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Abstract. We reprove the result of Stone and DeRose, which gives the geo-
metric classification of the affine type of an untrimmed Bézier curve, using
classical algebraic geometry. We show how to derive the characterization of
Stone and DeRose from three classical results: Bézout theorem, polynomial
parametrization criterion and classification of the singularity type of an alge-
braic curve given in Weierstrass normal form.

1. Introduction

In 1989 Stone and DeRose presented a geometric criterion to determine the
affine type of a parametric cubic curve (see [7]). Having three, out of four, control
points of Bézier reprezentation of the curve fixed to specified locations one can
decide if the curve has a cusp, a node, or one or two inflection points by examining
the position of the fourth point. Stone and DeRose showed that the real plane is
divided into regions where the curve has respectively: a node, a cusp, one or two
inflection points. Those regions are given by a parabola and its tangent. Their
proof of this result is based entirely upon the parametric form of the curve and is
purily analitic in nature. In fact, the authors support their analysis on the earlier
papers bu Su and Liu [8] and Wang [11], that are also purely analitic. On the
other hand, characterization of the affine type of a (singular) cubic curve has a long
history in algebraic geometry dating back to 19th century and beyond! The aim of
this paper is to show how the result of Stone and DeRose relates to this classical
theory. To this end we reprove the above-mentioned theorem using the language
of classical algebraic geometry. In particular we show that the result of Stone and
DeRose is closely realted to the well known classification of singular cubics given
in Weierstrass normal form. Our proof has two advantages. The main is that
using the well established basis of algebraic geometry our method not only proves
the assertion but, more importantly, offers an insight explaining the phenomenon.
Secondly, the presented proof is realitively shorter since it is completely based upon
the classical theory (and so can be considered self-contained), in contrast Stone and
DeRose base their results on two earlier papers: [8] and [11].

Because we only reprove here an already known result, using completely classical
tools, this paper is rather of an expository nature. In particular, we give full
references to all the results we use, no matter how classical they are. We want to
emphasize the fact that the paper of Stone and DeRose presents more nice results
than the one reproved here. In particular the authors give also a characterization of
trimmed curves and show that similar characterizations can be obtained for other
representatations of parametric cubics by appropriate planar slice of a common
three-dimensional “characterisation space”. The similar result were obtained also
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in the papers by Su and Liu [8], Wang [11] and Forrest [3]. More recently Vincent
(see [9]) presented another algorithm to decide the type of a trimmed Bézier cubic.
The idea of using the language of (classical) algebraic geometry to tackle problems
from the realms of geometric modelling, that we use here, is not new. For cubic
curves it was effectively used for example in the Patterson’s paper [5].

2. Stone–DeRose Theorem

Here we reprove the theorem of Stone and DeRose (c.f. [7]) using the language
of (classical) algebraic geometry. Let C be an untrimmed polynomial Bézier cubic
curve, with control points P0, P1, P2, P3:

(1) C(t) = P0 · (1− t)3 + P1 · 3t(1− t)2 + P2 · 3t2(1− t) + P3 · t3.
We assume that the control points P0, P1, P2, P3 are in general position, i.e. they
are not colinear and no two of them are coincident. Since reversing the order of
control points of a Bézier curve reverses only the parametrization but does not affect
the shape of the curve, we may assume that P0, P1 and P2 are not colinear. The
Bézier reprezentation is affine invariant (see e.g. [2, §4.3]). Choosing an appropriate
affine transformation, we may fix the positions of these three control points so that:

(2) P0 =
(

0
0

)
, P1 =

(
0
1

)
, P2 =

(
1
1

)
.

Now, the position of P3 =
(
Px

Py

)
determines the class of the curve C with respect to

affine equivalence (“the characteristic” of the curve in terms of [7]). Substituting
the coordinates of control points into Eq. (1) leads us to:

C(t) =
(

(Px − 3)t3 + 3t2

Pyt3 − 3t2 + 3t

)
.

If Px − 3 = 0 = Py the curve degenerates to a conic. Since a parabola is the only
conic with a polynomial parametrization (see e.g. [1, Chapter 1]) we have:

Observation 3. If P3 =
(

3
0

)
, then the curve C is a parabola.

Form now on, we assume that P3 6=
(

3
0

)
. Implicitize C computing the Bézout

resultant (see e.g. [6, §3.3]) for x− (Px − 3)t3 − 3t2 and y−Pyt3 +3t2 − 3t. We get

Rest

(
x− (Px − 3)t3 − 3t2, y − Pyt3 + 3t2 − 3t

)
=

= det

 3x −3x− 3y Pyx− (Px − 3)y
−3x− 3y 9 + Pyx− (Px − 3)y 3(Px − 3)

Pyx− (Px − 3)y 3(Px − 3) −3(Px − 3)− 3Py

 =

= −(Pyx− (Px − 3)y)3 + 9
(
A1x

2 + A2xy + A3y
2
)
− 27A3x,

with A1 = 3Px − 3PxPy − 2P 2
y + 12Py − 9, A2 = 3P 2

x + PxPy − 12Px + 3Py + 9 and
A3 = P 2

x − 3Px + 3Py. Let F be the homogenization of f and take Ĉ := {(x : y :
w) ∈ P2R : F (x, y, w) = 0} the Zarisky’s closure of C in the projective plane P2R.
The curve C has a parametrization, hence its genus is zero. Thus Ĉ must have a
singular point. It is well know (see e.g. [4, Chapter 7]) that there are only three
types of real singular cubics:

A: cuspidal—it has a single real cusp with the double real tangent; it has a
unique real flex;
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B: crunodal—it has a single real node with two different real tangents; it has
a unique real flex and two complex flexes;

C: acnodal—it has a single real node with two complex conjugate tangents;
it has three distinct real flexes.

