
Computing with quadratic forms over number

fields

Przemys law Koprowski

Faculty of Mathematics
University of Silesia

ul. Bankowa 14
PL-40-007 Katowice, Poland

Alfred Czoga la

Faculty of Mathematics
University of Silesia

ul. Bankowa 14
PL-40-007 Katowice, Poland

Abstract

This paper presents fundamental algorithms for the computational theory of quadratic forms
over number fields. In the first part of the paper, we present algorithms for checking if a given
non-degenerate quadratic form over a fixed number field is either isotropic (respectively locally
isotropic) or hyperbolic (respectively locally hyperbolic). Next we give a method of computing
the dimension of an anisotropic part of a quadratic forms. The second part of the paper is
devoted to algorithms computing two field invariants: the level and the Pythagoras number.
Ultimately we present an algorithm verifying whether two number fields have isomorphic Witt
rings (i.e. are Witt equivalent).

Key words: Algorithms, quadratic forms, number fields, level, Pythagoras number, Witt
equivalence

Email addresses: pkoprowski@member.ams.org (Przemys law Koprowski), alfred.czogala@us.edu.pl

(Alfred Czoga la).

URLs: http://z2.math.us.edu.pl/perry/ (Przemys law Koprowski),

http://www.math.us.edu.pl/czogala/ (Alfred Czoga la).

Preprint submitted to Journal of Symbolic Computation 17 April 2016



1. Introduction

The algebraic theory of quadratic forms is a mature and important branch of mathe-
matics. Yet still, the computational side of this theory is seriously under-developed. The
majority of research concentrate on forms over the rationals. Consequently, while over Q
there already a couple of algorithms for solving a highly non-trivial problem of deter-
mining isotropic vectors of a quadratic forms (see e.g. Cremona and Rusin (2003); Simon
(2005); Castel (2013)), little has been done so far for forms over number fields (i.e. finite
extensions of Q). The algebraic theory of quadratic forms over number fields are very
like the theory over the rationals, nevertheless the computational approach seems to be
rudimentary here. The aim of this article is to partially fill this gap, as well as provoke
further discussion and future research.

This paper is organized as follows: in Section 2 we present an algorithm (see Algo-
rithm 5) checking if a given form (over a fixed number field K) is isotropic. This algorithm
uses sub-procedures (Algorithms 2 and 3) deciding whether the form is isotropic at a non-
archimedean prime of K (respectively odd or even). These two algorithm may be of an
independent interest to the reader. Next, in Section 3 we show Algorithm 7 determining
if a quadratic form is hyperbolic, again utilizing the local approach.

It is known that any non-degenerate form can be uniquely decomposed into an or-
thogonal sum of its anisotropic part and a hyperbolic form (one of these two parts may
of course be void if the form in question is either anisotropic or hyperbolic itself). In
Section 4 we shows a procedure computing the dimension of an anisotropic part of a
quadratic form.

In Sections 5–7 we go a step further and develop algorithms computing invariants of
the ground fields, that play important roles in the algebraic theory of quadratic forms.
Algorithm 10 computes the level s(K) of a number field K, which is the length of the
shortest representation of −1 as a sum of squares. Another invariant of the field is the
minimal number of squares needed to represent any sum of squares. This invariant is
called the Pythagoras number and is computed by Algorithm 11.

Recall that the set WK of similarity classes of non-degenerate symmetric bilinear
forms over a given base field K is a ring with operations induced by the orthogonal
sum and the tensor product. It is called the Witt ring of the field K. Because a bilinear
form defines an orthogonal geometry on the vector space on which it is defined, thus the
Witt ring can be viewed as an algebraic structure encoding information on all possible
orthogonal geometries over a given base field. Two fields are said to be Witt equivalent,
if their Witt rings are isomorphic. The set of global field invariants that fully determine
its Witt equivalence class was described in Szymiczek (1991). In Section 7 we present
Algorithm 13 computing all these invariants. In particular the algorithm may be used to
verify whether two number fields are Witt equivalent.

The authors implemented all the algorithms presented in this paper in a computer
algebra system Sage. Using this implementation, we were able to find representatives of
Witt classes of number fields of low degrees. These results are presented in Tables A.1–
A.4. Moreover, using our implementation, we were able to give an affirmative answer
to Conner’s question for number field of degree not exceeding 6 (for details see the last
section of the paper).

In these paper, K = Q(ϑ) is always a number field specified by the minimal polynomial
of ϑ over Q and OK is the integral closure of Z in K. Two basic building blocks that we
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use in subsequent algorithms are procedures that test whether a given algebraic number
a ∈ K is a square: either in its base field K or in a completion Kp, where p is a prime
of K. A procedure testing whether an element is a square in a number field is available
as standard in computer algebra systems. On the other hand, testing whether a is a
square in a completion Kp is obviously equivalent to testing whether x2−a is irreducible
in Kp[x]. There are known algorithms for testing irreducibility of a polynomial in local
fields. These include for example: Montes’ algorithm (see e.g. Veres (2009) or Guàrdia
et al. (2011, 2012)) or variations of Zassenhaus Round Four algorithm (see e.g. Pauli
(2001, 2010)).

In the algorithms presented below, an input is a non-degenerate diagonal quadratic
form with coefficients in some number field K. Since K is the field of fractions of OK and
for every a, b ∈ OK , both a/b and a · b belong to the same square-class on K̇/K̇2, hence
in Algorithms 1–9 we usually assume that the coefficients of the quadratic form come
from OK .

2. Isotropy of a quadratic form

In this section, we present an algorithm that checks if a given form ϕ over a number
field K is isotropic or not. The organization of this section reflects the general idea of
solving the problem locally. Hence, Algorithms 2, 3 and 4 deal respectively with odd and
even finite fields and real infinite primes of K. Finally, Algorithm 5 checks if the form is
globally isotropic, using the above-mentioned algorithms as sub-procedures.

