−im .

This shows that ai ⊆ gi+1 · g2i+2 · · · gm−im .
We now prove the equality bi+1 = gi+1 · · · gm. One inclusion is immediate.

bi+1 = ai + bi =
〈
gi+1 · g2i+1 · · · gm−im ∪ gi · gi+1 · · · gm

〉
The radical ideals gi are pairwise coprime, hence

=

〈 ⋂
j≥i+1

gj−ij ∪
(
gi ∩

⋂
j≥i+1

gj

)〉

=

〈( ⋂
j≥i+1

gj−ij ∪ gi

)
∩
( ⋂
j≥i+1

gj−ij ∪
⋂

j≥i+1

gj

)〉

⊆

〈( ⋂
j≥i+1

gj ∪ gi

)
∩
⋂

j≥i+1

gj

〉

=

〈 ⋂
j≥i+1

gj

〉
= gi+1 · gi+1 · · · gm.

In order to show the other inclusion fix an element x ∈ gi+1 · · · gm. Ideals gi and gi+1g
2
i+2 · · · gm−im =

ai are relatively prime, hence there exist elements y ∈ gi and z ∈ ai such that x = y + z. Therefore,
for any j ≥ i+ 1 we have

y = x− z ∈ gj + ai ⊆ gj + gj = gj .

It follows that y ∈ gi+1 ∩ . . . ∩ gm = bi. Consequently, x = y + z ∈ bi + ai = bi+1. ut
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We are now ready to show the correctness of the algorithm.

Proof of correctness of Algorithm 1:
It follows immediately from the preceding lemma that the algorithm terminates. All we need to show
is that for every index i the colon ideal (bi : bi+1) equals the sought radical ideal gi. One inclusion is
immediate. By the lemma we have

gi · bi+1 = gi ·
(
gi+1 · · · gm

)
= bi

and so gi ⊆ (bi : bi+1). We need to prove the other inclusion. To this end take any x ∈ (bi : bi+1)
and fix a prime divisor p of gi. The multiplicity of p in the factorization of a is thus ordp(a) = i.
By the strong approximation theorem there is an element y ∈ R such that y ∈ bi+1 \ p. Now,
xy ∈ x · bi+1 ⊆ bi ⊆ p but y /∈ p, it follows that x ∈ p. This shows that x belongs to every prime
divisor p of a of multiplicity ordp(a) = i. Therefore

x ∈
⋂
p|a

ordp(a)=i

p = gi.

This proves the correctness of the algorithm. ut

3. Distinct degree factorization

In this and the next section we restrict our attention to maximal orders in global function fields. Thus,
let k be a fixed finite field and let R = k[C] = k[X,Y ]/〈F 〉 be a Dedekind domain which is a coordinate
ring of a smooth and geometrically irreducible curve C. In particular R is a maximal order in a
field k(C) of rational functions on C (i.e. in a global function field). Given a radical ideal a C R,
consider its factorization into primes

a = p1 · · · ps.

Collate the primes with respect to their residual degrees setting

hj :=
∏
p|a

deg p=j

p.

Consequently the ideal a may be expressed as a product

a = h1 · · · hm, where m := max{deg p | p divides a}. (3)

By analogy to the polynomial case, we shall call (3) the distinct degree factorization of a.
We will compute the distinct degree factorization of a given ideal a by constructing successive

greatest common divisors (in the lattice of R-ideals) of a and uk, where uk is the intersection of all
primes of residual degrees dividing k:

uk :=
∏

p prime
deg p|k

p.
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Before we continue, recall that with every prime ideal p one can associate a unique point (xp, yp) on
the curve C, with coordinates in the algebraic closure k of k. To this end treat elements of R = k[C]
as polynomial functions on C and set (xp, yp) to be a unique point where all elements of p vanish
simultaneously. In this section k is a finite field, say k = Fq for some prime power q = pl. The degree
of p divides k if and only if xp, yp lie in Fqk . It is well known that Fqk consists of elements satisfying
aq

k − a = 0. Apply this fact to both coordinates.

Lemma 3.1. For every k ≥ 1, the ideal uk is generated by xq
k −x and yq

k −y, where x, y are images
in R of X,Y ∈ k[X,Y ].

