
Algorithms for quadratic forms

Przemysªaw Koprowski

Instytut Matematyki
Uniwersytet �l�aski
ul. Bankowa 14

PL-40-007 Katowice, Poland

Abstract

We present algorithms for square classes, quadratic forms and Witt classes of quadratic forms

over the �eld of rational functions of one variable over the reals. The algorithms are capable

of: �nding the unique representative of a square class, deciding if a given function is a square

or a sum of squares and deciding if a quadratic form is isotropic or hyperbolic. Moreover we

propose a representation for Witt classes of quadratic forms. With this representation one can

manipulate Witt classes without operating directly on their coe�cients. We present algorithms

both for computing this representation and manipulating Witt classes.

Key words: Algorithms for square classes of rational functions, algorithms for quadratic forms,

algorithms for Witt classes

2000 MSC: 68W30, 11E81, 11E10, 13P05, 12Y05

1. Introduction

The algebraic theory of quadratic forms is nowadays rich and well developed. The main
results of the theory may be found in (Lam, 2005; Scharlau, 1985; Szymiczek, 1997). Nev-
ertheless, little has been done so far to develop algorithms dealing with central questions
of this theory. Existing papers are mainly focused on forms over rational numbers (see
e.g. Cremona and Rusin, 2003; Simon, 2005b,a) only recently we have been witnessing
the advent of paper dealing with forms over number �elds (e.g. Fukshansky, 2006). There
are also a few papers dealing with sums of squares of polynomials (see e.g. de Loera and
Santos, 1996; Powers and Wörmann, 1998; Schweighofer, 2002; Reznick, 2005), which is
a problem very closely related to the one discussed here. The main purpose of this paper
is to present algorithms for quadratic forms over the �eld R(t) of rational functions of
one variable over the reals.

Email address: pkoprowski@member.ams.org (Przemysªaw Koprowski).

Preprint submitted to Elsevier Science 17 October 2007

This paper is organized as follows. In Section 3 we deal with the group R(t)∗/R(t)∗2 of
square classes of rational functions. For a given non-zero rational function f/g we com-

pute the unique representative ±h of the square class of f/g, with h a monic square-free

polynomial (see Algorithm 1). Other algorithms of this section compute the represen-

tative of the product of two square classes (see Algorithm 3), check if a given rational

function is a square (Algorithm 2) or a sum of squares (Algorithm 4). The algorithms of

Section 3 are subsequently used in Section 4. Here we deal with quadratic form per se.

We present two algorithms. Algorithms 6 and 7 decide respectively if a given quadratic

form is isotropic or hyperbolic. We discuss also the problem of �nding the anisotropic

part of a given isotropic form.

Next, in Section 5 we deal with Witt classes of quadratic forms. Recall that two

quadratic forms ϕ, ψ are said to be similar if there exist hyperbolic forms H1, H2 such

that ϕ ⊥ H1 is isometric to ψ ⊥ H2. The equivalence classes induced by this relation

are called Witt classes of quadratic forms. It is well known that the Witt classes, with

operations induced by an orthogonal sum and a tensor product, form a ring. This ring is

called the Witt ring of R(t) and denoted WR(t). We propose here a representation (see

De�nition 7) for Witt classes that admits a simple manipulation of these classes without

time-consuming calculation on the rational functions. In particular we show how to �nd

a representation of a given quadratic form (see Algorithm 5) and how to compute the

sum and the product of two Witt classes having only their representations (Algorithms

8 and 9). We tackle also the problem of reconstructing a representative of a given Witt

class.

The algorithms presented in this paper require that the real numbers used as the

coe�cients of the polynomials are discretely represented (e.g. they are rationals or real

algebraic numbers). Moreover, all the algorithms, except Algorithms 8 and 9, remain

valid once the �eld R is substituted by an arbitrary real-closed �eld R. At the end of

the paper we comment on how to alter the two remaining algorithms to suit this more

general context. For reader's convenience we gather all the algorithms in the very last

section.

2. Notation

We adopt a standard notation used in the �eld of quadratic forms as it exists in

(Lam, 2005; Scharlau, 1985; Szymiczek, 1997). We use Latin letters f, g, h to denote

both: polynomials and (by abuse of notation) their square classes. Next, the symbol

〈f1, . . . , fN 〉means a quadratic form f1X
2
1 +· · ·+fNX

2
N de�ned over R(t). The orthogonal

sum and the tensor product of quadratic forms are denoted respectively by ⊥ and ⊗. For
a quadratic form ϕ = 〈a1, . . . , aN 〉 we denote by sgnϕ the signature of the form:

sgnϕ :=
N∑

i=1

sgn(ai)

Finally, the leading coe�cient of a polynomial f is denoted lc(f).