Below we utilize the notion of the discriminant of a quadratic form. Recall (see e.g.
(Szymiczek, 1991, Definition 15.2.1)) that for a quadratic form ϕ, we define the discrim-
inant of ϕ by the formula

discϕ := (−1)
d(d − 1)/2 detϕ,

where d = dimϕ.

Algorithm 1. Let p be an odd prime of K and ϕ = 〈a1, . . . , ad〉 be a non-degenerate
diagonal quadratic form with all its entries being p-adic units. This algorithm returns
true if and only if the residual form ϕ⊗K/p is isotropic, otherwise it returns false.

(1) If dimϕ = 1, return false.
(2) If dimϕ = 2, return true when discϕ is a square in K/p, otherwise return false.
(3) If dimϕ > 2, return true.

The correctness of the above algorithm follows immediately from (Lam, 2005, Theo-
rem I.3.2).

Algorithm 2. Let p be an odd prime of a number field K. Given a non-degenerate
quadratic form ϕ, this algorithm returns true if ϕ⊗Kp is isotropic and false otherwise.

(1) If dimϕ = 1, return false.
(2) If dimϕ ≥ 5, return true.
(3) Let {a1, . . . , ad} be the list of coefficients of a diagonalization of ϕ, all ai ∈ OK .

Partition this list into two sublists depending on the parity of the p-adic valuation:

ϕ0 :=
{
ai · π−ord pai

∣∣ ord pai ≡ 0 (mod 2)
}
,

ϕ1 :=
{
ai · π−ord pai

∣∣ ord pai ≡ 1 (mod 2)
}
.

Here π is a uniformizer of p (see Remark 1 below).
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(4) Use Algorithm 1 to verify whether any of ϕ0, ϕ1 is isotropic over K/p. Return true
if Algorithm 1 returned true at least once, otherwise return false.

Remark 1. In order to find a uniformizer of a given prime in step (3) of the above
algorithm, one may use for example (Cohen, 1993, Algorithm 4.8.17) or (Guàrdia et al.,
2013, §3).

The correctness of the algorithm follows from (Lam, 2005, Proposition VI.1.9). Next,
we consider even primes. Recall (see e.g. (Lam, 2005, Definition V.3.17)) that the Hasse
invariant of a quadratic form ϕ = 〈a1, . . . , ad〉 at a prime p is:

sp(ϕ) :=
∏

1≤i<j≤d

(ai, aj)p, (1)

where (ai, aj)p denotes the p-adic Hilbert symbol. An algorithm for computing the Hilbert
symbol in a completion of a number field was recently presented in Voight (2013). We
use it to verify whether a quadratic form is isotropic over a dyadic completion of K.

Algorithm 3. Let d be an even prime of K and ϕ be a non-degenerate quadratic form
over K. This algorithm returns true if and only if ϕ⊗Kd is isotropic, otherwise it returns
false.

(1) If dimϕ ≤ 1, then return false and quit.
(2) If dimϕ = 2, then check whether discϕ is a square in Kd. If so, then return true

and quit, otherwise return false and quit.
(3) If dimϕ = 3, then proceed as follows:

(a) Compute the Hilbert symbol
(
−1,− det(ϕ)

)
d

by applying (Voight, 2013, Al-
gorithm 6.6).

(b) Use Eq. (1) and (Voight, 2013, Algorithm 6.6) to compute the Hasse invariant
sd(ϕ) of ϕ at d.

(c) If
(
−1,−det(ϕ)

)
d

= sd(ϕ), then return true otherwise return false
(4) If dimϕ = 4, then proceed as follows:

(a) Check if detϕ is a square in Kd. If not, then return true and quit.
(b) If detϕ ∈ (K×

d )2, then use Eq. (1) and (Voight, 2013, Algorithm 6.6) to
compute the Hasse invariant sd(ϕ) and the Hilbert symbol (−1,−1)d. Return
true if they are equal, return false if they are not.

(5) If dimϕ ≥ 5, then return true.

Proof of correctness. An unary form is never isotropic and a quintic or higher-dimen-
sional form over a dyadic field is always isotropic by the means of (Lam, 2005, Theo-
rem VI.2.12). This justifies steps (1) and (5). Next, it is well known that a binary form
is isotropic if and only if its determinant is a minus square, which proves step (2). On
the other hand, if the form has dimension three, then (Lam, 2005, Proposition V.3.22)
asserts that it is isotropic if and only if

(
−1,−det(ϕ)

)
d

= sd(ϕ).
This leaves us with quaternary forms. Now, (Lam, 2005, Corollary VI.2.15) asserts that

over a local field there is only one anisotropic form of dimension 4 and its determinant
is a square. Thus, if detϕ /∈ (K×

d )2, then ϕ ⊗Kd is necessarily isotropic. On the other
hand, if detϕ ∈ (K×

d )2, then (Lam, 2005, Proposition V.3.23) provides us with a needed
criterion for isotropy. 2
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After covering the finite primes we need a tool do deal with the infinite ones, as well.
Recall (see e.g. (Lam, 2005, p. 34)), that the signature of a non-degenerate quadratic
form ϕ with respect to an ordering β of the coefficient field is the difference between the
number of positive and negative entries of a diagonalization 〈a1, . . . , ad〉 of ϕ:

sgn β(ϕ) := ]{ai
∣∣ ai >β 0} − ]{ai

∣∣ ai <β 0}.

This number is known to be independent of a choice of an actual diagonalization of ϕ.
We now present an algorithm computing the signatures of the form with respect to all
orderings of K.

