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Abstract We present a short introduction into the framework of piecewise determin-
istic Markov processes. We illustrate the abstract mathematical setting with a series
of examples related to dispersal of biological systems, cell cycle models, gene ex-
pression, physiologically structured populations, as well as neural activity. General
results concerning asymptotic properties of stochastic semigroups induced by such
Markov processes are applied to specific examples.
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1 Introduction

The aim of this article is to give a short mathematical introduction to piecewise
deterministic Markov processes (PDMPs) including some results concerning their
asymptotic behavior and providing biological models where they appear. Accord-
ing to a non-rigorous definition by Davis [4], the class of piecewise deterministic
Markov processes is a general family of stochastic models covering virtually all
non-diffusion applications. A more formal definition is the following: a continu-
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ous time Markov process X(t), t ≥ 0, is a PDMP if there is an increasing sequence
of random times (tn), called jump times, such that the sample paths of X(t) are
defined in a deterministic way in each interval (tn, tn+1). We consider two types
of behavior of the process at jump times: the process can jump to a new point or
can change the dynamics which defines its trajectories. PDMPs is a large family
of different stochastic processes which includes discrete time Markov processes,
continuous time Markov chains, deterministic processes with jumps, processes with
switching dynamics and some point processes. Although the discrete time Markov
processes play important role in applications we will not investigate them here be-
cause their theory differs from that of continuous time PDMPs and their applications
are sufficiently known [1].

The outline of this paper is as follows. In Section 2 we present a number of simple
biological models to illustrate possible applications of such processes. In Section 3
we collect relevant definitions and examples of stochastic semigroups. In Section 4
we recall two general results concerning the long-time behavior (asymptotic stabil-
ity and sweeping) of stochastic semigroups and we show how they can be applied in
the context of PDMPs with switching dynamics. Examples of applications of these
results to concrete biological models are also provided. The paper concludes with a
short summary and discussion.

2 Examples

2.1 Pure jump-type and velocity jump Markov processes

The simplest examples of PDMPs are continuous time Markov chains. Their theory
is well known, so we only mention here that they have a lot of biological applications
such as birth-death processes, epidemic models (see [1]) and, more recently, models
of genome evolution (see e.g. [21, 22]). Continuous time Markov chains belong to
a slightly larger class of the so-called pure jump-type Markov processes. A pure
jump-type Markov process is a Markov process which remains constant between
jumps. For example, the process used in a simple description of the grasshopper and
kangaroo movement [16] is an example of a pure jump-type Markov process, which
is not a Markov chain. A grasshopper jumps at random times tn from a point x to
the point x+Yn. We assume that jump times are the same as for a Poisson process
N(t) with intensity λ > 0, i.e., N(tn) = n, and that (Yn) is a sequence of independent
and identically distributed (i.i.d.) random vectors. Then the position X(t) of the
grasshopper at time t is given by

X(t) = X(0)+
N(t)

∑
n=1

Yn. (1)

The process as in (1) is called a compound Poisson process.
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A general pure jump-type homogeneous Markov process on a measurable space
(E,Σ) can be defined in the following way. Let λ : E→ [0,∞) be a given measurable
function and let P(x,B) be a given transition probability function on E, i.e., P(x, ·) is
a probability measure for each x ∈ E and the function x 7→ P(x,B) is measurable for
each B ∈ Σ . Let t0 = 0 and let X(0) = X0 be an E-valued random variable. For each
n≥ 1 we can chose the nth jump time tn as a positive random variable satisfying

Prob(tn− tn−1 ≤ t|Xn−1 = x) = 1− e−λ (x)t , t ≥ 0,

and we define

X(t) =
{

Xn−1 for tn−1 ≤ t < tn,
Xn for t = tn,

where the nth post-jump position Xn is an E-valued random variable such that

Prob(Xn ∈ B|Xn−1 = x) = P(x,B).