2

3. Algorithms for the square-class group of R(t)

Before we proceed to discuss algorithms for quadratic forms, we �rst present algorithms
dealing with their �atomic components�, namely the square classes of R(t). Take a non-
zero rational function f/g. Its square class (f/g) ·R(t)∗2 contains the unique square-free
polynomial h ∈ R[t] with the leading coe�cient equal to either 1 or −1. By the analogy
to monic polynomials, we shall call such polynomials semi-monic. Our �rst task is to
determine h. This is trivial if we can factor f , g into linear terms. Unfortunately, it is
not possible in general. Instead we may use square-free factorization (see e.g. Geddes
et al., 1992, Chapter 8.2). Recall that a square-free factorization algorithm for a given
polynomial f of degree n returns square-free monic polynomials h1, . . . , hn such that the
roots of hi are precisely the roots of f of multiplicity i. In particular

f = lc(f) · h1 · h2
2 · · ·hn

n.

We have an immediate consequence:

Corollary 1. Let f/g ∈ R(t) be a non-zero rational function. Take f̂ = 1
lc(fg) (fg) and let

h1, . . . , hn be the output of the square-free factorization of f̂ . Then the unique semi-monic
representative of the square class of f/g is

h = sgn(lc(fg)) · h1 · h3 · · ·hn′ ,

where n′ is the biggest odd number less or equal to n.
We may write down two more observations:

Remark 2. A rational function f/g is a square in R(t) if and only if the unique semi-
monic representative h of its square class returned by Algorithm 1 equals 1.

Remark 3. If f, g are the semi-monic square-free representatives of two square classes,

then the semi-monic square-free representative of their product is (fg)/
(
gcd(f, g)

)2
.

For reader's convenience we explicitly write down Algorithms 1�3 implied by the above
observations. Another natural question is whether a given rational function is a sum of
squares in R(t). In other word, if the form 〈−f, 1, 1〉 is isotropic. We deal with the problem
of isotropy in the next section, however, in this particular situation, one doesn't actually
need to use the general algorithm presented there. In fact much simpler solution follows
from the Artin's Theorem (see e.g Lam, 2005, Theorem VIII.1.12): f is a sum of squares
if and only if it is non-negative everywhere. Since we may assume that f is semi-monic
square-free, this condition boils down to checking if the leading coe�cient of f equals one
and f has no real roots. The last condition can be checked using the Sturm sequence (see
Basu et al., 2003, Algorithm 9.28). The above discussion is summarized in Algorithm 4.

4. Algorithms for quadratic forms

We now turn our attention to quadratic forms themselves. Take a quadratic form ϕ
over R(t). The Gram-Schmidt algorithm for orthonormalization of a quadratic form is
well known. Thus, we may assume that ϕ = 〈f1, . . . , fN 〉 is already in a diagonal form
and f1, . . . , fN are semi-monic square free. The two most natural questions are: Is ϕ
isotropic? Is ϕ hyperbolic?

3

First we address the question of isotropy. Unary forms cannot be isotropic. A binary
form 〈f, g〉 is isotropic if and only if it is hyperbolic if and only if −fg is a square � we
have already presented Algorithm 2 to decide this. This leaves us with the problem of
deciding when a form of dimension N ≥ 3 is isotropic. To this end we utilize a version
of Strong Hasse Principle known as Witt theorem � see (Witt, 1998, Satz 22, page 14)
or (Knebusch, 1976, Theorem 9.4). The direct consequence of it is the following corollary.

Corollary 4. Let ϕ = 〈f1, . . . , fN 〉 be a quadratic form over R(t) with N ≥ 3. Assume

that all fi (1 ≤ i ≤ N) are semi-monic square-free. Let further p1 < · · · < ps be all the

roots of all fi's and denote p0 := −∞, ps+1 := +∞. For every 0 ≤ i ≤ s �x qi ∈ (pi, pi+1).
Finally take

l := max
{
| sgnϕ(qi)| : 0 ≤ i ≤ s

}
.

Then ϕ is isotropic if and only if l < N .