Algorithm 4. Let Q(ϑ) be a number field, specified by a minimal polynomial f ∈ Q[x]
of its generator ϑ. Given a non-degenerate diagonal quadratic form ϕ = 〈a1, . . . , ad〉 with
coefficients in OK , this algorithm computes the list of signatures of ϕ with respect to all
orderings of K.

(1) Use (Basu et al., 2003, Algorithm 10.64) to find a list (σ1, . . . , σr) of Thom encod-
ings of all real roots of x1 < · · · < xr of the generating polynomial f ;

(2) For every coefficient ai of ϕ proceed as follows:
(a) Let g0, . . . , gn−1 ∈ Q be the coordinates of ai with respect to the power basis
{1, ϑ, . . . , ϑn−1} (i.e. ai = g(ϑ) with g = g0x+ · · ·+ gn−1x

n−1 ∈ Q[x]).
(b) Use (Basu et al., 2003, Algorithm 10.67) to determine the signs:

si1 = sgn g(x1), . . . , sir = sgn g(xr)

of the polynomial g at the roots of f .
(3) Return the list of sums

(∑d
i=1 si1, . . . ,

∑d
i=1 sir

)
.

The correctness of the algorithm follows immediately from the correctness of (Basu
et al., 2003, Algorithms 10.64 and 10.67).

Remark 2. The above algorithm is used subsequently in step (3) of Algorithms 5, 7
and step (1) of Algorithm 9. As an alternative approach, one could use here an interval
arithmetic and evaluate the signs of

(
gj(ϑi)

)
by the means of (Mishra, 1993, §8.5, Sign

evaluation).

Remark 3. In algorithms 5, 7, 9, 10 and 11 below, we need to perform factorizations of
two kinds. The first one is to find all even primes of a given field K, i.e. to factor 2OK .
The other one is to find all primes dividing any of the coefficients of a given quadratic
form. The factorization of an ideal in a number field corresponds to the factorization of a
polynomial in a local field (see a comment at the end of the introduction). Algorithms for
the factorization of ideals are known and described in computational algebraic number
theory literature. One may refer for example to (Cohen, 1993, §6.2.5) and (Cohen, 2000,
2.3.22) or to a newer algorithm described in (Guàrdia et al., 2013, §2.2).

Now, we are finally ready to present the main algorithm of this section, that checks if
a form is isotropic over a given number field.

Algorithm 5. Given a non-degenerate diagonal quadratic form ϕ = 〈a1, . . . , ad〉 over K
with ai ∈ OK , this algorithm returns true if and only if ϕ is isotropic and false if it is
not.

(1) If dimϕ ≤ 1, then return false and quit.
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(2) If dimϕ = 2, then check if discϕ is a square in K. If so, then return false; if not,
return true.

(3) Use Algorithm 4 to compute the list (s1, . . . , sr) of the signatures of ϕ under all
real embeddings of K. If |sj | = dimϕ for any 1 ≤ j ≤ r, then return false and quit.

(4) Factor 2OK into prime ideals 2OK = de11 · · · denn in OK (see Remark 3). For each
di use Algorithm 3 to check if ϕ ⊗Kdi

is isotropic. If the algorithm returns false,
for at least one di, then return false and quit.

(5) Find all odd primes p of K dividing any of the coefficients ai of ϕ. For each such a
prime p call Algorithm 2. If the procedure returns false at least once, then return
false and quit.

(6) Return true.

Proof of correctness. The cases of unary and binary forms are trivial. For forms of higher
dimension we use the local-global principle (Lam, 2005, Principle VI.3.1). The form is
isotropic over K if and only if it is isotropic over all the completions of K. Now ϕ, having
dimension at least three, is trivially isotropic at all odd primes that do not divide any
of the coefficients. These are almost all primes of K. Thus, we are left with only finitely
many cases to check: finitely many real places treated in step (3), finitely many dyadic
places covered by step (4) and finitely many non-dyadic primes considered in step (5). 2

3. Hyperbolicity of a quadratic form

In this section we present an algorithm checking another fundamental property of
a quadratic form, namely whether it is hyperbolic (hence, a zero element in the Witt
group). The general idea is similar to the one adopted in the previous section. Again, we
treat the problem locally, separately for finite and real infinite primes of K.

Algorithm 6. Let p be a finite prime of a number field K (either even or odd). Given a
non-degenerate quadratic form ϕ, this algorithm returns true if the form ϕp := ϕ ⊗Kp

is hyperbolic and false otherwise.
(1) If dimϕ is odd, then return false and quit.
(2) Compute the discriminant discϕ and check if it is a square in the completion Kp.

If it is not a square, then return false and quit.
(3) Use Eq. (1) and (Voight, 2013, Algorithm 6.6) to compute the Hasse invariant sp(ϕ)

and the power (−1,−1)
m(m−1)/2
p of p-adic Hilbert symbol, where 2m = dimϕ.

Return true if they are equal, return false if they are not.

Proof of correctness. Take a form ϕ of an even dimension. If the discriminant discϕ is a
square in Kp and the Hasse invariant sp(ϕ) equals (−1,−1)

m(m−1)/2
p , then ϕ is isometric

to the hyperbolic space m〈1,−1〉 by (Lam, 2005, Proposition V.3.25). 2

Algorithm 7. Given a non-degenerate diagonal quadratic form ϕ = 〈a1, . . . , ad〉 over
K with ai ∈ OK , this algorithm returns true if and only if ϕ is hyperbolic, otherwise it
returns false.

(1) If dimϕ is odd, then return false and quit.
(2) Compute the discriminant discϕ. Check if discϕ is a square in K. If it is not, then

return false.
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(3) Use Algorithm 4 to compute the list (s1, . . . , sr) of the signatures of ϕ under all
real embeddings of K. If sj 6= 0 for any 1 ≤ j ≤ r, then return false and quit.

