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Abstract. We describe a closed-form test detecting whether two cubic seg-
ments intersect. The presented algorithms is purely algebraic and so is not
restricted to any particular representation of cubic segments. One of main
advantages of the proposed algorithm is that it gives a definite answer even
for “difficult” intersections like: tangent intersections, intersections at singu-
larities or intersections of segments that are not relatively prime.

1. Introduction and related works

Following [8], in this whole paper we use the term cubic curve when we refer
to an unbounded curve (of infinite length) of degree three, while by a cubic seg-
ment we understand a subset of a curve corresponding to the unit interval [0, 1]
in some parametrization. The problem of detecting whether two given cubic seg-
ments intersect each other is of vital importance for computer graphics and CAGD.
For example, if two segments of a spline, representing a cross-section of a surface,
intersect, then such a surface cannot be manufactured.

This paper was inspired by the discussion hold on comp.graphics.algorithms
Usenet group in September 2004. A general believe expressed in the discussion was
that it is not possible to construct a closed-form test for polynomial Bézier cubics.
Contrary to this believe, we show that such a test in fact exists. The algorithm is
not genuinely new, it is just an application of a general method known in computa-
tional real algebraic geometry, to the specified task. Unfortunately, the algorithm,
albeit closed-form, is unbearably slow and as such not fully suitably for real-life
applications (at least using the current hardware technology). Consequently, the
paper serves a double purpose: one aim is to disprove a false general believe. The
other one, and of equal importance, is to propose some optimizations to a generic
algorithms taking into account the peculiarities of the task at hand. The opti-
mization (giving roughly 50% time gain) are discussed in Section 3 of this paper.
Moreover, the fact that there exists at least one such a closed-form solution may
encourage research for other closed-form algorithms.

The bibliography on the subject of intersections of parametric cubics is rich.
Here we present only a very brief listing of related works. For a more extended list
we refer the reader to the references in cited papers. A basic approach to investigate
intersections of two cubic segments represented in Bézier-Bernstein basis is to use
the convex hull property, together with a subdivision. Hence, a basic algorithm
boils down to: check if the convex hulls of the two segments intersect. If not, then
the segments cannot intersect. Otherwise, split each segment in half and repeat
the procedure. Stop once the convex hulls’ diameters are smaller than a given
tolerance. This is a recursive, numerical algorithm which may easily return false
results (if the tolerance is incorrectly chosen), since it uses only a rejection test (i.e.
a necessary condition which is clearly not sufficient). Such a subdivision algorithm
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Figure 1. Two segments with six apparent intersections.

can be easily augmented with a sufficient condition (which in turn is not necessary),
using the fact that if a control polygon of a Bézier segment crosses a given line an
odd number of times, then the Bézier segment itself crosses the same line at least
once. This way one obtains an algorithm which gives a definite answer for traversal
intersections. Recently [11] presented a variation of a subdivision algorithm that
uses a necessary and sufficient condition for intersections of so called elementary
Bézier segments. This is a promising approach, unfortunately it does not cover
all the possible cases. Usually people are interested not only in testing whether
two segments intersect or not, but in finding the actual intersection points. This
problem is discussed in details in [4, 5]. Another classical approach to test for
intersections of two parametric curves (or a curve and a segment) is to convert a
curve to its implicit form (for details see e.g. [9]) and substitute the parametric
equation of the other curve/segment into the implicit equation of the former one.
Now, Sturm’s theorem may be used to verify whether the obtained equation has
solutions in the interval of our interest. Although this method is closed-form by
its nature (the length of the Sturm sequence is bounded by nine in our case and
so the total number of operations is bounded by a constant, too) it cannot be,
unfortunately, used to test whether two segments intersect or not. To understand
why, consider the two cubics depicted in Figure 1. Each segment intersects the other
curve at three distinct points, nevertheless, the two segments are clearly disjoint
and so a test based on Sturm’s theorem would give false positives here.

2. The basic algorithm

Let C0(t) =
(
x0(t), y0(t)

)
and C1(s) =

(
x1(s), y1(s)

)
be two plane polynomial

cubic segments with t, s varying over [0, 1], each. The two segments intersect if and
only if the system

(1)

{
x0(t)− x1(s) = 0

y0(t)− y1(s) = 0

has a solution in the unit square [0, 1]2. Denote f(t, s) := x0(t)−x1(s) and g(t, s) :=
y0(t) − y1(s). Our first step is to determine whether Eq. (1) is a zero-dimensional
system. To this end compute a Gröbner basis G of the ideal 〈f, g〉 C R[t, s] and
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then check if there is N ∈ N such that sN and tN belong to the ideal J generated
by the leading monomials of G. Now, [1, Theorem 2.2.7] asserts that Eq. (1) is
zero-dimensional if and only if such an N exists.