Thus the only thing, we need to know in order to construct an algorithm, deciding
if a given quadratic form is isotropic, is a method of �nding the signs of fi's in some
intermediate points between their roots. Fortunately, the solution is well known (see
e.g. Basu et al., 2003, Chapter 10). Let D = f1 · · · fN denote the determinant of ϕ and
d = D/ gcd(D,D′) be the square-free polynomial with all the same roots as D, then:
• all the roots of d are precisely p1, . . . , ps and each is of the multiplicity one;
• the derivative d′ has a root in each interval (pi, pi+1) for 1 ≤ i < s.
Now the algorithm UnivariateSignDetermination (see Basu et al., 2003, Algorithm
10.61) determines the sign of each fi in every root of d′. The two remaining intervals,
namely (p0, p1) and (ps, ps+1), are the neighborhoods of in�nity. Hence, one needs only
to examine the signs of the leading coe�cients of fi's. All in all, we have just proved the
correctness of Algorithms 5 and 6. Algorithm 5 returns more information than needed
by Algorithm 6 (namely the variables d,D, n in the notion of the algorithm). Its usage
will become clear in the next section.

We may now present an algorithm deciding if a given form is hyperbolic or equivalently
if two forms belong to the same Witt class (see below). Here a version of Weak Hasse
Principle (see e.g. Knebusch, 1976, Theorem 9.5) due again to Witt (see Witt, 1998, Satz
23, page 14) provides us with the following criterion:

Proposition 5. Let ϕ = 〈f1, . . . , fN 〉 (N even) be a quadratic form over R(t). Assume

that all fi (1 ≤ i ≤ N) are semi-monic square-free. Let further p1 < · · · < ps be all the

roots of all fi's and denote p0 := −∞, ps+1 := +∞. For every 0 ≤ i ≤ s �x qi ∈ (pi, pi+1).
Then ϕ is hyperbolic if and only if sgn(qi) = 0 for every 0 ≤ i ≤ s and (−1)N/2f1 · · · fN

is a square.

The proof follows immediately from the Witt theorem (see Witt, 1998, Satz 23, page
14). Algorithm 7 is thus similar to the previous one.

There are two interesting related problems. If a given form ϕ is isotropic, how to
�nd the anisotropic part of ϕ? How to �nd an isotropic vector? The following example
shows that in general it is impossible to answer the �rst question without knowing the
roots of the polynomials involved. Thus, we cannot hope to �nd an algorithm solving
the �rst problem by manipulating only the coe�cients of the polynomials (on the other
hand, it is possible to �nd the anisotropic part in terms of roots of the determinant, see
Algorithm 10).

4

Example 6. Take a monic unsolvable polynomial f ∈ Q[t] (i.e. the roots of f cannot be
expressed by radicals) having only real roots p1 < p2 < · · · < pn (necessarily n ≥ 5) and
let q ∈ (p1, p2) be a rational number. For example

f = t5 − 5t3 + 4t− 1 and q = −3
2
.

Consider the form ϕ de�ned by

ϕ = 〈1, t− q, f,−(t− q) · f〉.

The form is isotropic. Compute the local signatures

(−∞, p1) (p1, q) (q, p2) (p2, p3) (p3, p4) (p4, p5) (p5,∞)

1 + + + + + + +

t− q − − + + + + +

f − + + − + − +

−(t− q) · f − + − + − + −

ϕ −2 2 2 2 2 2 2

It is clear that 〈t− p1, t− p2〉 is the anisotropic part of ϕ, but p1 cannot be expressed by
radicals! We claim tat for any two square-free polynomials g, h ∈ R[t], if the form 〈g, h〉
is isometric to 〈t−p1, t−p1〉, then the coe�cients of g, h cannot be expressed in terms of
radicals, either. Indeed, comparing signatures, we see that both g, h must change signs
precisely at p1 and nowhere else. Thus, p1 is the only real root of both of them. Now,
since, all the roots of f are real, we have

t− p1 = gcd(f, g).

Therefore, the coe�cients of g cannot be expressed by radicals.
This example does not preclude the possibility that an algorithmic solution of the

second problem exists. However, the two problems seems to be interrelated and so solving
the second one may be highly nontrivial.