Another type of simple PDMPs is a velocity jump process. An individual is mov-
ing in the space Rd with a constant velocity and at jump times (tn) it chooses a new
velocity. We assume that jump times are the same as for a Poisson process N(t) with
intensity λ . It means that F(t) = 1− e−λ t is the probability distribution function of
tn− tn−1. Let x(t) be the position and v(t) be the velocity of an individual at time t.
We assume that for every x,v ∈ Rd , there is a probability Borel measure P(x,v,B)
on Rd which describes the change of the velocity after a jump, i.e.,

Prob(v(tn) ∈ B |x(t−n ) = x, v(t−n ) = v) = P(x,v,B)

for every Borel subset B of Rd , where x(t−n ) and v(t−n ) are the left-hand side lim-
its of x(t) and v(t) at the point tn. Between jumps the pair (x(t),v(t)) satisfies the
following system of ordinary differential equations{

x′(t) = v(t),

v′(t) = 0.
(2)

Then X(t) = (x(t),v(t)), t ≥ 0, is a PDMP corresponding to this movement.
There are a number of interesting examples of velocity jump processes with ap-

plications to aggregation and chemotaxis phenomena (see e.g. [8]). The simplest
one is the symmetric movement on the real line R. In this case we assume that an
individual is moving with constant speed, say one, and at a jump time it changes
the direction of movement to the opposite one. A PDMP corresponding to the sym-
metric movement has values in the space R×{−1,1} and P(x,v,{−v}) = 1 for
v = −1,1. This process was first studied by Goldstein [7] and Kac [10] in connec-
tion with the telegraph equation. It was called the Goldstein-Kac telegraph process
afterwards and studied thoroughly in [11].

More advanced examples of velocity jump processes and their comparison with
dispersal of cells, insects and mammals are given in [16, 26]. One can also con-
sider velocity jump processes defined in a bounded domain G. Examples of such
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processes are stochastic billiards [6] which do not change velocity in the interior
of G but when an individual or a point hits the boundary, a new direction is cho-
sen randomly from directions that point back into the interior of G, and the motion
continues. PDMPs with jumps at the boundary appear as well in the theory of gene
regulatory systems, for example in a model of the production of subtilin by the bac-
terium Bachillus subtilis [9].

2.2 Two phase cell cycle model

Now we consider another type of PDMPs which is a flow with jumps described
in the following way. Let E be a topological space and let a continuous function
π : R+×E→ E be a semiflow on E, i.e.,

(a) π0x = x for x ∈ E,
(b) πs+tx = πt(πsx) for x ∈ E, s, t ∈ R+.

The semiflow πt describes the movement of points between jumps, i.e., if x is the
position of the point at time t then πτ x is its position at time t +τ . The point located
at x can jump with an intensity λ (x) to a point y. The location of y is described by a
transition function P(x,B), i.e., P(x,B) is the probability that y ∈ B. After the jump
it continues movement according to the same principle.

A simple example of a flow with jumps is the following size-structure model of
a cellular population (see e.g. [14]). The cell size (mass, volume) x > 0 grows with
rate g(x) and it splits with intensity ϕ(x) into two daughter cells with size x/2, i.e.,
P(x,B) = 1 if x/2∈ B and P(x,B) = 0 otherwise. After division we consider the size
of a daughter cell, etc., and we obtain a process X(t), t > 0, which describes the size
of consecutive descendants of a single cell. The process X(t), t > 0, is a PDMP.

Another example of a flow with jumps appears in the Rubinow model of a cellular
population [18]. In this model we assume that a newborn cell has size x = m, then
it grows with rate g(x) and when it reaches size x = 2m it splits into two daughter
cells with sizes x = m. Similarly to the previous model we consider a process X(t),
t > 0, which describes the size of consecutive descendants of a single cell. Although
the jump times in this process are not random, X(t), t > 0, is also a PDMP.

A more advanced flow with jumps is a two phase cell cycle model which is
a combination of the two size-structured models described above. The cell cycle
is a series of events that take place in a cell leading to its replication [15]. There
are several models of the cell cycle but from a mathematical point of view we can
simplify these models and we assume that there are only two phases in the cell
cycle: the resting phase A with a random duration tA, when a cell is growing, and
the proliferating phase B with a constant duration tB. Here we describe a continuous
time version of the Tyrcha model [29] and we show that it can be treated as a PDMP.
The crucial role in the model is played by a parameter x which describes the state of
a cell in the cell cycle. It is not clear what x exactly should be. We simply interpret
x as a cell size. The cell size x > 0 grows with rate g(x) and enters the phase B
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with intensity ϕ(x). It is clear that the process X(t), t > 0, which describes the size
of consecutive descendants of a single cell is piecewise deterministic but it is non-
Markovian because its future X(t), t ≥ t0, depends not only on the random variable
X(t0) but also on the phase in which it is at the time t0.

