
A note about “Faster Algorithms for Computing Hong’s Bound on Absolute
Positiveness” by K. Mehlhorn and S. Ray

Przemysław Koprowskia, Kurt Mehlhornb, Saurabh Rayc

a Faculty of Mathematics, University of Silesia, ul. Bankowa 14, PL-40-007 Katowice, Poland
b Saarland Informatics Campus, Building E1 4, 66123 Saarbrcken, Germany

c New York University Abu Dhabi, 129188 UAE

Abstract

We show that a linear-time algorithm for computing Hong’s bound for positive roots of a univariate
polynomial, described by K. Mehlhorn and S. Ray in an article “Faster algorithms for computing
Hong’s bound on absolute positiveness”, is incorrect. We present a corrected version.

1. Introduction

Computing an upper bound for real roots of a polynomial is an important problem in computa-
tional algebra. It has numerous applications (for instance root separation, to mention just one). Thus,
in recent decades there has been intensive effort to find such bounds. Given an univariate polynomial
A = a0+a1x+ · · ·+anxn ∈ R[x] with a positive leading coefficient an, a good bound for its positive
roots, obtained by Hong [1], is 2 ·H(A) where

H(A) = max
i<n
ai<0

min
j>i
aj>0

∣∣∣∣aiaj
∣∣∣∣1/(j−i) .

The above bound can be easily computed in O(n2) time by running over all pairs of indices i
and j. Mehlhorn and Ray [2] proposed an O(n) time algorithm in the univariate case by converting
the problem into a computational geometry problem that can be solved in linear time. Unfortunately,
the linear time algorithm they proposed for the latter is incorrect. The aim of this note is to explain
the source of the error and present a correct algorithm.

The main idea in [2] is the following one: construct a point set P = {p0, . . . , pn} with pi =
(i,− lg |ai|) where lg denotes base 2 logarithm. The slope of a line joining points pi and pj is then

mij =
lg |ai| − lg |aj |

j − i
= lg

∣∣∣∣aiaj
∣∣∣∣1/(j−i) .

Since lg(·) is a monotonic function, we have that H(A) = 2h(a) where

h(A) = max
i<n
ai<0

min
j>i
aj>0

mij .

Email addresses: przemyslaw.koprowski@us.edu.pl (Przemysław Koprowski),
mehlhorn@mpi-inf.mpg.de (Kurt Mehlhorn), saurabh.ray@nyu.edu (Saurabh Ray)

URL: http://z2.math.us.edu.pl/perry/ (Przemysław Koprowski),
https://www.mpi-inf.mpg.de/˜mehlhorn/ (Kurt Mehlhorn)

Preprint submitted to Elsevier December 19, 2016

The task of computing H(A) is thus reduced to the task of computing h(A).

A point pi is called positive if ai > 0 and negative if ai < 0. Denote by P+
i the set {pj : j ≥

i and aj > 0} which is the set of positive points with x-coordinate at least i. Let Li denote the lower
hull of P+

i . For a negative point pi, let si denote the slope of a tangent from pi to Li. Note that
si = min{mij : j > i, aj > 0} and h(A) is the maximum among the si’s computed for the negative
points.

2. Error

The algorithm of Mehlhorn and Ray processes the points from right to left i.e., in the order pn,
pn−1, . . . , p0 and claims to maintain the invariant that after pi has been processed, the following
quantities defined for all 0 ≤ i ≤ n are available:1

• Li, the lower hull of the positive points processed so far

• σi = maxj≥i,aj<0 sj , the maximum slope of any tangent computed so far (σn := −∞)

• the lower tangent `i to Li with slope σi

• ti, the point of tangency of `i on Li

Once all points are processed, σ0 is the value returned for h(A). In their paper, the algorithm is
described twice, once as pseudocode (Algorithm 1) and once in English (Section 3.2 of their paper).
The descriptions are inconsistent and both descriptions are incorrect. The error is in the maintenance
of the point of the tangency ti. In the for loop in Algorithm 1 of the discussed paper, ti is not updated
when a positive point pi (i.e., when ai > 0) is processed. In the description of their algorithm (see
“Case 2” in Section 3.2 of their paper), they set “`i = `i+1” and “ti = ti+1”. Apart from being
inconsistent with Algorithm 1, this is incorrect. If pi is a positive point and lies below `i+1, then pi
should be the new tangent point i.e. ti = pi and `i should be a line through pi with slope σi = σi+1.
This error causes their algorithm to output a wrong answer. When processing a negative point pi, the
algorithm searches for the tangent point ti to the “right” of ti+1. If the lower hull has changed since
the last time the tangent point was updated, the algorithm may fail to find the correct tangent point.
In particular, if one or more positive points were inserted into the lower hull, these points are not
scanned by the algorithm. Likewise, if the previous tangent point was removed from the lower hull,
the algorithm still tries to start the scan from this point.