5. Algorithms for the Witt ring of R(t)

We are now ready to go a step further and consider Witt classes of quadratic forms.
Since every non-zero Witt class contains the unique (up to isometry) anisotropic form,
the most convenient way of representing a Witt class would be to store this anisotropic
representative. This boils down to �nding the anisotropic part of a given form. The exam-
ple at the end of the previous section shows, however, that this cannot be done without
knowing the roots of the polynomials in the diagonalization. Thus, we propose here a
representation which is easier to manipulate than storing the whole diagonalization of
some (possibly isotropic) representative. The mentioned example shows that this repre-
sentation is not worse than storing some representative in the sense that in both cases,
to reconstruct the anisotropic representative, one must work with the roots of polyno-
mials involved, not just their coe�cients. Algorithm 5 discussed in the previous section
provides us with the following convenient representation for the Witt class of a quadratic
form.

5

De�nition 7. Given a quadratic form ϕ = 〈f1, . . . , fN 〉 over R(t), where f1, . . . , fN are

semi-monic square-free, we de�ne the representation for the Witt class of ϕ to be a tuple

(d,D, n, S) consisting of:

• the monic square-free polynomial d having roots precisely at the roots of fi's:∧
p∈R

(
d(p) = 0 ⇐⇒

∨
1≤i≤N

fi(p) = 0
)
;

• the semi-monic square-free representative D of the signed determinant of ϕ;

• the remainder n = N (mod 4) of the dimension of ϕ modulo 4;
• the �nite sequence S = (σ0, . . . , σs) of the signatures of ϕ in intervals between consecu-

tive roots of d (with a convention that σ0 is the signature of ϕ in a right neighborhood

of −∞ and σs is the signature of ϕ in a left neighborhood of +∞).

We show that this representation admits fast and simple addition and multiplica-

tion of Witt classes. First, however, let us explicitly formulate the following immediate

consequence of Weak Hasse Principle (see Witt, 1998, Satz 23, page 14):

Proposition 8. A tuple (d,D, n, S) represents the zero element of the Witt ring WR(t)
(i.e. the class of a hyperbolic form) if and only if S = (0, 0, . . . , 0) and D = 1. If this is

the case then also n is even.

In particular the representation of a given class is not unique.

Proposition 9. Let ϕ = 〈f1, . . . , fN 〉, ψ = 〈g1, . . . , gM 〉 be two quadratic forms and let

(d1, D1, n1, S1) and (d2, D2, n2, S2) denote representations of their Witt classes. De�ne

(d,D, n, S) as follows:

(a) d := (d1d2)/ gcd
(
d1d2, (d1d2)′

)
;

(b) D is the semi-monic square-free representative of (−1)n1n2D1D2;

(c) n := (n1 + n2) (mod 4);
(d) S = (σ0, . . . , σs) is such that in every sample point qi the signature σi is the sum

of the corresponding signatures from S1 and S2.

Then (d,D, n, S) represents the Witt class of ϕ ⊥ ψ.

Proof. The points (a) and (c) are straightforward. It is also obvious that at every point

q, not being a root of any fi nor gi, the signature of ϕ ⊥ ψ = 〈f1, . . . , fN , g1, . . . , gM 〉
is the sum of signatures of ϕ and ψ at q. Hence, the only thing left is to prove the

formula in (b). Denote D̂ := f1 · · · fN · g1 · · · gM the determinant of ϕ ⊥ ψ. Likewise,

let D̂1 := f1 · · · fN and D̂2 := g1 · · · gM be the determinants of ϕ and ψ respectively.

Therefore we have D̂ = D̂1 · D̂2. Compute the signed determinants:

D = (−1)
1
2 (n1+n2)(n1+n2−1)D̂1D̂2, D1 = (−1)

1
2n1(n1−1)D̂1, D1 = (−1)

1
2n2(n2−1)D̂2.

Substituting D̂1, D̂2 into the the �rst equation we arrive at

D = (−1)
1
2 (n1+n2)(n1+n2−1) · (−1)−

1
2n1(n1−1)D1 · (−1)−

1
2n2(n2−1)D2

= (−1)n1n2D1D2 2

In a similar fashion we may represent the Witt class of the tensor product of two

quadratic forms.