Now we extend the process X(t), t ≥ 0, to obtain a homogeneous PDMP. A
new process X̃(t), t ≥ 0, is defined on the state space [0,∞)× [0, tB]×{1,2} in the
following way. Let X̃(t) = (X(t),y, i), where i = 1 if at time t a cell is in the phase
A and i = 2 if it is in the phase B. We let y = 0 if the cell is in the phase A and
otherwise let y be the time which elapsed since the cell entered the phase B. Let sn
be a time when a cell from the nth generation enters the phase B. Since the duration
of the phase B is constant and is equal to tB, a cell from the nth generation splits
at time tn = sn + tB. Between these jump points the coordinates of the process X̃(t)
satisfy the following system of ordinary differential equations

X̃ ′1(t) = g(X̃1(t)),

X̃ ′2(t) =
{

0, if X̃3(t) = 1,
1, if X̃3(t) = 2,

X̃ ′3(t) = 0.

(3)

The transition rates at the jump points are given by

X̃1(sn) = X̃1(s−n ), X̃2(sn) = X̃2(s−n ) = 0, X̃3(sn) = 2,

and
X̃1(tn) = 1

2 X̃1(t−n ), X̃2(tn) = 0, X̃3(tn) = 1.

Let πtx0 = x(t) be the solution of the equation x′ = g(x) with initial condition x(0) =
x0. The distribution function of sn− tn−1 is given by

F(t) = 1− exp
{
−
∫ t

0
ϕ(πsx0)ds

}
, (4)

where x0 = X̃1(tn−1), while that of tn− sn by F(t) = 0 for t < tB and F(t) = 1 for
t ≥ tB.

The life-span tn− tn−1 of a cell with initial size x0 has the distribution function

F(t) =

{
0, if t < tB,

1− exp
{
−
∫ t−tB

0 ϕ(πsx0)ds
}
, if t ≥ tB,

(5)

and we have the following relation between the distributions of the random variables
X̃(tn) and X̃(tn−1):

X̃(tn)
d
= 1

2 πtB

(
Q−1(Q(X̃(tn−1))+ξn

))
, (6)
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where ξn is a random variable independent of X̃(tn−1) with exponential distribution

of mean one and Q(x) =
x∫

0

ϕ(r)
g(r)

dr, x > 0.

2.3 Gene expression

Another class of PDMPs is the family of processes with switching dynamics. As-
sume that we have a finite number of semiflows π i

t , i∈ I = {1, . . . ,k} on a topological
space E. The state of the system is a pair (x, i) ∈ E× I. If the system is at state (x, i)
then x can change according to the semiflow π i

t and after time t reaches the state
(π i

t (x), i) or it can switch to the state (x, j) with a bounded and continuous intensity
q ji(x). The pair (x(t), i(t)) constitutes a Markov process X(t) on E× I.

Now we show how PDMPs can be applied to model gene expression. Gene
expression is a complex process which involves three processes: gene activa-
tion/inactivation, mRNA transcription/decay, and protein translation/decay. We con-
sider a simplified version of the model of gene expression introduced by Lipniacki
et al. [13] and studied in [3]. We assume that the production of proteins is regulated
by a single gene and we omit the intermediate process of mRNA transcription. A
gene can be in an active or an inactive state and it can be transformed into an active
state or into an inactive state with intensities q0 and q1, respectively. The rates q0
and q1 depend on the number of protein molecules X(t). If the gene is active then
proteins are produced with a constant speed P. Protein molecules undergo the pro-
cess of degradation with rate µ in both states of the gene. It means that the process
X(t), t ≥ 0, satisfies the equation

X ′(t) = PA(t)−µX(t), (7)

where A(t) = 1 if the gene is active and A(t) = 0 in the opposite case. Then the
process X̃(t) = (X(t),A(t)), t ≥ 0, is a PDMP. Since the right-hand side of equation
(7) is negative for X(t)> P

µ
we can restrict values of X(t) to the interval

[
0, P

µ

]
and

the process X̃(t) is defined on the state space
[
0, P

µ

]
×{0,1}.

The process X̃(t) has jump points when the gene changes its activity. Formula (4)
allows us to find the distribution of the time between consecutive jumps. Observe
that if x0 is the number of protein molecules at a jump time, then after time t we
have

π
0
t x0 = x0e−µt , π

1
t x0 =

P
µ
+
(

x0−
P
µ

)
e−µt ,

protein molecules in an inactive and an active state, respectively. From (4) it follows
that the probability distribution function of the length of an inactive state is given by

1− exp
{
−
∫ t

0
q0

(
x0e−µs

)
ds
}
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and of an active state by

1− exp
{
−
∫ t

0
q0

(P
µ
+
(

x0−
P
µ

)
e−µs

)
ds
}
.