Now, we know that C has a polynomial parametrization, consequently Ĉ has exactly
one place at infinity (see e.g. [1, Chapter 1]). Thus Bézout theorem (see e.g. [4,
Theorem 14.7] or [10, Theorem IV.5.4]) implies that there are only two possibilities:

1: Ĉ has a cusp at infinity and its (double) tangent is a line at infinity;
2: Ĉ has a flex at infinity and its tangent is again a line at infinity.

In the first case the curve is of type A, and so has exactly one affine flex and no
affine singularities. In the other case it may be of any type, but since it already has
one flex at infinity it may have either two or zero affine inflection points. If it has
no affine inflection points it is of type A or B and so it has a cusp or a crunode.
If it has two affine inflection points it is of type C so has an acnode, and since the
acnode is an isolated point of the real algebraic curve, it does not belong to the
parametric curve. Thus, we have the following possibilities:

1A: the Bézier curve C has one inflection point and no singular points;
2A: the Bézier curve C has no inflection points and one cusp;
2B: the Bézier curve C has no inflection points and one crunode;
2C: the Bézier curve C has two inflection points and no singular points.

The following theorem due to Stone and DeRose correlates the position of the
control point P3 to one of the above cases.

Theorem 4 (Stone, DeRose). If C is an untrimmed Bézier curve with control
points P0, P1, P2, P3 satisfying Eq. (2) then:

0: it is a parabola if and only if P3 =
(

3
0

)
;

1A: it has one inflection point if and only if P3 belongs to the line x+y−3 = 0
and P3 6=

(
3
0

)
;

2A: it has a cusp if and only if P3 lies on the parabola (x−3)(x+1)+4y = 0
and P3 6=

(
3
0

)
;

2B: it has a crunode if and only if P3 lies below the parabola (x− 3)(x + 1) +
4y = 0;

2C: it has two inflection points if and only if P3 lies above the parabola (x−
3)(x + 1) + 4y = 0 but does not belong to the line x + y − 3 = 0.

The five cases mentioned above are illustrated in Figure 1.

Proof. We have already solved the degenerate case in Observation 3. Next, we
know that the curve Ĉ has exactly one place at infinity. Substituting w = 0 to
F (x, y, w) = 0 we have ((Px − 3)y − Pyx)3 = 0. Hence the point at infinity has
coordinates (Px − 3 : Py : 0). From our earlier disscussion we know that the curve
is of type 1A if and only if this point is singular (and then it is necesserally a cusp)
and the double tangent is the line at infinity. Compute the partial derivative

∂F

∂w
(Px − 3 : Py : 0) = 27(Px + Py − 3)3.

Thus (Px − 3 : Py : 0) is singular if and only if the coordinates of P3 satisfy
Px + Py − 3 = 0. This proves 1A.
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Figure 1. The characterization diagram of Stone and DeRose.

On the other hand suppose that the point at infinity is not singular, hence it
is a flex and the tangent is the line at infinity. Consider a change of variables
x 7→ x + (Px − 3)/Pyy, y 7→ y, w 7→ w. It transforms Ĉ into Ĉ1 given by

G1(x, y, w) := F (x + (Px − 3)/Pyy, y, w).

The curve Ĉ1 has a flex at (0 : 1 : 0) and its tangent is the line at infinity {w =
0}. Notice that we are now at the initial position for the classical derivation of
Weierstrass normal form (see e.g. [4, §15.2] or [10, §6.4]). Repeating the classical
scheme we dehomogenize G1 to obtain g1. Now, there is an affine change of variables
that transforms the curve into Weierstrass normal form:

y2 = x3 + αx + β.

With a direct computation1 we find out that

α = −
3
(
(Px − 3)(Px + 1) + 4Py

)2

16(Px + Py − 3)4
, β =

(
(Px − 3)(Px + 1) + 4Py

)3

32(Px + Py − 3)6
.

It follows from the already proved part that the denominators are non-zero. Now,
the classification of cubics given in Weierstrass normal form is well known (see [4,
§15.3]): it is cuspidal (hence of type 2A) if and only if α = β = 0 if and only if
(Px − 3)(Px + 1) + 4Py = 0; it has a crunode (i.e. it is of type 2B) iff β > 0; and
finally it has an acnode (hence its type is 2C) when β < 0. �

It is worth to stress the point that singularities and inflection points are mutually
exclusive only for polynomial curves. In rational case it is not hard to show a Bézier
curve (in fact even a segment) having a cusp and an inflection point, a node and
an inflection point or three inflection points (see Figure 2).
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Figure 2. Examples of rational cubic segments having: (a) a cusp
and an inflection point; (b) a node and an inflection point; (c) three
inflection points. The inflection points are marked with arrows.
Labels near the control points show their weigths.
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