A simple example illustrating this glitch is the following one: consider the polynomial A =
−2 + 4x + x2. In this case, we have three points p0 = (0,−1), p1 = (1,−2), and p2 = (2, 0).
Here, p0 is a negative point while p1 and p2 are positive points. The points are processed in the
order p2, p1, p0. After p2 is processed, the lower hull L2 consists of just p2 and t2 = p2. Then p1 is
processed: L1 is correctly updated to be the segment joining p1 and p2 but t1 is incorrectly set to t2.
Finally, when processing the negative point p0, the search for the tangent point t0 starts from t1 = p2
and in fact ends there since there are no points to the “right” of p2. Thus t0 is wrongly set to p2 instead
of p1. Accordingly, the algorithm erroneously outputs the slope of the line joining p0 and p2 i.e. 0.5
as the computed value of h(A). The correct value of h(A) is the slope of the line joining p0 and p1
which is −1.

1Note that the indices in [2] run from 1 to n while here they run from 0 to n.

2

A possible correction to the algorithm would be to always search for the tangent point ti starting
from the leftmost point in Li. However, such an algorithm has Ω(n2) running time in the worst case.

If the algorithm is modified as described earlier (i.e., when a positive point pi lying below `i+1

is encountered, then ti should be set to pi and `i should be a line through pi with slope σi = σi+1),
then it maintains the tangent correctly. However, there is still the question which points needs to be
considered when a negative point is scanned and how the linear running time can be maintained. In
the next section, we present a slightly different algorithm for which we provide a proof of correctness.

3. Correction

Before describing the algorithm, we prove a couple of lemmas useful for proving the correctness
of our algorithm. Let pi = (i, bi) = (i,− lg|ai|).

Lemma 1. Let pi be a negative point. Then there is a vertex pj of Li+1 such that si = (bj − bi)/(j − i).

Proof. Let si pass through pi and pj and assume that no vertex of Li+1 lies on it. In particular, pj is
not a vertex. Then there are vertices p` and pk of Li+1 such that pj lies on or above the line segment
p`pk. Since si is only defined by the non-vertex pj , the slope of the ray

−→
pipj is strictly smaller than

the slopes of the rays
−→
pip` and

−→
pipk. This is impossible.

Lemma 2. Let pi and pj be negative points with i < j. Let ph be a vertex of Lj+1 that defines sj .
If si > sj , then si is not defined by any vertex of Lj+1 whose x-coordinate lies strictly between the
x-coordinates of pj and ph.

Proof. If pi lies on or above the line `(pj , ph) through pj and ph, the slope of
−→
piph is no larger than

the slope of
−→
pjph and hence si ≤ sj . So, pi lies below the line `(pj , ph). All vertices of Lj+1 whose

x-coordinate lies between the x-coordinates of pj and ph lie above this line. Thus the slope of the line
defined by pi and any such vertex is larger than the slope of the line defined by pi and ph.

The Algorithm. We process the points from right to left. As we do so, we maintain L, the lower hull
of the positive points processed so far. The lower hull is kept as a linked list with points appearing
in the increasing order of x-coordinates and with pn as its last element. Each point in the list has a
pointer to the next point in the lower hull. It also has an additional successor pointer which is used to
maintain a sublist of candidates for the tangent points of tangents from negative points. We maintain
pointers to the first elements of both the lists. We also maintain the line, ` = `(pl, ph), defining the
current maximum slope, where pl is a negative point and ph is a positive point.

Initially, the linked list storing L consists only of pn and the sublist of candidates is identical to L.
We then process the points from right to left starting from pn−1. Let pi be the point to be processed
next. If pi is a positive point, we compute the tangent from pi to Li+1 by walking down the vertex list.
The points that we skip over are removed from both the lists. Once we have determined the tangent,
we make pi the first element of both the lists. If pi is a negative point, the lower hull does not change.
If pi lies on or above `, we skip over pi. Otherwise, we walk down the candidate list and determine
the tangent from pi to the polygon determined by the candidate list, say the line `(pi, pk). The point
pk then becomes the first element of the candidate list. Our new maximum slope becomes the larger
of the slopes of `(p`, ph) and `(pi, pk).

Theorem 1. The algorithm is correct and works in linear time.

3

Proof. The lower hull of the positive points is clearly maintained correctly. We remove points from
the candidate list for two reasons: a) if the point ceases to be a vertex of the lower hull — this is
justified by Lemma 1, or b) if the point lies between a negative point and its tangent point to the lower
hull — this is justified by Lemma 2.

Linear running time follows since the time for processing any point is either constant or propor-
tional to the number of nodes removed from (at least) one of the lists, and since any node can be
removed from a list only once.

[1] Hoon Hong. Bounds for absolute positiveness of multivariate polynomials. J. Symbolic Comput.,
25(5):571–585, 1998. ISSN 0747-7171. doi: 10.1006/jsco.1997.0189. URL http://dx.doi.
org/10.1006/jsco.1997.0189.

[2] Kurt Mehlhorn and Saurabh Ray. Faster algorithms for computing Hong’s bound on absolute
positiveness. J. Symbolic Comput., 45(6):677–683, 2010. ISSN 0747-7171. doi: 10.1016/j.jsc.
2010.02.002. URL http://dx.doi.org/10.1016/j.jsc.2010.02.002.

4

http://dx.doi.org/10.1006/jsco.1997.0189
http://dx.doi.org/10.1006/jsco.1997.0189
http://dx.doi.org/10.1016/j.jsc.2010.02.002

	Introduction
	Error
	Correction