6

Proposition 10. Let ϕ = 〈f1, . . . , fN 〉, ψ = 〈g1, . . . , gM 〉 be two quadratic forms and let
(d1, D1, n1, S1) and (d2, D2, n2, S2) denote representations of their Witt classes. De�ne
(d,D, n, S) as follows:
(a) d := (d1d2)/ gcd

(
d1d2, (d1d2)′

)
;

(b) D is the semi-monic square-free representative of:
• 1 if (n1, n2) ∈

{
(0, 0), (2, 2)

}
;

• D1 if (n1, n2) ∈
{
(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)

}
;

• D2 if (n1, n2) ∈
{
(1, 0), (2, 0), (3, 0), (1, 2), (3, 2)

}
;

• D1D2 if (n1, n2) ∈
{
(1, 1), (1, 3), (3, 1), (3, 3)

}
;

(c) n := (n1 · n2) (mod 4);
(d) S = (σ0, . . . , σs) is such that in every sample point qi the signature σi is the product

of the corresponding signatures from S1 and S2.
Then (d,D, n, S) represents the Witt class of ϕ⊗ ψ.

The proof is fully analogous to the previous one. From this two propositions follow
the algorithms for computing the sum and the product of two Witt classes. Assume that
(d1, D1, n1, S1) and (d2, D2, n2, S2) represent the Witt classes of two quadratic form ϕ,
ψ. Take d, D, n as de�ned in Proposition 9 (respectively 10). The values of d, D and n
are explicitly given, hence we must only compute S. For a root p of d let qk, qk+1 ∈ Q be
two rational numbers such that p is the only root of d in the interval (qk, qk+1). They may
be obtained using the algorithm RealRootIsolation (cf. Basu et al., 2003, Algorithm
10.41). Now, since d1 is square-free, p is the root of d1 if and only if d1 changes sign at
p. This happens if and only if d1(qk) · d1(qk+1) < 0. Likewise for the polynomial d2.

Consequently, in order to construct the list of local signatures of ϕ ⊥ ψ and ϕ ⊗ ψ,
we proceed as follows. Let S1 = (ξ0, . . . , ξm) and S2 = (ζ0, . . . , ζm). We start from the
neighborhood of −∞. The signature of ϕ ⊥ ψ equals ξ0 + ζ0 and the signature of ϕ⊗ ψ
equals ξ0 · ζ0. Now, we advance toward the neighborhood of +∞, moving by one root of
d in each step. In every interval visited, the resulting signature equals ξi + ζj for ϕ ⊥ ψ
and ξi · ζj for ϕ⊗ψ. The index i (resp. j) is incremented each time we step over the root
of d1 (resp. d2).

The two above propositions imply the following corollaries:

Corollary 11. Let ϕ,ψ be two quadratic forms and let (d1, D1, n1, S1), (d2, D2, n2, S2)
denote representations of the Witt classes of ϕ and ψ. Then Algorithms 8 and 9 return
representations of the Witt classes of ϕ ⊥ ψ and ϕ⊗ ψ respectively.

Corollary 12. If (d,D, n, S) represents the Witt class of a quadratic form ϕ, then the
tuple (d, (−1)nD,n,−S) represents the Witt class of −ϕ.

Corollary 13. Let (d1, D1, n1, S1) and (d2, D2, n2, S2) be two representations of elements
of the Witt ring WR(t). They represent the same element if and only if n1 ≡ n2 (mod 2),
D1 = D2 and Algorithm 8 returns (∗, 1, ∗, (0, . . . , 0)) for the sum of (d1, D1, n1, S1) and
(d2, (−1)n2D2, n2,−S2).

One may wish to know the anisotropic representative for a computed Witt class. The
example at the end of Section 4 shows that in general it is impossible to �nd it without
knowing the roots of the polynomials involved. On the other hand, if we allow the roots
of d in the expression, the task becomes manageable. Let (d,D, n, S) be a representation
of some Witt class. We shall consider three cases. First, assume that S = (0, 0, . . . , 0)
and so n is even. If D = 1 then this is the class of a hyperbolic form and so it does not

7

have the anisotropic representative (see Proposition 8). If D 6= 1 then either D or −D
is a sum of squares and it follows from Weak Hasse Principle that the class contains the
form 〈D,− lc(D)〉. Next, assume that every entry in S is either 1 or −1. Using Weak
Hasse Principle again we see that the class contains the unary form 〈D〉.

Consider now the general case. Let ν ≥ 2 be the maximum of absolute values of entries
in S. Further let p1 < · · · < ps be all the real roots of d. For 0 ≤ i ≤ s �nd di, ei ∈ Z
such that {

di + ei = ν

di − ei = σi.

