INCIDENCE RELATION FOR PRIMES
OF A GLOBAL FUNCTION FIELD

ALFRED CZOGALA AND PRZEMYSLAW KOPROWSKI

ABsTrACT. We show that primes of any global function field (of characteristic
# 2 and containing a square root of —1) form a connected graph of diameter 2.
This fact generalizes our earlier result concerning the graph of even points.

Let us begin with an elementary example that motivates our further consider-
ations. Take two irreducible polynomials f,g € Fy[t] with coordinates in a finite
field of odd characteristic. The quadratic reciprocity law asserts that

IN(9) — ()55  (deg £ deg g)
(5)(5) = s,

This leads to a definition of a relation on the set of irreducible polynomials. Write
f— gif (é) = 1. By the quadratic reciprocity law this relation is symmetric
unless ¢ = 3 (mod 4) and f, g have odd degrees. In this case, — is antisymmetric.
Anyway, in general this relation is not transitive. Take for instance F, = F; and
three polynomials

f=t34+t242, g=t3+t* +3t+1, h=t342t+2.

Then f — g and g — h but f ¥ h. Thus it is natural to ask about the transitive
closure of —.

Assume that ¢ = 1 (mod 4) so the relation is symmetric. One can show that for
every two polynomials f,g € F,[t], if f ¥ g, then there is a polynomial h € F,[t]
such that f — h and A — g¢. In other words, the set of irreducible polynomials
with relation — forms a connected graph of diameter 2.

Let K = F,(X) be an arbitrary global function field of characteristic # 2. A gen-
eralization of the relation — to the set of points (primes) of K, whose classes are
2-divisible in the Picard group Pic X, was introduced in [3] and further investigated
in [2, 1]. We should emphasize the fact that on such points the relation — is defined
canonically. In [1] we show that for every global function field (of odd character-
istic) the corresponding graph is connected and has diameter 2. The purpose of
the present note is to show that one may generalize the relation — to all points
of K, not only those whose classes in Pic X are 2-divisible. Thus this paper may be
viewed as an addendum to [1]. Unfortunately the generalized relation is no longer
canonical. It depends on a choice of a certain system of parameters mq,..., T,
where k is the dimension of PicX/apic x, treated as a Fa-vector space. In case of
the field K = F,(t) of rational functions, this choice corresponds to the selection of
the ‘variable’: an element transcendental over the ground field and generating K.

Throughout this paper K denotes a global function field of odd characteristic and
F, is its full field of constants. Further, X is the set of primes (equivalent classes
of valuations) on K. From a geometric point of view, X is a smooth complete
algebraic curve over F,. If Y is a nonempty Zariski-open subset of X, then Y is
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an affine curve and by PicY we denote the Picard group of Y, i.e. the quotient of
the group DivY of Y-divisors modulo the principal divisors. Given a point p € X,
by [p] we denote its class in Pic X, by K, the completion of K with respect to p
and by ord, the associated discrete valuation K — ZU {oo}. Moreover, with every
open subset Y C X we associate two subgroups of the square-class group of K:
Ey = {Ae k*/k**|ordy A\=0 (mod2) for everype Y},
Ay :={N€Ey [ A€ K* foreverype X \Y}.
Definition. A finite set {m,...,m} C K will be called a system of parameters
for — if there are points by, ..., bx € X such that:
e ordp, m; = 1 for every i < k,
e {[b1]+2PicX,...,[bi] +2Pic X} is a basis of PicX/2picx.
We need the following three facts from [1]:

Proposition 1 (|1, Lemma 2|). Let {m,..., 7} be a system of parameters for —
and B = {by,...,bx} a corresponding set of points of X. Then there is a basis
B ={p1,...,0k} of Ex such that

(m) 1 it
b; -1 ifi=y
foralli,j <k.