Proof:
Fix k ≥ 1 and denote vk :=

〈
xq

k−x, yqk−y
〉
C R. We shall prove first that the ideal vk is contained

in uk. It suffices to show that both its generators belong to every prime ideal p of R whose residual
degree divides k. Take any such prime p. The coordinates xp, yp of the associated point belong to Fqk ,

hence xq
k

p − xp = 0 = yq
k

p − yp. Thus the generators of vk vanish on (xp, yp) and so vk ⊆ p.
Next, we show that vk is not contained in any prime ideal p whose degree does not divide k.

Suppose that vk ⊂ p for some prime ideal p. In particular the generators xq
k − x, yqk − y belong to p.

Therefore, they vanish on the associated point (xp, yp), which means that xp, yp ∈ Fqk and so deg p
divides k.

From what we have proved so far it follows that uk is the radical of vk. In order to conclude
the proof, it suffices to show that vk is a radical ideal itself. To this end we show that for every prime
ideal p, deg p | k the valuation of at least one of the generators of vk equals 1. Consider two (reducible)
algebraic curves C1 :=

{
xq

k
= x

}
and C2 :=

{
yq

k
= y

}
. They both consist of parallel lines but

they are not parallel to each other. Suppose that ordp(xq
k − x) > 1 for some p. This means that p is

a ramified extension of an ideal p · Fq[x] for some irreducible polynomial p in x. We may identify the
valuation ordp(x

qk − x) with the intersection index I
(
(xp, yp), C ∩ C1

)
. If

ordp
(
xq

k − x) = I
(
(xp, yp), C ∩ C1

)
> 1,

then C is tangent to C1 at (xp, yp). Consequently it cannot be tangent to C2 at (xp, yp) as C is non-
singular. Therefore

ordp
(
yq

k − y) = I
(
(xp, yp), C ∩ C2

)
= 1.

This shows that for every prime ideal p, whose residual degree divides k, either xq
k − x ∈ p \ p2 or

yq
k − y ∈ p \ p2. This implies that vk is radical. ut
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We may now present an algorithm for distinct degree factorization.

Algorithm 2: Distinct degree factorization
Input: A radical ideal a C R.
Output: Distinct degree factors h1, . . . , hm of a.
// Initialization
k ← 1;
a1 ← a;
// Main loop
while ak 6= R do

uk ←
〈
xq

k − x, yqk − y
〉
;

hk ← uk + ak;
ak+1 ← (ak : hk);
k ← k + 1;

end
return h1, . . . , hk;

Proof of correctness:
We proceed by an induction on k. Assume that hk−1 is the (k−1)-th distinct degree factor of a and ak
is the product of the prime divisors of a with residual degrees at least k. This is trivially true for a1 = a
and h0 := R. Lemma 3.1 asserts that

〈
xq

k − x, yqk − y
〉
= uk. Compute

uk + ak = 〈uk ∪ ak〉 =

〈 ⋂
deg p|k

p ∪
⋂
q|a

deg q≥k

q

〉
=

〈 ⋂
deg p|k
q|a

deg q≥k

(p ∪ q)

〉
=

〈 ⋂
deg p|k
q|a

deg q≥k

(p+ q)

〉
.

Now prime ideals p, q are either equal or relatively prime. Hence p+q = p when p = q and p+q = R
if p 6= q. Consequently the above formula simplifies to

uk + ak =
⋂
p|a

deg p=k

p = hk.

It follows that ak+1 = (ak : hk) is the product off all those prime divisors of a that have degrees
strictly greater than k. ut

4. Equal-degree factorization

After performing a radical decomposition and distinct degree factorization, we are left with a list of
radical ideals such that each one is a product of primes all having the same (known) residual degree.
We can deal with such ideals using a generalization of a classical Cantor–Zassenhaus algorithm. We
shall first note the following fact.
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Lemma 4.1. If a C R is a nonzero radical ideal, then the number of elements of the residue ring R/a
is algorithmically computable.

