GRAPH OF EVEN POINTS IN A GLOBAL FUNCTION FIELD

ALFRED CZOGALA AND PRZEMYSLAW KOPROWSKI

ABsTrRACT. Let K be a global function field of characteristic # 2 and X be an
associated smooth curve. A point p € X is called even if its class in the Picard
group of X is 2-divisible. The even points admit a certain symmetric relation,
discovered while investigating automorphisms of the Witt ring of K. The set of
even points of X equipped with this relation is an (undirected infinite) graph.
In this note we investigate properties of this graph. In particular we prove
that it is connected and has diameter 2.

Let Fy be a finite field of odd characteristic. Further let K = F,(X) be a global
function field, with a full field of constants F,, and X be the associated smooth
projective curve. For a (closed) point p € X, denote by [p] its class in the Picard
group of X. We say that p € X is even, if its class in the Picard group is 2-
divisible, i.e. [p] € 2Pic X. Even points emerge naturally when one studies theory
of quadratic forms over global function fields. It was proved in [2] that a point is
even if and only if it is a unique wild point of some self-equivalence of K. The
set of even points admit a symmetric relation — (defined below) that controls the
formation of bigger wild sets of self-equivalences of K (see [2, Proposition 4.5] and
[1, Proposition 4.7]). The aim of this short note is to show that the set of even
points equipped with this relation is a connected graph and its diameter equals 2.

We use the following notation. Let p € X be a (closed) point, then ord, denotes
the associated valuation, O, = {A € K | ord, A > 0} is the valuation ring, K, is
the completion of K at p and K (p) is the residue field. Throughout this paper we
make free use of basic facts from class field theory and density of primes (points)
in global function fields. Standard references for all these facts are [3, 9].

It is well known that the exact sequence

0— Pic” X - Pic X 2% 7 0
splits (because Z is a projective Z-module). Equivalently
(1) PicX 2Pic" X 9 Z

and the projection onto the second coordinate is the degree homomorphism. There-
fore the necessary condition for a point p € X to be even is degp € 2Z. This
condition is not sufficient, though, unless | Pic’ X| is odd. A convenient condition
of evenness of p makes use of a certain subgroup of the square class group of K.
Let Y C X be an open nonempty set. The group morphism divy : K* — DivY,
that assigns to a nonzero element of K its principal divisor, induces a morphism of
the quotient groups K*/k*? — DivY /bpivy. Harmlessly abusing the notation, we
denote the latter morphism by divy, too. Define the subgroup Ey < K*/k*2 to be
the kernel of this map:

Ey :=ker(divy : K*/k** — DivY /hpivy).
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It is clear that Ey consists of the square classes of elements of K having even
valuations everywhere on Y:

Ey = {A€ k*/k**|ordy A=0 (mod 2) for all p € Y}.

~

Proposition 1. Ex & PicX hpic x.

Proof. The group Pic® X is finite and so Pic® X /2Pic® X is isomorphic to a group

(Pic® X); of elements of order not exceeding 2. In view of Eq. (1) we may write
Pic X hpic x 2 (Pic” X)o © Z/2z.

Consider a group epimorphism Ey — (Pic’ X), that sends A € Ex to [% divx AJ.

The kernel of this map is isomorphic to F; /rx2, the square-class group of of the base
field. The characteristic of I, is odd, therefore F; /r? = Z/27. The exact sequence

0—Ffr> = Ex — (Pic” X)s = 0

splits since (Pic® X)q, being an elementary 2-group, is a projective module over
Zfoz. All in all, we have

Ex =5 /r2 @ (Pic® X)g = PicX f2pic x. 0
Proposition 2. Let p € X be a point. Set Y := X \ {p}. Then p is even if and
only if [Ey : Ex] =2.
Proof. We have Ex = PicX />pic x. Moreover |2, Proposition 2.3.(1)] implies that

Ey & PicY opicy @ Z/27.