(4) Let L be the set consisting of all odd primes of K dividing any of the coefficients
ai of ϕ and of all even primes of K.

(5) Apply Algorithm 6 to every p ∈ L to check if ϕ ⊗ Kp is hyperbolic. If it returns
false, for at least one p, then return false and quit.

(6) Return true.

Proof of correctness. It is well known that the discriminant of a hyperbolic form is a
square and its dimension has to be even. Moreover, by the well known Weak Hasse
Principle, a quadratic form is hyperbolic over a number field if and only if it is hyperbolic
over every completion (finite or real infinite) of the field. Over the reals, the form is
hyperbolic, when its signature is null. This proves that the algorithm returns true for all
hyperbolic forms.

Conversely, suppose that the algorithm returns true for some non-degenerate form ϕ.
Thus, dimϕ is even, its discriminant is a square an it has a zero signature with respect
to every ordering of K.

Recall that a quadratic form over a non-dyadic local field Kp decomposes into a sum
ϕ ∼= ϕ1 ⊥ π · ϕ2, where π is a p-adic uniformizer and the coefficients of ϕ1, ϕ2 are p-adic
units. Recall (see e.g. (Lam, 2005, § VI.1)) that a map ϕ 7→ ϕ2 ⊗ (K/p) is a well defined
homomorphism of Witt groups (i.e. additive groups of Witt rings) WKp → W (K/p)
called the second residue homomorphism.

If the second residual homomorphisms with respect to all odd primes of K are null,
then the Witt class of ϕ sits in N(WOK) ∩ I2K by (Milnor and Husemoller, 1973,
Corollary IV.4.5), where N(WOK) denotes the nilradical of the Witt ring of OK and IK
is the fundamental ideal of the Witt ring WK. Clearly one needs to check only these
primes that divide any of the coefficients of ϕ as we do in step (4). Since our algorithm
returns true for the form ϕ, hence in particular ϕ⊗Kd is hyperbolic, and so cd(ϕ) = 1,
for every even prime d of K. Here

cd(ϕ) = (−1,−1)
m(m−1)/2
d sd(ϕ), m =

1

2
dimϕ

is the Hasse-Witt invariant of ϕ (c.f. (Lam, 2005, Proposition V.3.20). Now, the map
ϕ 7→

(
cd1

(ϕ), . . . , cdg−1
(ϕ)
)

is an isomorphism from N(WOK) ∩ I2K onto {±1}g−1,
where d1, . . . , dg are all the dyadic primes of K, by (Czoga la, 2001, Proposition 3.5). It
follows that the class of ϕ in WK is null, hence ϕ is a hyperbolic form. 2

4. Witt index of a quadratic form

Recall (see e.g. (Lam, 2005, Chapter i, §4)) that any non-degenerate quadratic form ϕ
can be uniquely (up to an isometry) decomposed as ϕ = ψ ⊥ H, where ψ is an anisotropic
form, called the anisotropic part of ϕ and H is hyperbolic. The number of hyperbolic
planes constituting H (i.e. half of the dimension of H) is called the Witt index of ϕ and
denoted ind (ϕ). In this section we present an algorithm that computes the dimension
of the anisotropic part of ϕ. It can be also used to deduce the Witt index since clearly
indϕ = 1/2 · (dimϕ− dimψ). Again, the problem is first solved locally (see Algorithm 8)
and then the local solution is used to derive the global one in Algorithm 9.
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Algorithm 8. Given a non-degenerate quadratic form ϕ over a number field K and a
finite prime p, this algorithm computes the dimension of the anisotropic part of ϕp :=
ϕ⊗Kp over the completion Kp.

(1) If dimϕ is even, proceed as follows:
(a) Use Algorithm 6 to check if ϕp is hyperbolic. If it is, then return 0 and quit.
(b) Check if discϕ is a square in Kp. If so, then return 4 and quit.
(c) Return 2.

(2) If dimϕ is odd, proceed as follows:
(a) Let d := dimϕ and take ψ := ϕ ⊥ 〈(−1)

d(d + 1)/2 · detϕ〉.
(b) Use Algorithm 6 to check if ψ ⊗Kp is hyperbolic. If it is, then return 1 and

quit.
(c) Return 3.

Proof of correctness. First assume that ϕ is an even-dimensional form, so ϕp ∈ IKp. If it
is not hyperbolic, then its class in the Witt ring WKp is not zero. Suppose that discϕ is
a square in Kp. It follows that ϕp ∈ I2Kp. But for a local field there is only one non-zero
element of I2Kp, namely the form ηp = 〈1, u, π, uπ〉, here u is a p-adic unit such that
Kp(
√
u) is the unique unramified extension of Kp (see (Lam, 2005, Corollary VI.2.15)). It

follows that the anisotropic part pf ϕp has dimension 4. Conversely, suppose that discϕ
is not a square in Kp. Therefore ϕp ∈ IKp \ I2Kp and so the anisotropic part of ϕp has
dimension 2.

Now assume that the dimension of ϕ is odd. Hence, the form ψ constructed in step (2a)
is an even dimensional form and its discriminant is a square in Kp. Consequently, the
Witt class of ψp := ψ ⊗ Kp sits in I2Kp. If ψp is hyperbolic then ψp

∼= d+1
2 〈1,−1〉,

hence ϕp ⊥ 〈1,−1〉 ∼= 〈c〉 ⊥ d+1
2 〈1,−1〉 for c = −(−1)

d(d + 1)/2 detϕ. This implies that the
anisotropic part of ϕp is unary. Conversely, suppose that ψp is not hyperbolic. As in the
first part of the proof, this leads to ψp = ηp in the Witt ring WKp. In particular, the
Witt classes of ϕp and 〈c, 1, u, π, uπ〉 are equal. But a quintic form over a local field is
necessarily isotropic and so it is similar to either ternary or unary form. We claim that
the unary case is impossible. Indeed, if

〈c, 1, u, π, uπ〉 ∼= 〈x〉 ⊥ 2〈1,−1〉,

then square classes of c and x are equal and the Witt cancellation theorem asserts that the
forms 〈1, u, π, uπ〉 and 2〈1,−1〉 are isometric over Kp contradicting (Lam, 2005, Corol-
lary VI.2.15). All in all, 〈c, 1, u, π, uπ〉 has a ternary anisotropic part and so has ϕp. 2

Algorithm 9. Given a non-degenerate quadratic form ϕ over a number field K, this
algorithm computes the dimension of the anisotropic part of ϕ.