Proposition 2 ([1, Proposition 7|). Let by,...,by and B1,...,Br be as in the
previous proposition. Further let p € X, then

[p] = Z,Ei -[b;] (mod 2PicX)
i<k
if and only if
(%) = (—1)% for every i < k.
Proposition 3 ([1, Proposition 6]). If p,q € X are two points whose classes are
congruent modulo 2 Pic X. Then Ax\(py = Ax\{q}-
For the rest of this paper we will work under the following assumptions:

(AS1) —1 € K*2,

(AS2) II = {m,...,mx} C K is a fixed system of parameters for —,

(AS3) B = {by,...,bx} C X is the corresponding set of points such that ordy, m; =

1 and {[b;] +2Pic X |i < k} is a basis of PicX2pic X,

(AS4) # ={p1,...,Bk} is a basis of Ex such that (z%) = —1if and only if i = j.
In addition we denote the affine curve X \ B by Z.

Remark. Take a finite field F, such that —1 € IF(IX2 and let ¢ € F; be a fixed
non-square. Consider the field K = F,(¢) of rational functions and take 7 := 1/
Finally, let b be the “point at infinity”, i.e. b = {f/g € K | degg > deg f}. Then
Il = {rn}, B = {b} and B = {(} satisfy conditions (AS1)—(AS4).
Proposition 4. For every p € Z one has

(1) Ez =Ex
(2) [EZ\{p} . Ex] = 2.

Proof. The first assertion follows immediately from [2, Lemma 2.3]. We shall prove
the other one. By [3, Proposition 2.3] we have

( ) I‘kQEZ:I‘kQPiCZ—F‘%L

1

rky Bz (py = ko Pic(Z \ {p}) + [B| + 1.
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On the other hand, [2, Proposition 2.4] yields
(2) rko Pic Z = 1ko Pic’ X — |B| + 1 = rky Pic(Z \ {p}).
Combining Eq. (1) with Eq. (2) we obtain
ko E7\ (p) = tko Pic’ X +2 =1ks By + 1
and this concludes the proof. 0

Proposition 5. Let p € X be a point.
(1) [f [p] € 2Pic X, then [EZ\{p} : AX\{p}] =2.
(2) If [p] ¢ 2Pic X, then [EZ\{p} : AX\{p}] =4.
Proof. By [3, Proposition 3.4] the class of p is 2-divisible in Pic X if and only if

Ex = Ax\(p).- Hence the first assertion follows immediately from the preceding
proposition. Now assume that [p] ¢ 2Pic X. Therefore

rka Ax\py = rka Pic(X \ {p})
by [3, Proposition 2.3] and
rky Pic(X \ {p}) = rko Pic® X

by [3, Proposition 2.7]. Finally [3, Lemma 2.4] asserts that rko Ex = 141k, Pic® X.
Consequently we have [Ex : Ax\¢p3] = 2 and so Proposition 4 implies the second
assertion, as well. O

Assume that p € X and [p] ¢ 2Pic X. The group Ez\tr}/Ax\;,; is iSomorphic to
the Klein 4-group since Ez\ () and Ax\¢p) are both elementary 2-groups. We are
going to explicitly describe the four cosets of Ax\ qp3.

Lemma 6. Let q € Z be a point (not necessarily distinct from p). Assume that
the classes of p and q are congruent modulo 2Pic X. Then the cosets of Ax\(py
are contained in square classes of K.

Proof. Assume that \,u € Ez\(, and A = p (mod Ax\gpy). It follows from
Proposition 3 that Au € Ax\(p1 = Ax\fq) C KqXQ. O

Lemma 7. Let p € Z be a point. Assume that
[l = e -[bi] (mod2PicX)
i<k
Jor some e1,...,ex € Fa. Then there is a square class Ay € Ez\(py such that
(1) ordy Ap =1 (mod 2),
(2) A\ € K;iz fori < k such that e; =0,
(3) Ap € WiK;ZQ fori < k such that ; = 1.
Proof. By the assumption there is p € K* and D € Div X such that
divy p=p+ Y eib; +2D.
i<k
Define
A={i<k|p¢KIPumK;*}

>‘P :/lH51

icA
It is clear that A, satisfies conditions (1)—(3). O

and set
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Remark. Let K = TF,(t) be the field of rational functions and 7, b, be defined in
the same way as in the previous remark. If p € Z is generated (as an ideal) by
some monic irreducible polynomial f, then A, = f.