It now follows from [2, Proposition 2.7] that p is even if and only if the right hand
side is isomorphic to
(Pic® X /2Pic® X @ Z/2z) & Z/22.
Using again Eq. (1), we may replace the direct sum in the parenthesis by Ex. Thus
[p] € 2Pic X if and only if
Ey Z2Ex & Z/QZ.
This proves the proposition. O

Let p be an even point. It follows from the above proposition that there is a
(non-unique) square class A, € K*/k*? such that Ey is the disjoint union of Ex
and its coset A, - Ex. In particular, p is the unique point at which A, has an odd
valuation. It turns out that this property characterizes even points. A couple of
results in this note rely on the following criterion of evenness, obtained in [2]. For
the convenience of the reader and to make the exposition more complete we restate
it here explicitly.

Proposition 3 ([2, Proposition 3.2]). A point p € X is even if and only if there is
an element A\ € Ex\ fpy such that ordy A =1 (mod 2).

Proof. We have:
[p] €2Pic X <= TycixTgepivxp +22 =divy A
= Terox3genivx (0rd, A =1 (mod 2) A Vazp ordg A = ordg 22
<= dyekx (01‘dp A=1 (mod2)AVgxzpordgA=0 (mod 2)) O
The next result emphasizes the link between Ex and even points.

Theorem 4. For every € K* the following two conditions are equivalent:

(1) p€Ex,
(2) w is a local square at every even point.
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Proof. The implication (1) = (2) follows from [2, Proposition 3.4]. We need to
prove the other implication. Assume that p is a local square at every even point
and suppose that there is a point q; € X such that ordq, © = 1 (mod 2). The
divisor of u has a form

k
divy p =Y ai+22,

i=1
for some divisor 2 € Div X. The points q1,q2,...,qr are all the points where p
has odd valuations. Consequently q1, g2, ..., qr cannot be even, because p is a local
square at all even points. Moreover k must be greater than 1, since otherwise q
would be an even point by Proposition 3. The local square class group kg, /K>
consists of four classes:

K\ [KS? = {1,u,71',u7r}7

where ordg, u =0 (mod 2) and ordgq, 7 = 1 (mod 2). It follows from [6, Lemma, 2.1]
that there is A € K* and a point p € X such that:

ord, A =1
ordg, (A —u) >1
ordg,(A—1) >1 fori € {2,...,k}

orde A=0 (mod 2) forevery vte X \{p,qi,...,qx}

Then p is the unique point where A has an odd valuation. Hence p is even by
Proposition 3 and A = A,. We claim that the Hilbert symbol (A, 1), vanishes for
all v € X \ {p,q1}. Indeed, if v ¢ {p,q1,...,qx}, then both A\ and p have even
valuations at t and so (A, ). = 1. On the other hand, if v = q; for some ¢ > 2,
then the condition ord(A — 1) > 1 implies that A € KX?. Thus again (A, p1)q = 1.
Therefore, Hilbert reciprocity law asserts that

()‘7/~L)P : ()‘nu’)fh =1
Now (X, pt)q, = —1, because A = u (mod Kx?) and ordgq, p = 1 (mod 2). This
implies that also (A, ), = —1. This, however, is clearly impossible since p is an
even point and so A is a square at p. ]

The following proposition substantially strengthens [2, Proposition 3.11], which
was proved using different, more elementary methods.

Proposition 5. The set of even points has a positive density.

Proof. A classical theorem by F.K. Schmidt (see e.g. [8, Corollary V.1.11]) asserts
that min{deg 2 : 2 € DivX,deg 2 > 0} = 1. Tt follows that there must exist a
point 0 € X of an odd degree. Denote Y := X \ {0}, then PicY may be viewed
as the ideal class group of a Dedekind domain Oy = [ ey Oq4. The group PicY
is finite. Moreover, the points whose classes in PicY are 2-divisible are precisely
the even points of X (i.e. points whose classes are 2-divisible in Pic X) by [2,
Proposition 3.6]. Take now any effective divisor 2 € DivY, 2 2 0 and consider a
set
B(2) = {p Y | Fly = 2]y }.