(1) Use Algorithm 4 to compute the list S = (s1, . . . , sr) of the signatures of ϕ under
all real embeddings ρ1, . . . , ρr of K and take the maximum of the absolute values
of these signatures

N := max
1≤j≤r

|sgn sj |.

(2) If N ≥ 3, then return N and quit.
(3) Let L be the set consisting of all even primes of K and all odd primes dividing any

of the coefficients of ϕ.
(4) For every p ∈ L compute the dimension dp of the anisotropic part of ϕ⊗Kp using

Algorithm 8 and let M = max
{
dp
∣∣ p ∈ L}.
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(5) Return max{M,N}.

Proof of correctness. Let ψ be the anisotropic part of ϕ. Obviously

dimψ ≡ dimϕ ≡ |sgn ρj(ϕ)| (mod 2)

for any real embedding ρj of K. Take N to be the maximum of the absolute values of
the signatures of ϕ at all the real places. Now, ψ being anisotropic must be anisotropic
at some place of K, either finite or infinite. Therefore, clearly dimψ is the maximum of
the dimensions of the anisotropic parts of the localizations of ϕ at all the places of K.
However, if N ≥ 3, then we do not need to consider the finite primes at all. Indeed, if
dimψ ≥ 5, then (Lam, 2005, Theorem VI.2.2) implies that it must be an infinite, hence
real, place. Therefore in this case dimψ = N ≥ 5. Similarly, if N = 3 or N = 4, then
there is a real embedding ρj , with sgn ρj(ψ) = sgn ρj(ϕ) = N and so dimψ ≥ N . On the
other hand, it cannot be strictly greater, since otherwise ψ would have to be anisotropic
at some finite place contrary to the already mentioned (Lam, 2005, Theorem VI.2.2). 2

5. Level of a number field

In this section we present an algorithm determining an important invariant of a number
field, namely its level. Recall that a level of a field K, denoted s(K) is the minimal number
of terms needed to represent −1 as a sum of squares in K. We set s(K) =∞, when −1
cannot be expressed as a sum of squares (i.e. K is formally real).

Algorithm 10. Given a number field K = Q(ϑ) specified by its defining polynomial f ,
this algorithm computes the level s(K).

(1) If the degree of f is odd, then return ∞ and quit.
(2) Check if f has any real roots (see Remark 5 below). If so, then return ∞ and quit.
(3) Check if −1 is a square in K. If so, then return 1 and quit.
(4) Find the factorization of 2 in OK in the form of a list L consisting of triples

(dj , ej , fj), where dj is a prime of K dominating 2 with the ramification index ej
and the inertia degree fj .

(5) If for any j, both ej and fj are odd, then return 4 and quit.
(6) Return 2.

Proof of correctness. The real roots of f correspond to real embeddings of K. Hence, if
f has a real root (this happens trivially, when deg f is odd), then K is formally real and
consequently its level equals s(K) =∞. Next, if −1 is a square in K, then s(K) = 1. In
every other case, s(K) is either 2 or 4. In order to distinguish between these two cases,
(Lam, 2005, Proposition XI.2.11) comes in handy. It asserts that s(K) = 4 if and only
if there is 1 ≤ j ≤ k such that dj = ejfj is odd. Otherwise, s(K) = 2. This is precisely
what step (5) at the end of the algorithm is for. 2

6. Pythagoras number

Another field invariant, important from the point of view of the algebraic theory of
quadratic forms, is the Pythagoras number. It turns out that an algorithm computing
it is in principle the same as the one computing the level. Recall (see e.g. (Lam, 2005,

9



Chapter XI)) that a Pythagoras number P (K) of a field K is the smallest integer p ∈ N
such that every sum of squares in K is a sum of p squares. If no such an integer exists,
then P (K) := ∞. It is well known (see e.g. (Lam, 2005, Theorem XI.5.6)) that for any
arbitrary non-real field K (not necessarily a number field), its Pythagoras number P (K)
and its level s(K) differ by no more than 1, more precisely

P (K) = s(K) or P (K) = s(K) + 1. (2)

There are known examples of fields for which any of these two equalities holds. Neverthe-
less, for number fields the situation is much simpler. We claim that for number fields the
latter case is possible only when s(K) = 4. We expect that the following result is known
to the experts in the field, but since we are not aware of any easily available reference, it
easier just to prove it.

Proposition 4. Let K be a non-real number field, then

P (K) =


2, if s(K) = 1

3, if s(K) = 2

4, if s(K) = 4.

Proof. The quadratic closure of Q has infinite degree over Q, hence it cannot be contained
in any algebraic number field. It follows that P (K) 6= 1 for any number field K. On the
other hand, P (K) ≤ s(K) + 1 by Eq. (2). Therefore P (K) = 2 whenever s(K) = 1.