Construct a table A consisting of ν rows and s+ 1 columns and �ll it with ±1 in such a
way that +1 appears exactly di times in the i-th column (0 ≤ i ≤ s). The polynomials
gj for 1 ≤ j ≤ ν can now be formed as

gj := Aj,s ·
s∏

i=1

(t− pi)ηj,i ,

where Aj,s is the last entry of the j-th row of A equal to the sign of the leading coe�cient
of gj ; ηi,j is either zero if the entries Aj,i−1 and Aj,i agree or one if they di�er. Finally,
take

Λ := (−1)
1
2 ν(ν−1) ·D · g1 · · · gν

and consider the form 〈Λg1, g2, . . . , gν〉. It is clear that the signed determinant of ϕ
equals D. Moreover the construction of gj 's ensures the equalities of all local signatures.
It follows that ϕ is the anisotropic representative of the Witt class considered. The above
discussion is summarized in Algorithm 10.

6. Examples

The algorithms described in this paper were implemented in a computer algebra system
Mathematica 3.01 (Wolfram Research, Inc., 1996). Here we present some example com-
putations. Consider two forms: ϕ = 〈−t,−t(t5 − t− 1)〉 and ψ = 〈t5 − 1,−t4 + 1, t− 1〉.
Using Algorithm 6 we verify that both forms are anisotropic. Computing their tensor
product directly we arrive at the form:

ϕ⊗ ψ =
〈
−t6 + t, t5 − t,−t2 + t,−t11 + t7 + 2t6 − t2 − t,

t10 − 2t6 − t5 + t2 + t,−t7 + t6 + t3 − t
〉
.

Using Algorithm 6 again we check that ϕ⊗ ψ is isotropic. Compute the Witt classes of
ϕ and ψ using Algorithm 5:

ϕ ∼
(
(t5 − t− 1) · t, −t5 + t+ 1, 2, (0, 0,−2)

)
ψ ∼

(
(t3 + t2 + t+ 1)(t5 − 1),

(t− 1)(t7 + 2t6 + 3t5 + 4t4 + 4t3 + 3t2 + 2t+ 1), 3, (−3,−1, 1)
)
.

Now using Algorithm 9 we multiply these classes in the Witt ring and we get

W1 := (d,D, n, S) =
(
(t5− t− 1)(t5− 1)(t3 + t2 + t+ 1)t, −t5 + t+ 1, 2, (0, 0, 0, 0,−2)

)
.

Hence indeed the product ϕ⊗ψ is isotropic. Using Algorithm 10 we �nd the anisotropic
representative of this class (hence the anisotropic part of ϕ⊗ ψ):

η = 〈−(t5 − t− 1),−1〉.

8

The representation of Witt class of η computed by Algorithm 5 is

W2 :=
(
t5 − t− 1,−t5 + t+ 1, 2, (0,−2)

)
.

Using Corollary 13 we verify that indeed W1 and W2 represent the same class.

Final remark

All the presented algorithms, except Algorithms 8 and 9, remain valid also over R(t),
where R is an arbitrary real closed �eld. In order to make these two algorithms work in
this more general setup, one needs to use Thoms encodings (see Basu et al., 2003, Section
10.4), instead of rational numbers, to isolate roots of D.

References

Basu, S., Pollack, R., Roy, M.-F., 2003. Algorithms in real algebraic geometry. Vol. 10 of
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin.

Cremona, J. E., Rusin, D., 2003. E�cient solution of rational conics. Math. Comp.
72 (243), 1417�1441 (electronic).

de Loera, J. A., Santos, F., 1996. An e�ective version of Pólya's theorem on positive
de�nite forms. J. Pure Appl. Algebra 108 (3), 231�240.

Fukshansky, L., 2006. On e�ective Witt decomposition and Cartan-Dieudonné
theorem, to appear in Canadian Journal of Mathematics, preprint
http://www.math.tamu.edu/~lenny/witt.pdf.

Geddes, K. O., Czapor, S. R., Labahn, G., 1992. Algorithms for computer algebra. Kluwer
Academic Publishers, Boston, MA.

Knebusch, M., 1976. On algebraic curves over real closed �elds. II. Math. Z. 151 (2),
189�205.

Lam, T. Y., 2005. Introduction to quadratic forms over �elds. Vol. 67 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI.

Powers, V., Wörmann, T., 1998. An algorithm for sums of squares of real polynomials.
J. Pure Appl. Algebra 127 (1), 99�104.

