
A note about “Faster algorithms for
computing Hong’s bound on absolute

positiveness” by K. Mehlhorn and S. Ray

Przemysław Koprowski
Faculty of Mathematics
University of Silesia

ul. Bankowa 14
PL-40-007 Katowice, Poland

Abstract

We show that a linear-time algorithm for computing Hong’s bound for positive roots of a uni-
variate polynomial, described by K. Mehlhorn and S. Ray in an article “Faster algorithms for
computing Hong’s bound on absolute positiveness”, is incorrect. We present a corrected version.

Key words: Polynomial roots, positive root bounds, linear time

1. Introduction

Computing an upper bound for real roots of a polynomial is an important problem
in computational algebra. It has numerous applications (for instance root separation, to
mention just one). Thus, in recent decades there has been intensive effort to find such
bounds. Given a univariate polynomial A = a0 + a1x+ · · ·+ anx

n ∈ R[x] with a positive
leading coefficient, a good bound for its positive roots is the one obtained in Hong (1998):

H(A) := 2 ·max
j<n
aj<0

min
i>j
ai>0

(
−aj
ai

) 1
i−j

.

A naïve, straightforward implementation of this bound clearly has a time complexity
of O(n2). Mehlhorn and Ray (2010) proposed a geometric approach to computing this
bound and presented a very smart algorithm that runs in linear time (with respect to the
degree of a polynomial). Unfortunately their algorithm turns out to be incorrect. The

Email address: pkoprowski@member.ams.org (Przemysław Koprowski).
URL: http://z2.math.us.edu.pl/perry/ (Przemysław Koprowski).

Preprint submitted to Journal of Symbolic Computation 26 November 2016

aim of this note is to explain the source of errors in their work as well as to propose a
possible correction so that the resulting algorithm accurately computes the Hong’s bound
and still works in linear time.

For the sake of clarity, in this paper we adopt the notation of Mehlhorn and Ray
(2010), much to a discomfort of the author, who is more used to a different notational
convention. Thus, with every nonzero term aix

i of a polynomial A = a0+a1x+· · ·+anxn,
we associate a pair

(
i,− lg|ai|

)
, where lg denotes a logarithm of base 2. We interpret these

pairs as points in the real plane R2. A point p =
(
i,− lg|ai|

)
is said to be positive if ai > 0,

otherwise it is called negative. The set of positive points with abscissæ greater or equal
to some fixed integer j is denoted

P+
j :=

{(
i,− lg|ai|

)
: i > j and ai > 0

}
.

The abscissæ of the points pi for i ∈ {0, . . . , n}, being exponents of x in the original
polynomial, are non-negative integers. Thus, if pi is a positive point, then pi and pn
are respectively the left-most and right-most points of the convex hull CH(P+

i) of P+
i .

Consequently, they split the boundary of CH(P+
i) into two chains of points: the lower

hull LH(P+
i) and the upper hull UH(P+

i). If p is a point positioned to the left of P+
i ,

then there is a unique line that passes through p and at least one point of P+
i and such

that all points of P+
i are on or above it. This line is called the lower tangent and denoted

τ(p, P+
i). The left-most point of the intersection τ(p, P+

i) ∩ P+
i is called the point of

tangency of τ(p, P+
i). The algorithm of Mehlhorn and Ray keeps track of the following

data during execution:
• σi is the maximal slope of lower tangents computed so far;
• `i is the lower tangent to CH(P+

i) with the slope σi;
• ti is the point of tangency of `i;
• Li is the lower hull of P+

i .
In what follows we preserve this notation.

2. Problems

The algorithm presented in (Mehlhorn and Ray, 2010, Section 3) suffers from two
interconnected problems:

Issue 1. The variable ti—that stores the point of tangency of the lower tangent with
a maximal slope—is initialized at the beginning of the algorithm (Mehlhorn and Ray,
2010, Algorithm 1, line 2) by setting tn := pn, but it is never lowered. Hence it stays
at pn throughout the whole process. Indeed, analyzing the algorithm, we see that:
• in line 15, ti is being passed over by setting ti := ti+1;
• for ai > 0, the variable ti is not set in the pseudo-code, but according to the description
(Mehlhorn and Ray, 2010, page 680, line −4) it is again set ti := ti+1;
• in line 10, a new ti is searched to the right of ti+1.

Issue 2. The claim (Mehlhorn and Ray, 2010, page 680, line −10):
“the tangent point ti of `i = τ(pi, P

+
i) cannot lie to the left of ti+1”

2

is false. It would be true if the lower hull of positive points has not changed since we
found ti+1. But not without this assumption. If the lower hull has changed, looking for
the point of tangency, we must scan the entire lower hull starting from its beginning, not
from the previously obtained point ti+1. We show an explicit example. Take a polynomial:

Aα := α+ 4x3 − 2x4 + 4x5 + 8x8, with α < 0.

For α = −1, the polynomial has two negative coefficients and so the Hong’s bound equals
twice the maximum of two minimums:

for a0 : min
i>0
ai>0

(
−α
ai

) 1
i

= min

{
3

√
1

4
,

5

√
1

4
,

8

√
1

8

}
=

3

√
1

4
,

for a4 : min
i>4
ai>0

(
2

ai

) 1
i−4

= min

{
1

2
,

4

√
1

4

}
=

1

2
.