Here [p]y stands for the class of p in PicY. Dirichlet density theorem for function
fields says that E(Z) has density 1/|picy] > 0. On the other hand, it is clear
that the set of even points is a finite disjoint union E(Z2;)U...UE(%y), where the
classes of 21, ..., P give rise to all 2-divisible elements in PicY. Thus its density
is ¥/|pPicy| > 0. O

In [2] we defined a relation ~— on the set of even points by the condition:

p—q if and only if Ex\(py \ Ex QKqX2.
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Let Ap and Ay be squares classes corresponding to p and g, respectively. Hilbert
reciprocity law asserts that
TTOw A =1

teX
Here (—, —). stands for the Hilbert symbol. If v is neither p nor g, then A, and A4
have even valuations at ¢t and so (Ap, A\q)c = 1. Therefore the above formula sim-
plifies to
(A Aq)p - (Ap, Agq)q = 1.

If we assume in addition that p — g, then A\, € K% and so (Ap, A\q)q = 1, which
implies that also (Ay,A\q)p = 1. Now, ordy, A\, = 1 (mod 2), hence A\q must be a
local square at p. This shows that q — p, proving a symmetry of the relation.

Observation 6 ([2, Lemma 4.3]). The relation — 1is symmetric.
We will need the following characterization of the relation —.

Lemma 7. Let p,q € X be two even points and A\, € K*/k*? be defined as above.
Then p — q is and only if q splits in K(\/Ap).

Proof. Take a polynomial f :=t* —\, € K[t] and let f € K(q)[t] be the reduction
of f modulo q. Then q splits in K(\/E) = K[t]/(f) if and only if f factors into linear
terms, if and only if Ap(q) is a square in the residue field K(q). Now, ordq A, is
even, so we may choose a representative of the square class A, that has valuation 0
at q. Abusing the notation slightly, denote it A, again. Then A,(q) € K(q)*? if
and only if A\, € K qXQ by the well known correspondence between square classes in
a local field and in its residue field (see e.g. [5, Lemma VI.1.1]). The last condition
means that p — q. (]

For the next result, we need the following (rather basic) fact from group theory.

Lemma 8. Let G be an abelian group and H be its finite subgroup. Assume that
H has an odd number of elements. Then for every g € G we have

g€2G < (g+ H) € 2(¢/n).
Proof. Assume that g + H = 2¢’ + H for some ¢’ € G. Then there is h € H such
that g = 2¢’ + h. Now, |H| =1 (mod 2), hence every element of H is 2-divisible.

In particular h = 21’ for some h’' € H. Consequently, g = (29’ + h’). This proves
one implication. The other one is (even more) trivial. O

Proposition 9. Take A € K* and let
A={peX|[p] €2PicX \e K}

be the set of the even points at which X\ is a local square. Then A has a positive
density.

Proof. The proof of this proposition combines ideas from the proofs of Proposi-
tion 5 and Lemma 7. Let K be a fixed algebraic closure of K. As in the proof
of Proposition 5, fix a point 0 € X of an odd degree and denote ¥ := X \ {o}.
Consider the ray class group C, with the modulus 0. Take the subgroup H := C,
of C, and let L; C K be the class field for H. Then Gal(L,/K) = Co/u.

We claim that the points that split completely in L; are precisely the even points
of X. Indeed, a point p € X splits completely in L; if and only if its Artin symbol

vanishes, i.e. (#) =1 € Gal(L;/K). This happens if and only if the class of p

in C, sits in H, i.e. the class of p is 2-divisible in C,. We have an exact sequence
(see [4, Section 9], this is a function field analog of [7, Theorem V.1.7]):

1 —=FS = K(0)* = C, = PicX = 0.
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In particular, if dego = 1, then C, = Pic X and the claim follows trivially. If
dego # 1, then
Pic X = Co /ker(C, — Pic X),

where

ker(Cy — Pic X)) = K(o)* [FX.
The cardinality of the latter group is
qdcgo -1

— :qdcgo—1+qdcgo—2+_._+1.

|K (")X/F<2| =
Recall that dego is odd. Thus, in the above sum we have an odd number of odd
integers. Therefore |K(0)* fr,| =1 (mod 2) and the claim follows from the preceding
lemma. In particular, it follows from Chebotarev density theorem that the density
of even points is 1/[z; : k]. This provides an alternative proof of Proposition 5.

So far we have not used A, at all. Hence, now let Ly := K (v/A) C K. As in the
proof of Lemma 7, observe that a point p € X splits in Ly if and only if A is a local
square at p.