Reznick, B., 2005. On the absence of uniform denominators in Hilbert's 17th problem.
Proc. Amer. Math. Soc. 133 (10), 2829�2834 (electronic).

Scharlau, W., 1985. Quadratic and Hermitian forms. Vol. 270 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin.

Schweighofer, M., 2002. An algorithmic approach to Schmüdgen's Positivstellensatz.
J. Pure Appl. Algebra 166 (3), 307�319.

Simon, D., 2005a. Quadratic equations in dimensions 4, 5 and more, preprint
http://www.math.unicaen.fr/~simon/maths/dim4.html.

Simon, D., 2005b. Solving quadratic equations using reduced unimodular quadratic forms.
Math. Comp. 74 (251), 1531�1543 (electronic).

Szymiczek, K., 1997. Bilinear algebra. An introduction to the algebraic theory of
quadratic forms. Vol. 7 of Algebra, Logic and Applications. Gordon and Breach Science
Publishers, Amsterdam.

Witt, E., 1998. Collected papers. Gesammelte Abhandlungen. Springer-Verlag, Berlin.
Wolfram Research, Inc., 1996. Mathematica, Version 3.01. Wolfram Research, Inc.,
Champaign, Illinois.

9

7. Algorithms

Below we gather all the algorithms presented in this paper.

Algorithm 1: SquareClassRepresentative

Input: f/g ∈ R(t) a non-zero rational function
Output: h ∈ R[t] the semi-monic representative of the square class of f/g

s← lc(fg);
// Use (Geddes et al., 1992, Algorithm 8.2)

H = (h1, . . . , hn)← SquareFreeFactorization(1
sfg);

h← sgn(s) ·
∏

1≤i≤n

i/∈2Z
hi;

return h;

Algorithm 2: IsSquare

Input: f/g ∈ R(t) a rational function
Output: true if f/g ∈ (R(t))2, false otherwise

if SquareClassRepresentative(fg) = 1 then
return true;

else
return false;

Algorithm 3: MultiplySquareClasses

Input: f, g semi-monic square-free representatives of two square classes
Output: h the semi-monic square-free representative of the square class of fg

return (f · g)/
(
gcd(f, g)2

)
;

Algorithm 4: IsSumOfSquares

Input: f/g ∈ R(t)
Output: true if f/g is a sum of squares in R(t), false otherwise

h← SquareClassRepresentative(f/g);
if lc(f) 6= 1 then

return false;

// Use the Sturm sequence (Basu et al., 2003, Algorithm 9.28)

r ← SturmQuerry(h);
if r = 0 then

return true;
else

return false;

10

Algorithm 5: LocalSignatures

Input: f1, . . . , fN ∈ R[t] semi-monic square-free polynomials
Output: (d,D, n, S) a representation of the Witt class of 〈f1, . . . , fN 〉
d← f1 . . . fN ;
// Compute the remainder of the dimension

n← N (mod 4);
// Compute the signed determinant using Algorithm 1

D ← (−1)
1
2n(n−1) · SquareClassRepresentative(d);

// Compute the monic square-free determinant

d← d/ gcd(d, d′);
d← 1

lc(d)d;

// Compute the signature near minus infinity

σ0 ←
∑N

i=1 sgn
(
(−1)deg fi lc(fi)

)
;

S ← (σ0);
// If all polynomials fi are constant we are done

if deg d 6= 0 then
// Use (Basu et al., 2003, Algorithm 10.61)

U = (ξ1, . . . , ξs−1)← UnivariateSignDetermination({f1, . . . , fN , d}, d′);
// Compute the signature near infinity

σs ←
∑N

i=1 sgn lc(fi);
// Store exactly one signature for every interval

ξ0,N+1 ← (−1)deg d;

S ← S ∪
(∑N

j=1 ξi,j : 1 ≤ i < s, ξi,N+1 6= ξi−1,N+1

)
;

if ξs−1,N+1 6= 1 then
S ← S ∪ (σs);

return (d,D, n, S);

11

Algorithm 6: IsIsotropic

Input: f1, . . . , fN ∈ R[t] semi-monic square-free polynomials
Output: true if 〈f1, . . . , fN 〉 is isotropic, false otherwise

// Unary forms are anisotropic

if N = 1 then
return false;

// For a binary form check the determinant

if N = 2 then
return IsIsquare(−f1f2);