Proposition 8. Let p € Z be a point such that [p] ¢ 2Pic X. Assume that
o] = elbi] (mod 2Pic X)
i<k

for some e, ..., e € Fa. Further let j be the least index of a nonzero coordinate €.
Set up = B; and let Ay be defined as in the preceding lemma. Then the group
Ez\(s} [Ax\(py consists of the following four cosets of Ax\qpy:

Ax\pys HpcBx\ppy Ao Ax\py and ppdp - Axy\gp)-
Proof. By Proposition 2 we have

()-(3) -

hence p, ¢ K,*. Consequently Ax\(p} # fip - Ax\(p} and Ap - Ax\ (p) # fipAp -
Ax\ipy- Further we have ord, Ay =1 (mod 2) and ordy y, = 0 (mod 2). It follows
that the cosets Ay - Ax\ (py, pAp - Ax\ fpy differ from Ax\py and pp - Axy\py. O

Recall (see [1]) that points p,q € X, whose classes are 2-divisible in Pic X, are
related (denoted p — q) if Ex\ () C Kq><2. By [1, Proposition 13| this happens if

and only if A\, € quz. We will use the last property to define the relation — on
the whole Z.

Definition. Let p,q € Z be two points, we write p — q when A, € quz.

Remark. Again let K = F,(t) and 7, b,¢ be defined in the same way as in the
previous remarks. Take p,q € Z and assume that p is generated by a polynomial f
and q by g, where f, g € F,[t] are monic and irreducible.Then p — q if and only if
Ap = f is either a quadratic residue (when at least one of the degrees deg f,degyg
is even) or a non-residue (when both degrees are odd) modulo g. This shows that
our definition of «— generalizes the one discussed in the introduction.

Proposition 9. The relation — is symmetric.

Proof. Take two points p,q € Z and assume that p — ¢, hence A, € KqX2 and
consequently the Hilbert symbol (A,, A\q)q vanishes. We are going to prove that Aq
is a local square at p. To this end we will show that (Ap, A\q), = 1. Take a point
v € Z distinct from p and q. Then ord. Ay, = ord; A\; =0 (mod 2) and so we have

(Aps Ag)e =1 for every v € Z \ {p,q}.
Now take any b; € B. Let

[p] = Zai[bi] and [q] = Z'fi[bi] (mod 2 Pic X).
i<k i<k
Now Lemma 7 yields
(1, 1)y, ife; =¢ =0,
(o Ag)e, = (I,m)p, ife;=0ande =1,
¢ (mi,1)p, ife;=1ande =0,
(mi,mi)p, ife;=¢ =1

In all four cases the Hilbert symbol (Ap, Aq)e, vanishes.
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Using the Hilbert reciprocity law we compute

1= ] Ow e = J] Qo A)e [TOw: Aa)s, - o Ag)q - Ay Aq)p-
rteX teZ i<k
t#£p,q B

It follows from the preceding discussion that all the above factors—except possibly
the last one—vanish. But then also (Ap, A\q), = 1. Now A, has an odd valuation
so the only way the Hilbert symbol can vanish is A; € KPXQ. This shows that
q—p. O

For the points whose classes are 2-divisible in the Picard group of X, the relation
— was defined canonically, by inclusion of certain groups (see [1]). Here, for general
points, the relation is defined using a (bit esoteric) element A,, that depends not
only on the point p but also on the specified system of parameters 7y, ..., 7. While
the dependence on the system of parameters is unavoidable (see the remark below),
we may still replace a single square class A\, by a certain subgroup of K* /k*2. Let
p € Z be a point, write A, for the subgroup of Ez\(»}/A y\(,, generated by the class
of A\y. If [p] € 2Pic X, then it follows from Proposition 4 and Proposition 5 that
Ay = Ex\(p} = Ez\{p3- On the other hand, if [p] ¢ 2Pic X, then Proposition 8
asserts that

Ap = Ax\(py UM A (py-

Lemma 6 yields:

Observation 10. Let p,q € Z be two square classes congruent modulo 2 Pic X,
then p — q if and only if A, is contained in Kq><2.