Now, assume that s(K) = 2, we need to show that P (K) = 3. Suppose otherwise,
i.e. suppose that P (K) = s(K) = 2. This means that for every prime p of K and every
element a ∈ K̇, the form 〈a, 1, 1〉 ⊗Kp is isotropic. Fix first an odd prime p and take a
to be its uniformizer. Then 〈a, 1, 1〉⊗Kp is isotropic if and only if 〈1, 1〉⊗Kp is isotropic
(by (Lam, 2005, Proposition VI.1.9)) and so −1 is a square in Kp. Now take an even

prime d. By our assumption, for every a ∈ K̇, the form ϕd = 〈a, 1, 1〉⊗Kd is isotropic. It
follows form (Lam, 2005, Proposition V.3.22) that the Hasse invariant s(ϕd) of ϕd equals
(−1,−detϕd)d = (−1,−1)d. Now the Hasse invariant of ϕd is

s(ϕd) = (a, 1)d(a, 1)d(1, 1)d = 1.

Thus, (−1,−1)d = 1 for every a ∈ K̇. By the non-degeneracy of the Hilbert symbol (see
e.g. (Lam, 2005, Theorem VI.2.16)), this means that −1 is a square in Kd. All in all, we
showed that −1 is a square in every completion of K, but then s(K) = 1 contrary to our
assumption s(K) = 2. This proves the claim P (K) = 3.

Finally assume that s(K) = 4. A form 〈a, 1, 1, 1, 1〉 is isotropic over K for every a ∈ K̇
by (Lam, 2005, Corollary VI.3.5). Hence, every a ∈ K̇ is a sum of four squares and
consequently P (K) = 4. 2

Algorithm 11. Given a number field K = Q(ϑ) specified by its defining polynomial f ,
this algorithm computes the Pythagoras number P (K).

(1) Check if −1 is a square in K. If so, then return P (K) = 2 and quit.
(2) Find the factorization of 2 in OK in the form of a list L consisting of triples

(dj , ej , fj), where dj is a prime of K dominating 2 with the ramification index ej
and the inertia degree fj .

(3) If for any j, both ej and fj are odd, then return P (K) = 4 and quit.

10



(4) Return 3.

Proof of correctness. Fix a number field K. If K is formally real, then (Lam, 2005,

Example XI.5.9) asserts that P (K) = 4 iff there is an even prime dj such that (Kdj : Q2)

is odd, otherwise P (K) = 3. Now, (Kdj
: Q2) = ejfj and so the above-mentioned

condition is equivalent to the test in step (3). On the other hand, if K is not real, then the

correctness of the algorithm follows immediately from (Lam, 2005, Proposition XI.2.11)

and Proposition 4. 2

7. Witt equivalence

An important problem in the algebraic theory of quadratic forms is to find criteria

for an existence of an isomorphism between the Witt rings of two fields. Such fields are

then called Witt equivalent if the above-mentioned isomorphism exists. In this section we

present an algorithm computing the complete set of Witt equivalence invariants of a given

number fields. In particular, comparing the results returned by the algorithm one can

check whether two number fields are Witt equivalent or not. It was proved in Szymiczek

(1991) that the following invariants fully determine the Witt class of a number field K:

• d = (K : Q) the degree of K over Q;

• r the number of real embeddings of K;

• s = s(K) the level of K;

• k the number of dyadic primes of K;

• for each dyadic prime dj with 1 ≤ j ≤ k, the pair (dj , sj) consisting of a local degree

dj = (Kdj : Q2) and the local level sj = s(Kdj ).

We claim that all these invariants are computable.

Let again K = Q(ϑ) be a fixed number field specified by the minimal polynomial

f ∈ Q[x] of the generator ϑ. The first two invariants d and r are trivially computable.

The degree d is just the degree deg f of the defining polynomial. In order to compute r

one simply counts the number of real roots of f (see Remark 5 below). In the previous

section we showed how to compute the level of K. This leaves us only with the local

invariants. Assume that the principal ideal 2OK factors into prime ideals as:

2OK = de11 · · · d
ek
k

and let fj = (OK/dj : F2) be the inertia degree of dj (1 ≤ j ≤ k). The local degree

dj = (Kdj : Q2) is the product dj = ejfj . What we need is to determine the local level

sj = s(Kdj
). Fix an even prime d = dj .

Algorithm 12. Let d be an even prime of a number field K, e be the ramification index

and f the inertia degree of d. This algorithm computes the level s(Kd) of the dyadic

completion Kd of K.

(1) Check if −1 is a square in K, if so then return 1 and quit.

(2) If both e and f are odd, then return 4.

(3) If e is odd but f is even, then return 2.

(4) If e is even, check whether −1 is a square in Kd, if so then return 1, if not then

return 2.

11



Proof of correctness. It is clear that if −1 is a square already in K, then it is also a
square in Kd and so s(Kd) = 1. This justifies the first step. Suppose that e is odd. Let
Q2(η) be the (unique) maximal unramified extension of Q2 contained in Kd. Since the
quadratic extension Q2(i)/Q2 is totally ramified (see e.g. (Narkiewicz, 1990, Ch. V §2)),
it follows that i /∈ Q2(η). Now,

(
Q2(η) : Q2

)
= f and (Kd : Q2) = ef . Hence the relative

degree
(
Kd : Q2(η)

)
equals e and so is odd. In particular i /∈ Kd and so s(Kd) ≥ 2.

Finally (Lam, 2005, Example XI.2.4) asserts that s(Kd) = 4 if and only if (Kd : Q2) is
odd.

Conversely, assume that e is even and so is the degree (Kd : Q2). It follows from
(Lam, 2005, Example XI.2.4) that s(Kd) ≤ 2. It equals one if and only if −1 is a square
in Kd. 2

Having all the necessary ingredients ready we may now present the last algorithm of
this paper that construct the complete set of Witt equivalence invariants.