Thus, the maximum is reached for a pair of coefficients (a0, a3) and

H(A) = 2 · 3
√

1/4 =
3
√
2 ≈ 1.2599.

Let us analyze what the algorithm of Mehlhorn and Ray does in this case. Ignore for a
moment issue 1. The coefficients of A correspond to points (see Figure 1):

p1 = (0, 0), p2 = (3,−2), p3 = (4,−1), p4 = (5,−2), p5 = (8,−3).

The lower hull L4 = LH(P+
4) of P+

4 = {p4, p5} is just a line segments connecting p4
with p5. The lower tangent τ(p3,L4) to the convex hull of P+

4 and passing through p3 is
a line `3 with a slope s3 = (−1)−(−2)

4−5 = −1. The point of tangency of `4 is t3 = p4. (If
we did not ignore issue 1 here, the algorithm would incorrectly pick up t3 = p5 and so s3
would be − 1/2, which is evidently not minimal.) The point p3 is negative, thus the lower
hull of positive points stays intact and we have L3 = L4.

The next point to consider is p2. It is positive, hence the algorithm updates the lower
hull. Now, L2 is a line segment with endpoints p2 and p5. The point p4 is removed from
the lower hull.

Finally, we consider the point p1. It is negative again. The lower tangent τ(p1,L2)

is a line `1 that passes through the newly added point p2. It has a slope of − 2/3. It is
now evident that in order to find the tangent point, we must scan the lower hull from
the beginning, not from the point t3 = p4. Not only the point p4 was removed from
the lower hull, but scanning the points to the right of it would result in picking up a
point p5 and the resulting line would have a slope − 3/8. All in all, the algorithm computes
max{−1, − 3/8} = − 3/8 and returns H(A) = 2 · 2 − 3/8 ≈ 1.5422, which is not the correct
Hong’s bound for A.

It should be noted that, if we take α = −8 in the above polynomial, then the Hong’s
bound is obtained not from the pair (p1, p2) but from (p1, p5). This shows that if the
lower hull of the set of positive points is rebuilt, we cannon a priori exclude any points.
All the point of the new lower hull must be scanned to obtain the lower tangent.

3

p2
p4

p5

p1

p3

Fig. 1. Configuration of points corresponding to the polynomial A−1 := −1+4x3−2x4+4x5+8x8.
Positive points are marked by filled dots, negative ones by empty dots. Thick lines correspond
to lower hulls, dashed lines to lower tangents.

3. Corrections

The algorithm of Mehlhorn and Ray can be simply corrected to evade the pitfalls
mention in the previous section. The most direct approach is to update the point of
tangency ti, when the lower hull of the positive points changes. A straightforward, but
rather naïve, solution is to set ti to the first point of Li. The corresponding part of the
algorithm would then read:
• if pi is a positive point (i.e. ai > 0), then:
· compute the lower hull Li of P+

i as described in (Mehlhorn and Ray, 2010, Section 2);
· set ti := pi, σi := σi+1 and let `i be a line through ti of a slope equal σi.
Unfortunately, these modifications blow the time complexity of the algorithm up to

O(n2), which is the time complexity of the most direct evaluation of Hong’s bound. An
explicit example of a polynomial for which scanning all constructed lower hull from end
to end would take O(n2) time is the following one:(
α0+x+α1x

2+4x3
)
+
(
α2+x+α3x

2+4x3
)
·x4+ · · ·+

(
α2k+x+α2k+1x

2+4x3
)
·x4k,

where α0, . . . , α2k+1 are some negative real numbers. One could hope that it is enough
to reset ti only if it is one of the points that are removed, when the lower hull is rebuilt.
But it is not true. The most evident example is the point pn = (n,− lg an). It is an initial
tangent point and is never removed from the lower hull. Nevertheless, in general when
the lower hull is rebuilt, pn will not be the tangent point any longer (the polynomial A−1

considered in the previous section is an example).
In order to recover the linear time complexity, we need to reshape the algorithm

more seriously and separate the phase of building of the lower hulls from computation
of a lower tangent with the maximal slope. The algorithm we are going to present is a
two-pass process. The first pass scans the points in the decreasing order of indices (i.e.
right-to-left) and is used to build and store all the lower hulls. Subsequently, in the second
pass the algorithm goes through the points left-to-right and computes the sought Hong’s
bound.

As said, we are going to store all intermediate lower hulls LH(P+
i). If we did it naïvely

and store them as a list of lists, then we would end up with a space complexity of O(n2).
Reading and writing this data would need O(n2) time. We can evade this trap, observing
that if pi is a positive point, then LH(P+

i) is a chain of the form (pi, pj , further points)
and its “tail” (pj , further points) is a lower hull of P+

j . Consequently, we may store all the
lower hulls as a single array of indices, call it V . For a positive point pi we set V [i] = j to

4

be the index of the second point (the first one is of course pi) of the lower hull LH(P+
i).