// For dimension ≥ 3 use Corollary 4

if N ≥ 3 then
(d,D, n, S)← LocalSignatures(f1, . . . , fN);
l← max{|σ| : σ ∈ S};
if l < N then

return true;
else

return false;

Algorithm 7: IsHyperbolic

Input: f1, . . . , fN ∈ R[t] semi-monic square-free polynomials
Output: true if 〈f1, . . . , fN 〉 is hyperbolic, false otherwise

// Check if the dimension is even

if N ≡ 1 (mod 2) then
return false;

// Use Proposition 5

(d,D, n, S)← LocalSignatures(f1, . . . , fN);
if S = (0, . . . , 0) ∧D = 1 then

return true;
else

return false;

12

Algorithm 8: SumOfWittClasses

Input:
(
d1, D1, n1, S1 = (ξ0, . . . , ξm1)

)
,
(
d2, D2, n2, S2 = (ζ0, . . . , ζm2)

)
representations of the Witt classes of two quadratic forms

Output: (d,D, n, S) a representation of the Witt class of their sum

d← d1 · d2;
d← d/ gcd(d, d′);
// Compute the semi-monic square-free signed determinant

// using Algorithm 3

D ← (−1)n1n2 · MultiplySquareClasses(D1, D2);
n← (n1 + n2) (mod 4);
S ← ∅;
// Isolate roots of d using (Basu et al., 2003, Algorithm 10.41)

Q = (q0, . . . , qN)← RealRootIsolation(d);
i← 0;
j ← 0;
// Compute local signatures

for k ← 0 to N do
S ← S ∪ (ξi + ζj);
if k < N ∧ d(qk) · d(qk+1) < 0 then

i← i+ 1;
if k < N ∧ e(qk) · e(qk+1) < 0 then

j ← j + 1;

return (d,D, n, S)

13

Algorithm 9: ProductOfWittClasses

Input:
(
d1, D1, n1, S1 = (ξ0, . . . , ξm1)

)
,
(
d2, D2, n2, S2 = (ζ0, . . . , ζm2)

)
representations of the Witt classes of two quadratic forms

Output: (d,D, n, S) a representation of the Witt class of their product

d← d1 · d2;
d← d/ gcd(d, d′);
// Compute the semi-monic square-free signed determinant

if (n1, n2) ∈
{
(0, 0), (2, 2)

}
then D ← 1;

else if (n1, n2) ∈
{
(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)

}
then D ← D1;

else if (n1, n2) ∈
{
(1, 0), (2, 0), (3, 0), (1, 2), (3, 2)

}
then D ← D2;

else D ← MultiplySquareClasses(D1, D2);
n← (n1n2) (mod 4);
S ← ∅;
// Isolate roots of d using (Basu et al., 2003, Algorithm 10.41)

Q = (q0, . . . , qN)← RealRootIsolation(d);
i← 0;
j ← 0;
// Compute local signatures

for k ← 0 to N do
S ← S ∪ (ξi · ζj);
if k < N ∧ d(qk) · d(qk+1) < 0 then

i← i+ 1;
if k < N ∧ e(qk) · e(qk+1) < 0 then

j ← j + 1;

return (d,D, n, S)

14

Algorithm 10: AnisotropicRepresentative

Input:
(
d,D, n, S = (σ0, . . . , σs)

)
a representation of a Witt class

Output: the anisotropic representative of the class if (d,D, n, S) represents a
non-zero class, 〈1,−1〉 otherwise

ν ← max{|σi| : 1 ≤ i ≤ s};
// Special cases

if ν = 0 then
return 〈D,− lc(D)〉;

if ν = 1 then
return 〈D〉;

// General case

// Construct A
for i← 0 to s do

di ← (ν + σi)/2;
ei ← (ν − σi)/2;
for j ← 1 to ν do

if j ≤ di then
Aj,i ← 1;

else
Aj,i ← −1;

A←
(
Aj,i

)
1≤j≤ν,0≤i≤s

;

// Enumerate real roots of d
(p1 < p2 < · · · < p2)← RealRoots(d);
// Construct the anisotropic form

for j ← 1 to ν do

gj ← Aj,s ·
∏

1≤i≤s(t− pi)
1
2 |Aj,i−Aj,i−1|;

Λ← (−1)
1
2 ν(ν−1) ·D · g1 · · · gν ;

return 〈Λ · g1, g2, . . . , gν〉

15