2.1. Zero-dimensional case. If the system Eq. (1) is zero-dimensional, then A :=
R[t, s]/〈f, g〉 is a finitely-dimensional R-algebra with a basis B = {smtn /∈ J} by
[1, Theorem 2.2.7]. The dimension of A is not greater than 9 since f, g are cubic
with respect to both variables. Let Lh denote an endomorphism of A defined as
Lh(x) := h · x and let

Her(h) :=
[
Tr
(
Lhαβ

)]
α,β∈B

be the Hermite matrix of h. It is symmetric, hence diagonalizable over the reals.
Denote by sq(h) the signature of the associated (symmetric) bilinear form (x, y) 7→
xT ·Her(h) · y.

Consider two polynomials q(t) = (1 − t)t and r(s) = (1 − s)s. The unit square
[0, 1]2 is precisely the set where they are simultaneously non-positive. For any
i, j ∈ {−1, 0, 1} denote

ci,j = ]
{

(t, s) ∈ R2 : f(t, s) = g(t, s) = 0 and sgn q(t) = i, sgn r(s) = j
}

the number of solutions of Eq. (1) with prescribed signs of q and r. It follows that
the number of solutions of Eq. (1) in the unit square equals ∆ = c−1,−1 + c−1,0 +
c0,−1 + c0,0. Compute sq(qkrl) for every k, l ∈ {0, 1, 2}. Pedersen-Roy-Spirglas
theorem [2, Theorem 4.2.7] asserts that the following equations hold

(2)



c−1−1 + c−10 + c−11 + c0−1 + c00 + c01 + c1−1 + c10 + c11 = sq(1)

−c−1−1 − c−10 − c−11 + c1−1 + c10 + c11 = sq(q)

c−1−1 + c−10 + c−11 + c1−1 + c10 + c11 = sq(q2)

−c−1−1 + c−11 − c0−1 + c01 − c1−1 + c11 = sq(r)

c−1−1 + c−11 + c0−1 + c01 + c1−1 + c11 = sq(r2)

c−1−1 − c−11 − c1−1 + c11 = sq(qr)

−c−1−1 + c−11 − c1−1 + c11 = sq(q2r)

−c−1−1 − c−11 + c1−1 + c11 = sq(qr2)

c−1−1 + c−11 + c1−1 + c11 = sq(q2r2).

Solve the system to get

∆ = sq(1)− 1

2

(
sq(q) + sq(q2) + sq(r) + sq(r2)

)
+

+
1

4

(
sq(qr) + sq(q2r) + sq(qr2) + sq(q2r2)

)
.

Clearly, ∆ 6= 0 if and only if the two segments intersect. The number of steps
to verify this condition is clearly bounded by a constant: there are at most nine
Hermite matrices to compute and their dimensions do not exceed nine. Thus the
technique is closed-form, albeit slow.

2.2. Non-zero-dimensional case. Assume that the system Eq. (1) is not zero-
dimensional. This may only happen when C0 and C1 are two segments of a single
cubic curve. If this is the case, they may have 0, 1, 2 or infinitely many intersection
points. The key is to express the endpoints of one segment using the parametriza-
tion of the other one. Let B be the Bézoutian of the polynomials x − x0(t) and
y − y0(t) with respect to the variable t. Then the determinant detB is the resul-
tant Rest

(
x − x0(t), y − y0(t)

)
and the implicit form of the curve containing both
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segments in question is given by the equation

detB = 0.

Use the inversion formula (see e.g. [6]) to find the parameters α < β corresponding
to the two endpoints of C1. There are six cases that we must consider:

(I) if α ∈ [0, 1) or β ∈ (0, 1] then the two segments overlap and so they have
infinitely many intersection points;

(II) if α < 0 and β > 1 then C0 is a sub-segment of C1 and so they again have
infinitely many intersections;

(III) if C is not a crunodal curve, or is crunodal but the crunode does not belong
to at least one of C0, C1, and either α = 1 or β = 0 then C0, C1 have exactly
one intersection point being their common endpoint;

(IV) if C is crunodal and the crunode belongs to both C0 and C1 then:
(a) if either α = 1 or β = 0 then there are two distinct intersection points

(the crunode and the common endpoint);
(b) if [α, β] ∩ [0, 1] = ∅ then the crunode is the only intersection point;

(V) in every other case the segments C0, C1 do not intersect.
Observe that cases III–IV require a (closed-form) procedure checking whether a
given segment is crunodal. An efficient test was presented in [10]. In order to
check if the two segments simultaneously contain a crunode let a < b ≤ c < d be
the parameters 0, 1, α, β of the endpoints of C0 and C1 sorted in the ascending
order. If we have already ruled out the case of overlapping segments (points I and
II above), then a, b correspond to one segment and c, d to the other one. Thus:

Observation 3. The crunode belongs to both segments if and only if the segment
parametrized by the interval [a, d] is crunodal while the arcs corresponding to [a, c]
and [b, d] are not.