Algorithm 13. If K = Q(ϑ) is a number field specified (up to an isomorphism) by the
minimal polynomial f ∈ Q[t] of its generator, then this algorithm computes the complete
set of Witt equivalence invariants of K. In particular, two fields are Witt equivalent if
and only if the outputs of the algorithm are the same for both fields.

(1) Let d = deg f .
(2) Compute the number r of real roots of f .
(3) Use Algorithm 10 to compute the level s = s(K).
(4) Let L =

{
(dj , ej , fj)

}
be the list of all even primes of K together with their rami-

fication indices and inertia degrees.
(5) Take an empty list S.
(6) For each even prime dj ∈ L let dj = ejfj . Use Algorithm 12 to compute the local

level sj = s(Kdj ). Append the pair (dj , sj) to the list S.
(7) Sort the list S lexicographically.
(8) Return (d, r, s, k,S).

Remark 5. There is a number of known algorithms which can be used to count real
roots of f in step (2). They vary from methods based on Sturm’s and Hermite’s theorems
(see e.g. (Basu et al., 2003, Theorems 2.56, 4.13 and also Algorithm 9.28)) to those based
on Vincent’s theorem (see Akritas and Strzeboński (2005); Akritas and Vigklas (2010)).
Of course, any algorithm that counts real roots can also be used to check if a polynomial
has at least one real root, which is needed in step (2) of Algorithm 10. Honestly, the
authors of this paper are not aware of any method answering the latter question, that
would be significantly simpler than a general root counting algorithm.

8. Example applications

In order to verify the correctness of the algorithm as well as to allow experimentation,
we implemented the presented algorithm in a computer algebra system Sage (see The
Sage Developers (2015)). The code is available from the first author’s home page at
http://z2.math.us.edu.pl/perry/papersen.html. A formula for the number of Witt
classes of number fields of a fixed degree was developed in Szymiczek (1991). Nevertheless,
actual representatives for these classes were only found for quadratic and cubic fields in
Szymiczek (1991) and for quartic fields in Jakubec and Marko (1992). The first test for

12



usability of our implementation was to find new representatives of all classes of cubic
and quartic fields. Next, we found the representatives of all 36 classes of quintic fields
and all 95 classes of sextic fields. These two results are completely new. The findings are
gathered in tables A.1–A.4. For those classes, for which we found more than one field,
the corresponding table contains a representative with the smallest absolute value of the
discriminant.

The method used here was a combination of an ‘aided random search’ (explained bel-
low) and (following a suggestion of the reviewer) a search of the data base of number
fields in The LMFDB Collaboration (2016). In case of quartic fields we were able to signif-
icantly improve the known results, as the largest discriminant in our case is 122 825 and
the largest absolute value of a coefficient of a defining polynomial is 86 (vs. respectively
210 668 284 and 208 042 in Jakubec and Marko (1992)).

Some of Witt classes are extremely rare and virtually impossible to be found by a blind
random search. These are mostly the classes of fields were 2 splits completely. In order
to find the representatives of these classes one may proceed as follows. Denote by |a|2 :=

2−ord 2a the canonical dyadic norm and let ‖(a0, . . . , ad)‖2 := max
{
|a0|2, . . . , |ad|d

}
be

the associated norm of the vector space (Q2)d+1. Take a polynomial f with d distinct
integral roots. Write it as a dot product f = V ·X, where V is the vector of coefficients
of f and X = (1, x, x2, . . . , xd)T are the powers of x. Take now some random vector W
and let f̃ = (V + W ) · X. If the norm ‖W‖2 of W is small enough, then f̃ still has d
distinct roots in Q2 but there is a good chance that it is irreducible over Q. It follows
that 2 splits completely in the field K = Q[x]/〈f̃〉, as desired.

8.1. Conner’s Problem

A number field K is said to satisfy Conner’s Level Condition (CLC for short) if
s(K) = 2 but s(Kd) = 1 for every even prime d of K. Jakubec et al. (1995, 1997) proved
that if a number field satisfies CLC, then its class number is even.

Since CLC is expressed in terms of Witt equivalence invariants, thus one may treat
it as a property of Witt equivalence classes. In particular, if a Witt equivalence class
satisfies CLC, then every field in this class has an even class number. P.E. Conner asked
for an inverse of this statement (c.f. Szymiczek (2000)):

Suppose a Witt equivalence class does not satisfy CLC.
Does it contain a field with an odd class number?

An affirmative answer to Conner’s question was found in Szymiczek (1991) for quadratic
and cubic fields and in Jakubec et al. (1995, 1997) for quartic fields.

Observe that a field of an odd degree cannot satisfy CLC (since its level is infinite).
Using The LMFDB Collaboration (2016) one checks that all fields in Tables A.1 and A.3
have trivial class groups.

As for quartic and sextic fields, there are precisely five Witt equivalence classes for
which CLC holds. These are classes: 4.3, 4.6, 6.4, 6.7 and 6.12. Once we omit them, all
other representatives listed in tables A.2 and A.4, except 4.21 (which has class number 2),
have odd class numbers. In fact, all these fields have class numbers not only odd but
actually equal one, with only two exceptions. The exceptions are the representatives of
Witt equivalence classes: 6.14 and 6.18. Their class numbers equal respectively: 9 and 5.
Nevertheless, it is possible to find representatives of these three “exceptional” classes
with trivial class groups but with higher absolute values of discriminants (recall that the
tables contain representatives with smallest discriminant we were able to find):
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class defining polynomial LMFDB label

4.21 x4 − 2x3 − 13x2 + 14x+ 32 4.4.164441.1

6.14 x6 − 3x5 − 21x4 − x3 + 228x2 + 532x+ 448 6.0.827250487.1

6.18 x6 + 2x4 + x2 + 28 6.0.12122992.1

In all cases, the class numbers where either obtained from The LMFDB Collaboration
(2016) or computed in Sage using GP/Pari back-end (see The PARI Group (2015)),
except for classes 6.28, 6.50–6.52, 6.54, 6.74–6.78. The class numbers of these ten fields
were computed using Magma back-end (see Bosma et al. (1997)) under assumption of
Generalized Riemann Hypothesis.