There are two cases to consider. Either Ly is contained in L; or it is not. The
first case happens when A is a local square at every even point of X. In this case
the assertion is trivial. In particular, the relative density of A in set of even points
is 1.

The more interesting case is Lo ¢ L. We then take the composite field L :=
LiLy. Then a point p € X splits completely in L if and only if p is even (splitting
in Ly) and A is a local square at p (splitting in Ls). Again using Chebotarev density
theorem, we obtain the density of A equal §(A) = 1/L: k] > 0. In this case, the
relative density of A in the set of all even points is then 1/[L: £,] = 1/2. O

Corollary 10. For every A € K*, the set
B={peX|[p] €2PicX,\ ¢ K;*}
is either empty or has a positive density.

Proof. If A € Ex, then the set B is empty by [2, Proposition 3.4]. Otherwise, B
is the complement of the set A in the set of all even points. These two sets have
densities, hence so does B. It follows from the analysis of relative densities at the
end of the proof of Proposition 9 that for A ¢ Ex, we have

§(B) =6({[p] € 2Pic X }) — 6(A) = % -6({[p] € 2Pic X }) > 0. O
Remark. The celebrated Global Square Theorem (GST) says that an element is
locally a square almost everywhere if and only if it is a square globally if and only
if it is a local square everywhere. Proposition 9 together with Theorem 4 can be
considered to be a certain analog of GST for even points. These two results say
that an element is a local square at almost very even point if and only if it is a local
square at every even point if and only if it lies in Ex.

We may now define an (infinite) graph & = (V, E'), whose vertices are the even
points of X and edges are defined by the relation —, that is:

V={peX]|lp €2PicX}, E={(p,g) eV xV|p—q}.

Proposition 11. No vertex of & is adjacent to all other vertices. In particular,
& is not complete.
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Proof. Take an even point p € X and let 4 € K be an element such that ord, 4 =0
and p ¢ K2, Using [6, Lemma 2.1] we show that there is a point q € X and
A € Ex\ q) such that

ordy(A—p) >1 and ordg A = 1.

Thus we can write A = u + p for some p € Ky, ord, p > 1. It follows that in the
residue field we have

(M) (p) = p(p)? € K(p)*>.

The well know correspondence between square class groups of a local field in its
residue field ensures that A = p (mod KpXZ). In particular A is not a local square
at p.

Now q is the only point where A has an odd valuation, hence [gq] € 2Pic X by
Proposition 3. Moreover A = \q and the classes of A and p coincide in K /K2
Hence \q ¢ K;*, which means that q £ p. O

Theorem 12. The graph & is connected and has a diameter 2.
We present two different proofs of the theorem.

Proof A. The diameter of & is greater than 1 by Proposition 11. We show that it
does not exceed 2. Let p,q € X, p # q be two even points. Suppose that p £ g, i.e.
they are not connected by an edge of &. We will shows that there is an even point
v € X adjacent to both of them simultaneously. Fix square classes Ap, \q € K* /K2
such that

EX\{p}:EXU/\p~IEX and EX\{q}:EXoAq~]Ex.

Take L := K(1/Ap,/Aq), then a point ¢ € X splits completely in L if and only

if its Artin symbol is (”%) =1 € Gal(L/K). Thus Chebotarev density theorem

implies that the relative density of the even points that split completely in L in the
set of all even points is 1/[L: k] = 1/a. Take vt € X to be any even point that splits
completely in L. Then t splits simultaneously in K(/X,) and K(,/Xq), hence
t— pand v — q by Lemma 7. O

Proof B. As in proof A, let p,q € X, p # q be two non-adjacent even points. It
follows from [6, Lemma 2.1] that there is a point t € X and an element A € Ex\{o)
such that

ordy(A—1) > 1, ordg(A—1)>1 and ord, A =1

In particular, v is the only point where A has an odd valuation, hence [t] € 2Pic X
by Proposition 3. On the other hand, the condition ord,(A —1) = 1 implies that A
must be a local square at p. The same holds for q. Consequently, Ex\ (o} \ Ex =
A Ex CKPXQDKqXQ. This means that v — p and v — q. O
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