3. Optimizations of the basic algorithm

The intersection test presented in the previous section is closed-form. The num-
ber of operations is bounded by a constant. Unfortunately this constant is huge,
rendering the method quite impractical. Here we propose few possible optimiza-
tions. The main source of inefficiency is the fact that for every Hermite matrix
we need to compute d2 traces, where d is the dimension of A and the number
of complex intersection point (counting with multiplicities) at the same time by
[2, Lemma 4.58] and [3, Corollary IV.2.5]. Thus d ≤ 9 by Bézout theorem and
this bound can be reached (see the fourth example in the last section). If all the
intersections are traversal, then the simple recursive algorithm described in the
introduction is most effective. Thus it is natural to couple these two algorithms
and use the one described in this paper only when the iterative method fails to
give a definitive answer, combining the best of the two world. This means that
the described algorithm will be used only for “difficult case” when there occurs
intersections of higher multiplicities. Fortunately this is the case, where serious
optimizations are possible. First of all we may reduce the dimension of the algebra
taking the radical

√
〈f, g〉 instead of the ideal 〈f, g〉 itself.

Proposition 4. Under the above assumptions, let rt := Ress(f, g), rs := Rest(f, g)

and rt := rt/gcd(rt, r′t), rs := rs/gcd(rs, r′s). Then
√
〈f, g〉 = 〈f, g, rt, rs〉.

Proof. This follows immediately from [3, Proposition II.2.7] and standard properties
of the resultant. �

Corollary 5. If there are intersections of higher multiplicities, then

dimR[t, s]/〈f, g, rt, rs〉 < dimR[t, s]/〈f, g〉,



CLOSED-FORM TEST FOR INTERSECTIONS OF PARAMETRIC CUBICS. 5

while both algebras are associated to the same set of intersection points.

One additional advantage of computing the resultants is that we can earlier
decide whether the system is zero-dimensional or not, since in the later case the
resultant is null. This way we avoid an expensive step of computing a Gröbner
basis, when it is not really necessary. In the main body of the algorithm, we
compute nine Hermite matrices Her(qirj) for 0 ≤ i, j ≤ 2. This is the most time-
consuming part of the procedure. We may significantly reduce the computation
time building only four Hermite matrices Her(qirj) for 1 ≤ i, j ≤ 2. Indeed, we
have ∆ = c−1,−1 + c−1,0 + c0,−1 + c0,0. The last four rows of Eq. (2) let us compute
the first term

c−1,−1 =
1

4

(
sq(qr) + sq(q2r) + sq(qr2) + sq(q2r2)

)
.

The three remaining terms may be computed with no references to Pedersen-Roy-
Spirglas theorem. By the definition, c0,0 is non-zero if and only if the two segments
share a common endpoint, which is straightforward to check. If this is the case,
the algorithm may return TRUE without any further computations. Similarly,
c−1,0 (respectively c0,−1) is non-zero if and only if the first (resp. second) segment
passes through any of the endpoints of the other segment. This condition may
be easily checked expressing the segment in an implicit form r = 0, with r =
Rest

(
x−x0(t), y−y0(t)

)
. If either r

(
x1(0), y1(0)

)
= 0 or r(

(
x1(1), y1(1)

)
= 0, then

use the inversion formula to recover the corresponding parameter t. If it belongs to
(0, 1), then the algorithm may again terminate returning TRUE. Analogously one
verifies whether c0,−1 6= 0.

We may now present the pseudo-code of the optimized algorithm. The ini-
tialization part is presented in Algorithm 1. Next, Algorithm 2 shows the first
sub-procedure and Algorithm 3 the other sub-procedure.