Proof:
As in the proof of Proposition 2.2 we use the ideal contraction with respect to the canonical epimor-
phism κ : k[X,Y ] � R. The ring R is a Dedekind domain and a 6= {0}, hence R/a is a finite ring
isomorphic to k[X,Y ]/ac. The number of elements of the latter ring is computable using a well known
trick of counting monomials not in lm(ac), where lm(ac) is an ideal spanned by leading monomials
of ac with respect any monomial order in k[X,Y ]. ut

From now on we assume that a C R is a radical ideal with some (unknown) factorization

a = p1 · · · pm

and the residual degrees of p1, . . . , pm are all the same and a priori known. Denote this common
degree by d.

Lemma 4.2. Let b be an element ofR not in a. Denote b := b+a the class of b in R/a and e := qd−1.
The following conditions are equivalent:

1. the ideal b := 〈b〉+ a is a proper divisor of a;

2. the element b is a zero-divisor in R/a;

3. b
e 6= 1.

Proof:
Assume that b is a proper divisor of a. This means that a  b  R. In particular b cannot lie in a and
so b 6= 0. The ring R/a is finite, hence it suffices to show that b is not invertible. Suppose a contrario
that there is an element c ∈ R such that c · b = 1. But then 1 ∈ b and this contradicts the assumption
that b 6= R.

The implication (2) =⇒ (3) is trivial. In order to prove the remaining implication (3) =⇒ (1),
assume that b

e 6= 1. By the Chinese reminder theorem there is an isomorphism

ϕ : R/a
∼−−→ R/p1 × · · · × R/pm,

where each quotient ring R/pi is in turn isomorphic to Fqd . Let πi : R/p1 × · · · × R/pm � R/pi be the
projection onto the i-th coordinate. For every i ≤ m, the image (πi ◦ ϕ)(b

e
) is either 1 if b /∈ pi, or 0

if b ∈ pi. Not all coordinates can be equal 1, because b
e 6= 1. Neither all the coordinates are equal

zero, since b /∈ a. Denote

I :=
{
i ≤ m : (π ◦ ϕ)(be) = 0

}
=
{
i ≤ m : b ∈ pi},

we then have
b =

∏
i∈I

pi

and it is clear that a  b  R. ut
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We may now present a randomized recursive algorithm, in a spirit of Cantor–Zassenhaus, for
factoring radical ideals of constant residual degree.

Algorithm 3: Equal degree factorization
Input: A radical ideal a C R and an integer d such that the residual degree of every prime

factor of a equals d.
Output: Prime factors p1, . . . , pm of a.
// Recursion termination
if |Ra | = qd then

return a;
end
// Main loop
while True do

b← random element of R \ a;
b← b+ a ∈ R/a;

if bq
d−1 6= 1 then
b← 〈b〉+ a;
c← (a : b);

// Recursion;
r1 ← Equal degree factorization of b;
r2 ← Equal degree factorization of c;
return r1 ∪ r2;

end
end

The correctness of the algorithm follows immediately from the lemma preceding it. For the sake
of completeness we present an algorithm for the complete factorization of an ideal, that summarizes
the whole discussion.
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Algorithm 4: Complete Factorization
Input: An ideal a in R.
Output: The list of pairs (pi, ki) of prime divisors and multiplicities, see Eq. (1).
Factors← [];
G← radical decomposition of a;
(Algorithm 1);
for j ≤ |G| do

gj ← G[j];
H ← distinct degree factorization of gj ;
(Algorithm 2);
for d ≤ |H| do

hd ← H[d];
P ← equal degree factorization of hd;
(Algorithm 3);
Factors← Factors∪

[
(p, j) : p ∈ P

]
;

end
end
return Factors;

5. Examples

The authors implemented algorithms described in this paper in a computer algebra system Magma [3].
Below we preset two examples computed using our implementation.

Example

Let K = F13(x, y) be a hyperelliptic function field given by a generating polynomial

F = y2 − (x5 − x)(x4 + 2)

and let R := F13[x, y]/〈F 〉. Consider the ideal a C R

a = 〈x9 + 8x7 + 5x6 + 10x5 + 6x4 + 4x3 + 9x2 + 6x+ 4,

11x8 + 8x7 + 2x6 + 10x5 + 6x4 + x3y + x3 + 4x2y + 7x2 + 4xy + 9y + 7〉

Use Algorithm 1 to compute the radical decomposition a = g1 · g22, where

g1 = 〈x6 + 9x5 + 7x4 + 10x3 + 4x2 + 4x+ 12,

y + 12x5 + x4 + 11x3 + 10x2 + 3x+ 8〉,
g2 =

〈
x3 + 4x2 + 4x+ 9, y + 7x2 + 9x+ 12

〉
.
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Next, using Algorithm 2, we compute the distinct degree factorization for each element of the radical
decomposition. For g1 it returns two trivial factors h11 = h12 = R and one nontrivial, degree 3 factor

h13 = 〈8x5y + 5x4y + 9x3y + xy + 5y + 1,

x6y + 9x5y + 7x4y + 10x3y + 4x2y + 4xy + 12y〉.