Summarizing the above discussion, this proves:

Theorem 6. The Conner’s question has an affirmative answer for fields of degree < 7.
What is more, every Witt equivalence class of number fields of degree < 7 that do not
satisfy CLC contains a field with a trivial class group.
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A. Tables of representatives of Witt classes

Table A.1: Witt classes of cubic fields

No. defining polynomial LMFDB r dyadic degrees and levels

3.1. x3 − x− 8 3.1.431.1 1
{

(1, 4), (1, 4), (1, 4)
}

3.2. x3 + 2x− 1 3.1.59.1 1
{

(1, 4), (2, 1)
}

3.3. x3 − 3x− 4 3.1.324.1 1
{

(1, 4), (2, 2)
}

3.4. x3 − x2 + 1 3.1.23.1 1
{

(3, 4)
}

3.5. x3 − x2 − 10x+ 8 3.3.961.1 3
{

(1, 4), (1, 4), (1, 4)
}

3.6. x3 − 4x− 1 3.3.229.1 3
{

(1, 4), (2, 1)
}

3.7. x3 − x2 − 4x+ 2 3.3.316.1 3
{

(1, 4), (2, 2)
}

3.8. x3 − x2 − 2x+ 1 3.3.49.1 3
{

(3, 4)
}

Table A.2: Witt classes of quartic fields

No. defining polynomial LMFDB r s dyadic degrees and levels

4.1. x4 − 2x3 − x2 + 2x+ 2 4.0.656.1 0 1
{

(2, 1), (2, 1)
}

4.2. x4 − x2 + 1 4.0.144.1 0 1
{

(4, 1)
}

4.3. x4 + 3x2 − 14x+ 18 4.0.44688.1 0 2
{

(2, 1), (2, 1)
}

4.4. x4 − x3 + x2 + 4x+ 2 4.0.2156.1 0 2
{

(2, 1), (2, 2)
}

4.5. x4 − x3 + 2x2 + x+ 1 4.0.225.1 0 2
{

(2, 2), (2, 2)
}

4.6. x4 − 5x2 + 25 4.0.3600.3 0 2
{

(4, 1)
}

4.7. x4 − x3 − x2 + x+ 1 4.0.117.1 0 2
{

(4, 2)
}

4.8. x4 − 2x3 − x2 + 2x+ 8 4.0.6713.1 0 4
{

(1, 4), (1, 4), (1, 4), (1, 4)
}

4.9. x4 − x3 + 6x2 − 2x+ 4 4.0.4508.1 0 4
{

(1, 4), (1, 4), (2, 1)
}

4.10. x4 − 2x3 + 2x2 − x+ 2 4.0.1421.1 0 4
{

(1, 4), (1, 4), (2, 2)
}

4.11. x4 + x2 − x+ 1 4.0.257.1 0 4
{

(1, 4), (3, 4)
}

4.12. x4 − 2x3 − 5x2 + 6x− 8 4.2.29767.1 2 ∞
{

(1, 4), (1, 4), (1, 4), (1, 4)
}

4.13. x4 − 5x2 − 4 4.2.6724.1 2 ∞
{

(1, 4), (1, 4), (2, 1)
}

4.14. x4 − 2x2 − x− 2 4.2.4027.1 2 ∞
{

(1, 4), (1, 4), (2, 2)
}

Continued on the next page
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Table A.2: Witt classes of quartic fields (continued)

No. defining polynomial LMFDB r s dyadic degrees and levels

4.15. x4 − 2x3 + x2 − x− 1 4.2.751.1 2 ∞
{

(1, 4), (3, 4)
}

4.16. x4 − 2x3 − 5x2 − 2x+ 2 4.2.27632.1 2 ∞
{

(2, 1), (2, 1)
}

4.17. x4 − x3 − 3x2 + 2 4.2.1588.1 2 ∞
{

(2, 1), (2, 2)
}

4.18. x4 − x3 − 3x− 1 4.2.775.1 2 ∞
{

(2, 2), (2, 2)
}

4.19. x4 + x2 − 6x+ 1 4.2.3312.2 2 ∞
{

(4, 1)
}

4.20. x4 − x3 + 2x− 1 4.2.275.1 2 ∞
{

(4, 2)
}

4.21. x4 − x3 − 23x2 + x+ 86 4.4.122825.1 4 ∞
{

(1, 4), (1, 4), (1, 4), (1, 4)
}

4.22. x4−x3−15x2 +31x−8 4.4.54332.1 4 ∞
{

(1, 4), (1, 4), (2, 1)
}

4.23. x4 − 2x3 − 4x2 + 5x+ 2 4.4.15317.1 4 ∞
{

(1, 4), (1, 4), (2, 2)
}

4.24. x4 − x3 − 4x2 + x+ 2 4.4.2777.1 4 ∞
{

(1, 4), (3, 4)
}

4.25. x4 − 2x3 − 5x2 + 6x+ 2 4.4.44688.2 4 ∞
{

(2, 1), (2, 1)
}

4.26. x4 − 5x2 + 2 4.4.9248.1 4 ∞
{

(2, 1), (2, 2)
}

4.27. x4 − x3 − 5x2 + 2x+ 4 4.4.2225.1 4 ∞
{

(2, 2), (2, 2)
}

4.28. x4 − 2x3 − 7x2 + 8x+ 1 4.4.3600.1 4 ∞
{

(4, 1)
}

4.29. x4 − x3 − 3x2 + x+ 1 4.4.725.1 4 ∞
{

(4, 2)
}
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