2.4 Neural activity

A neuron is an electrically excitable cell that processes and transmits information
through electrical signals. The neuron’s membrane potential Vm is the difference
between the inside potential and the outside potential. If a cell is in the resting state,
then this potential, denoted by Vm,R, is about −70 mV. The depolarization is defined
as

V =Vm−Vm,R.

A cell is said to be excited (or depolarized) if V > 0 and inhibited (or hyperpolar-
ized) if V < 0. The Stein’s model [24, 25] describes how the depolarization V (t) is
changing in time. The cell is initially at rest so that V (0) = 0. Nerve cells may be
excited or inhibited through neuron’s synapses — junctions between nerve cells (or
between muscle and nerve cell) such that electrical activity in one cell may influ-
ence the electrical potential in the other. Synapses may be excitatory or inhibitory.
We assume that there are two nonnegative constants aE and aI such that if at time
t an excitation occurs then V (t+) = V (t−) + aE and if an inhibition occurs then
V (t+) = V (t−)− aI . The jumps (excitations and inhibitions) may occur at random
times according to two independent Poisson processes NE(t), NI(t), t ≥ 0, with
positive intensities λE and λI , respectively. Between jumps the depolarization V (t)
decays according to the equation V ′(t) = −αV (t). When a sufficient (threshold)
level θ > 0 of excitation is reached, the neuron emits an action potential (fires).
This will be followed by an absolute refractory period of duration tR, during which
V ≡ 0 and then the process starts again.

We now describe the neural activity as a PDMP. Since the refractory period has a
constant duration we can use a model similar to that of Section 2.2 with two phases
A and B, where A is the subthreshold phase and B is the refractory phase of duration
tR. We consider two types of jump points: when the neuron is excited or inhibited
and the ends of refractory periods. Thus, we can have one or more jumps inside the
phase A.

Let X̃(t) = (V (t),0,1) if the neuron is in the phase A and X̃(t) = (V (t),y,2) if
the neuron is in the phase B, where y is the time since the moment of firing. The
process X̃(t) = (X̃1(t), X̃2(t), X̃3(t)), t ≥ 0, is defined on the state space (−∞,θ)×
[0, tR]×{1,2} and between jumps it satisfies the following system of equations
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X̃ ′1(t) =−αX̃1(t),

X̃ ′2(t) =
{

0, if X̃3(t) = 1,
1, if X̃3(t) = 2,

X̃ ′3(t) = 0.

(8)

Let t0, t1, t2, . . . be the subsequent jump times. We denote by F the subset of jump
times consisting of firing points. If the neuron is in the phase A, i.e., X̃3(t) = 1, the
depolarization can jump with intensity λ = λE +λI . It means that F(t) = 1−e−λ t is
the distribution function of tn− tn−1 if tn−1 /∈F . If tn−1 ∈F then the distribution of
tn− tn−1 is F(t) = 0 for t < tR and F(t) = 1 for t ≥ tR. The transition at a jump point
depends on the state of the neuron (its phase and the value of its depolarization).
If X̃(t−n ) = (0, tR,2) then X̃(tn) = (0,0,1) with probability one; if X̃(t−n ) = (x,0,1)
and x < θ −aE then X̃(tn) = (x+aE ,0,1) with probability λE/λ and X̃(tn) = (x−
aI ,0,1) with probability λI/λ ; while if X̃(t−n )= (x,0,1) and x≥ θ−aE then X̃(tn)=
(0,0,2) with probability λE/λ and X̃(tn) = (x−aI ,0,1) with probability λI/λ .

2.5 Size structured population model

In this section we return to size structured models but instead of a single cell line
we consider the size distribution of all cells in the population. This model can serve
as a prototype of individual based models like age and phenotype structured models
as well as models of coagulation-fragmentation processes.

The size x(t) of a cell grows according to the equation

x′(t) = g(x(t)).

A single cell with size x replicates with rate b(x) and dies with rate d(x). A daughter
cell has a half size of the mother cell. Let us assume that at time t we have k cells
and denote by x1(t),x1(t), . . . ,xk(t) their sizes. We can assume that a state of the
population at time t is the set

{x1(t), . . . ,xk(t)}

and that the evolution of the population is a stochastic process

X(t) = {x1(t), . . . ,xk(t)}.