Remark. As in the previous remarks, let K = F,(t), b be the point at infinity,
m = 1/t and { € F, be a fixed non-square. Take two polynomials of degree 1:
f=t—a,g=t—bandset p:=(f), q:=(g). Then p is related to q with respect to
m,b,¢ if and only if (b—a) € F?. Now perform a change of variables. Set x := (t
and 7’ := 1/z. Then 7/, b, ¢ also satisfy (AS1)—(AS4). The field has not changed, we
have K(z) = K(t). The primes p, q stay intact. But the change of the parameter
alters the square classes Ay, Aq. Now, we have A\ = (f and A} = (g. Consequently
p is related to q with respect to 7', b,¢ if and only ¢ - (b — a) € F)? if and only if
b—a¢ IFqXQ. This shows that the dependence on the selected system of parameters
is inherent to the very nature of the relation —. It can be avoided only for points
whose classes sit in 2 Pic X, since such classes have zero coordinates with respect
to every basis of PicX /2pic x.

The set Z equipped with the relation — (with respect to some fixed system
of parameters) forms an undirected graph. Denote this graph by %. First we
prove that 2 does not contain a vertex adjacent to all other vertices. The next
proposition generalizes |1, Proposition 15].

Proposition 11. For every point p € Z there is a point ¢ € Z congruent to p
modulo 2Pic X and such that p £ q.

Proof. Let e1,. .., be the coordinates of [p] + 2Pic X with respect to the basis
{[b;]+2Pic X | i < k}. Fix an element p € K* such that ord, = 0 and p ¢ K*2,
Then [4, Lemma 2.1] asserts that there is A € K* and q € Z \ {p} satisfying:

ordg A =1,

ordy (A —p) > 1,

ordp,(A—1) > 1fori <kif e =0,

ordp, A —m;) >1fori <kife =1,

ord, A =0 (mod 2) for every t € Z\ {q}.
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It follows that the divisor of A has a form
divy A=q+ > eib; +2D

i<k
for some D € Div X. This means that [q] = [p] (mod 2 Pic X). Moreover \- K*2 =
Aq and since A is congruent to pu modulo prz we obtain q ¥ p. (]

Corollary 12. The graph & is not complete.

Finally we compute the diameter of 2. The following theorem is analogous to a
similar result for points whose classes are 2-divisible in Pic X (see [1, Theorem 16]),
but the proof presented here uses different techniques.

Theorem 13. The graph Z is connected and its diameter equals 2.

Proof. 1t follows from the previous proposition that the diameter of 2 cannot be
equal to 1. Thus we must show that for every two points p1,ps € Z, there is another
point q such that p; — q — p2. To this end, as in the proof of Proposition 11, we
use [4, Lemma 2.1]. It asserts that there is A € K™ and q € Z \ {p1,p2} such that
(1) ordg A =1,
(2) Ordpl()‘ - )‘Pl) > 170rdp2 ()‘ - )‘sz) > 1,
(3) ordp(A —1) > 1 for every b € B,
(4) orde A =0 (mod 2) for every v € Z \ {p1,p2,q}.

Therefore ¢ is the unique point of X, where A has an odd valuation. It follows
from [3, Proposition 3.2] that [q] € 2Pic X. Thus the coordinates of [q] + 2Pic X
with respect to the basis {[b] + 2Pic X | b € B} are all zero. Consequently points
(1) and (3) imply that A - K*2 = Xq. It follows from (2) that X is a local square
simultaneously at p; and po. Hence q — p; and q — ps. O
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