Hence the lower hull of P+
i equals

LH(P+
i) =

(
pi, pV [i], pV [V [i]], . . . , pn

)
.

On the other hand, for a negative point pi, we let V [i] be the index of the first point
of LH(P+

i), or in other words the index of the first positive coefficient of A to the right
of ai.

We are now ready to present a corrected algorithm that computes the Hong’s bound
of a polynomial in linear time.

Algorithm 1. Given a polynomial A = a0 + a1x + · · · + anx
n with a positive leading

coefficient, this algorithm computes its Hong’s upper bound for positive roots. In what
follows, we denote pi :=

(
i,− lg|ai|

)
for i ∈ {0, . . . , n}.

// First pass: construction of all lower hulls
(1) Set V [n] := −1 and initialize the index of the last visited positive point to k := n;
(2) iterate over the coefficients ofA in decreasing order of indices i ∈ {n−1, n−2, . . . , 0};

(a) if ai < 0, then the lower hull LH(P+
i) does not change, hence set V [i] := k

and reiterate the main loop;
(b) if ai > 0, then

(i) scan the lower hull

Li+1 = LH(P+
i+1) =

(
pk, pV [k], pV [V [k]], . . . , pn

)
to find the point of tangency of τ(pi, P+

i+1) as explained in Section 2 of
Mehlhorn and Ray (2010);

(ii) let j ∈ N be the abscissa of the point found in the previous step, set
V [i] := j;

(iii) update k := i;

// Second pass: computation of the Hong’s bound
(3) let j := min{i : ai < 0} be the lowest index of a negative coefficient of A;
(4) scan the lower hull LH(P+

j) =
(
pV [j], pV [V [j]], . . .

)
to find the tangent point pk of

τ(pj , P
+
j), set tj := pk, `j := τ(pj , P

+
j) and let σj be the slope of `j ;

(5) iterate over the coefficients of A in an increasing order of indices starting from j+1:
(a) if ai ≥ 0, then pass over

σi := σi−1, `i := `i−1 and ti := ti−1

and reiterate the loop;
(b) if ai < 0 and the previous point of tangency ti−1 lies to the left of pi, then:

(i) scan the lower hull LH(P+
i) = (pV [i], pV [V [i]], . . . , pn) to find the tangent

point pm of τ(pi, P+
i);

(ii) if the slope si of τ(pi, P+
i) is greater than σi−1, then set

σi := s1, `i := τ(pi, P
+
i) and ti := pm

otherwise pass over

σi := σi−1, `i := `i−1 and ti := ti−1

(c) if ai < 0 and the previous point of tangency ti−1 lies to the right of pi, then:

5

Table 1. Running time of a Sage implementation of a proposed linear-time algorithm (middle
column) against a direct quadratic-time implementation (right column). The times are in second
for 10 random polynomials of a given degree.

degree linear quadratic

5 0.053 0.003

10 0.127 0.005

20 0.268 0.012

50 0.711 0.038

100 1.492 0.139

200 2.979 0.473

500 7.382 2.625

1000 13.821 10.279

2000 28.116 40.378

5000 72.341 245.940

10000 148.879 991.194

(i) check if pi lies on or above `i−1, if it does, the ignore pi setting

σi := σi−1, `i := `i−1 and ti := ti−1

(ii) otherwise, when pi lies below `i−1, let k be the abscissa of ti−1, scan
the “tail” (pV [k], pV [V [k]], . . . , pn) of the lower hull LH(P+

i), to find the
tangent point pm of τ(pi, P+

i);
(iii) set σi to be the slope of τ(pi, P+

i) and update `i := τ(pi, P
+
i), ti := pm;

(6) return H(A) = 21+σn .

The correctness of the algorithm is immediate and its linear time complexity follows
from the fact that looking for a tangent points we always scan a range of points to the
right of the range previously scanned. The only points that are accessed more than once
are the actual points of tangency.

Final remarks

The corrected algorithm was implemented in a computer algebra system Sage (2016),
both to test it correctness and evaluate its speed. The code can be downloaded from
authors home page at http://z2.math.us.edu.pl/perry/papersen.html. It was exe-
cuted on randomly generated polynomials of varying degrees and the average computa-
tion times were compared with running times of a direct implementation of the Hong’s
bound. Figure 2 and Table 1 summarize the results.

6

0 1000 2000 3000

Fig. 2. Running time of a Sage implementation of a proposed algorithm (solid line) agains a direct
implementation (dotted line). The horizontal axis represents degrees of random polynomials.

References

Hong, H., 1998. Bounds for absolute positiveness of multivariate polynomials. J. Symbolic
Comput. 25 (5), 571–585.
URL http://dx.doi.org/10.1006/jsco.1997.0189

Mehlhorn, K., Ray, S., 2010. Faster algorithms for computing Hong’s bound on absolute
positiveness. J. Symbolic Comput. 45 (6), 677–683.
URL http://dx.doi.org/10.1016/j.jsc.2010.02.002

Sage, 2016. Sage Mathematics Software System (Version 7.3).
URL \url{http://www.sagemath.org}

7