4. Example results

In order to verify the correctness of the method as well as the effectiveness of
the proposed optimizations, the algorithm was implemented in a computer alge-
bra system Sage [7]. All tests were run on 9 different computers. The first test
suite consisted of 14 specifically tailored pairs of curves with “difficult” intersec-
tions. Table 1 shows how the optimized algorithm behaved, when compared to the
generic one. For the second test suite, each computer generated 200 random pairs
of cubic Bézier curves ans tested for occurrences intersections using both versions
of the algorithm. In this test, the average running time of the optimized algorithm
was better by « TODO »when compared with the generic one. Concluding, the
optimized algorithm proposed in this paper is about twice faster than the generic
one due to the fact that it requires only four Hermite matrices and it reduces the
dimension of the algebra A if there are intersections of higher multiplicities present.
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Input:

{
C0(t) =

(
x0(t), y0(t)

)
first cubic segment

C1(s) =
(
x1(s), y1(s)

)
second cubic segment

Output:

{
true if the two segments intersect
false otherwise

f0(t, s)← x0(t)− x1(s);
f1(t, s)← y0(t)− y1(s);
rt ← Ress(f0, f1);
rs ← Rest(f0, f1);
if rt = 0 then
return NonZeroDimensionalIntersections(C0, C1)

rt ← rt/ gcd(rt, r
′
t);

rs ← rs/ gcd(rs, r
′
s);

G ← GroebnerBasis({f0, f1, rt, rs});
J ← InitialMonomials(G);
return ZeroDimensionalIntersections(C0, C1,G,J );

Algorithm 1: Initialization part of the algorithm
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Input:


C0(t) =

(
x0(t), y0(t)

)
first cubic segment

C1(s) =
(
x1(s), y1(s)

)
second cubic segments

G Gröbner basis
J the initial monomials

Output:

{
true if the two segments intersect
false otherwise

if C0(0) = C1(0) or C0(0) = C1(1) or C0(1) = C1(0) or C0(1) = C1(1) then
return true;

B0 ← BezoutMatrix(x− x0(t), y − y0(t));
r0 ← detB0;
if r0(C1(0)) = 0 then
if InversionFormula(B,C1(0)) ∈ (0, 1) then
return true;

if r0(C1(1)) = 0 then
if InversionFormula(B,C1(1)) ∈ (0, 1) then
return true;

B1 ← BezoutMatrix(x− x1(t), y − y1(t));
r1 ← detB1;
if r1(C0(0)) = 0 then
if InversionFormula(B,C0(0)) ∈ (0, 1) then
return true;

if r1(C0(1)) = 0 then
if InversionFormula(B,C0(1)) ∈ (0, 1) then
return true;

S ← {smtn : smtn /∈ J ,m, n ∈ N0};
d← ] S;
q ← (1− t)t;
r ← (1− s)s;
V ← {qr, q2r, qr2, q2r2};
for f ∈ V do

f ← NormalForm(f,G);
for 0 ≤ i, j < d do

Her[i, j]← Tr(Lf ·S[i]·S[j]);

SQ[f ]← Signature(Her);

if
∑
f∈V SQ[f ] 6= 0 then
return true;

else
return false;

Algorithm 2: The zero-dimensional case
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Input:

{
C0(t) =

(
x0(t), y0(t)

)
C1(s) =

(
x1(s), y1(s)

) two segments of the same cubic curve

Output:

{
true if the two segments intersect
false otherwise

B ← BezoutMatrix
(
x− x0(t), y − y0(t)

)
;

t0 ← InversionFormula
(
B,C1(0)

)
;

t1 ← InversionFormula
(
B,C1(1)

)
;

if t0 < t1 then
α← t0; β ← t1;

else
α← t1; β ← t0;

if (0 ≤ α ≤ 1) or (0 ≤ β ≤ 1) then
return true;

if (α < 0) and (β > 1) then
return true;

if α < 0 then
a← α; b← β; c← 0; d← 1;

else
a← 0; b← 1; c← α; d← β;

Nad ← IsNodal(C0

∣∣
[a,d]

);

Nac ← IsNodal(C0

∣∣
[a,c]

);

Nbd ← IsNodal(C0

∣∣
[b,d]

);

if Nad and not Nac and not Nbd then
return true

else
return false

Algorithm 3: The non-zero-dimensional case
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Table 1. Time comparison of generic and optimized algorithms.

segments’
arrangement

running time
of the

optimized
algorithm

vs. the
generic one

segments’
arrangement

running time
of the

optimized
algorithm

vs. the
generic one

Non-zero-dimensional
intersection

98.71% Six apparent
intersections

49.83%

Six apparent
intersection

50.54% Nine simple
intersections

48.57%

Acnodal apparent
intersection

50.06% Cusp-cusp intersection 51.77%

Cusp-cusp intersection 48.99% Cusp-cusp intersection 48.20%
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Nodal intersection 50.15% Nodal intersection 47.54%

Nodal intersection 47.59% Nodal intersection 50.43%

Tangent non-crossing
intersection

47.84% Tangent crossing
intersection

48.07%