For g2 the situation is fully analogous: h21 = h22 = R and

h23 =
〈
5x2y + 5xy + 6y + 1, x3y + 4x2y + 4xy + 9y

〉
.

Finally we compute the equal degree factorization for each of the above factors using Algorithm 3.
For h13 we obtain the following primes

p1 =
〈
x3 + 4x2 + 4x+ 9, y + 6x2 + 4x+ 1

〉
p2 =

〈
x3 + 5x2 + 9x+ 10, y + 3x2 + 7x+ 4

〉
and for h23 we get

p3 =
〈
x3 + 4x2 + 4x+ 9, y + 7x2 + 9x+ 12

〉
.

Hence the complete factorization of a is p1 · p2 · p23.

Example

In this example, we consider an elliptic function field K = F19(x, y) with full constant field F19,
where

y2 + y = x3 − 2x2 + 1

Take a and ideal

a = 〈x21 + 14x20 + 9x19 + 4x18 + 5x17 + 12x16 + 9x15 + 7x14 + 12x13 + 8x12

+ 3x11 + 8x10 + 14x9 + 7x8 + 12x7 + x6 + 9x5 + 13x4 + 9x3 + 4x2 + 18x+ 4,

x3y + 6x2y + 3xy + 17y + 7x18 + 7x17 + 11x16 + x15 + 18x13 + 8x12 + 9x11

+ 15x10 + 13x9 + 18x8 + 12x7 + x6 + 14x5 + 10x4 + 7x3 + 15x2 + 9x+ 5〉.

We again use Algorithm 1 to factor I into a product of radical ideals. It returns one trivial factor
g3 = R and three nontrivial factors g1, g2 and g4 where

g1 = 〈x3 + 6x2 + 3x+ 17, x3y + 6x2y + 3xy + 17y〉,
g2 =

〈
x3 + 4x+ 17, y + 8x2 + 2x+ 9

〉
,

g4 =
〈
x3 + 2x2 + 10x+ 4, y + 8x2 + 3x

〉
.
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Now we compute the distinct degree factors of the above ideals. For g1 we have two trivial factors
h11 = h13 = R and two nontrivial one, degrees 2 and 4, respectively:

h12 = 〈x+ 1〉 .
h14 =

〈
x2 + 5x+ 17

〉
For g2 it returns two trivial factors h21 = h22 = R and one nontrivial, degree 3 factor

h23 =
〈
x3 + 4x+ 17, y + 8x2 + 2 ∗ x+ 9

〉
.

Similarly for g4 we have h41 = h42 = R and

h43 =
〈
x3 + 2x2 + 10x+ 4, y + 8x2 + 3x

〉
.

Finally we use Algorithm 3 to compute the equal degree factorization. It turns out that all four ideals
h12, h14, h23 and h43 are in fact prime. Denoting

p1 := h12, p2 := h14, p3 := h23, p4 := h43,

we obtain the complete factorization of a, namely a = p1 · p2 · p23 · p34.
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[19] Krasuski A, Jankowski A, Skowron A, Ślȩzak D. From Sensory Data to Decision Making: A Perspec-
tive on Supporting a Fire Commander. In: 2013 IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology, Atlanta, Georgia, USA, 17-20 November 2013, Workshop
Proceedings [20], 2013 pp. 229–236. doi:10.1109/WI-IAT.2013.188. URL http://ieeexplore.ieee.

org/xpl/tocresult.jsp?isnumber=6690661.

[20] 2013 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology,
Atlanta, Georgia, USA, 17-20 November 2013, Workshop Proceedings. IEEE Computer Society, 2013.
ISBN 978-1-4799-2902-3. URL http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=

6690661.