Since the values of this process are sets of points the process X(t) is called a point
process. Thought such approach is a natural one it has one important disadvantage.
We are unable to describe properly a situation when two cells have the same size.
One solution of this problem is to consider X(t) as a process whose values are
multisets. We recall that a multiset (or a bag) is a generalization of the notion of a
set in which members are allowed to appear more than once. Another artful solution
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of this problem is to consider X(t) as a process with values in the space of measures
given by

X(t) = δx1(t)+ · · ·+δxk(t),

where δa denotes the Dirac measure at point a, i.e., δa is the probability measure
concentrated at the point a. This approach has some disadvantages also, for example
it is rather difficult to consider differential equations on measures. Yet another solu-
tion of this problem is to consider a state of the system as k-tuples (x1(t), . . . ,xk(t)).
Since some cells can die or split into two cells, the length of the tuple changes in
time. To omit this difficulty we introduce an extra ”death state” ∗ and we describe
the state of the population at time t as an infinite sequence of elements from the
space R+

∗ = [0,∞)∪{∗} which has numbers x1(t), . . . ,xk(t) on some k positions and
it has ∗ on the remaining positions. In order to have uniqueness of states we intro-
duce an equivalence relation ∼ in the space E of all R+

∗ - valued sequences x such
that xi = ∗ for all but finitely many i. Two sequences x ∈ E and y ∈ E are equivalent
with respect to ∼ if y can be obtained as a permutation of x, i.e., x ∼ y if and only
if there is a bijective function σ : N→ N such that y = (xσ(1),xσ(2), . . .). The state
space Ẽ in our model is the space of all equivalence classes with respect to ∼, i.e.,
Ẽ = E/∼.

Now we can describe the evolution of the population as a stochastic process
X(t) = [(x1(t),x2(t), . . .)] with values in the space Ẽ where [] denotes an equivalence
class. The process X(t) has jump points when one of the cells dies or replicates. We
define g(∗) = b(∗) = b(∗) = 0 and admit a convention that x(t) = ∗ is the solution
of the equation x′(t) = 0 with initial condition x(0) = ∗. Between jumps the process
X(t) satisfies the equation

X ′(t) = [(g(x1(t)),g(x2(t)), . . .)]. (9)

For t ≥ 0 and x0 ∈ R+
∗ we denote by π(t,x0) the solution x(t) of the equation

x′(t) = g(x(t)) with initial condition x(0) = x0. Let x0 = [(x0
1,x

0
2, . . .)]∈ Ẽ and define

π̃tx0 = [(πtx0
1,πtx0

2, . . .)].

The jump rate function ϕ(x) at state x = [(x1,x2, . . .)] is the sum of rates of deaths
and divisions of all cells:

ϕ(x) =
∞

∑
i=1

(b(xi)+d(xi)). (10)

If x0 ∈ Ẽ is the initial state of the population at a jump time tn, then the probability
distribution function of tn+1− tn is given by

1− exp
{
−
∫ t

0
ϕ(π̃sx0)ds

}
. (11)

At time tn one of the cells dies or replicates. If a cell dies we change the sequence
by removing the cell’s size from the sequence and we have
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Prob
(
X(tn) = [(x1(t−n ), . . . ,xi−1(t−n ),xi+1(t−n ), . . .)]

)
=

di(xi(t−n ))

ϕ(X(t−n ))

for i ∈N. If a cell replicates we remove its size from the sequence and add two new
elements in the sequence with sizes of the daughter cells and we have

Prob
(
X(tn) = [(x1(t−n ), . . . ,xi−1(t−n ), 1

2 xi(t−n ), 1
2 xi(t−n ),xi+1(t−n ), . . .)]

)
=

bi(xi(t−n ))

ϕ(X(t−n ))

for i ∈ N. In this way we have checked that the point process X(t), t ≥ 0, is a
homogeneous PDMP with values in Ẽ.

We can identify the space Ẽ with the space N of finite counting measures on R+

by a map η : Ẽ→N given by

η(x) = ∑
{i: xi 6=∗}

δxi (12)

where x = [(x1,x2, . . .)]. It means that the process η(X(t)), t ≥ 0, is a homogeneous
PDMP with values in N .

Remark 1. In order to describe the jump transformation at times tn we need, for-
mally, to introduce a σ -algebra Σ of subset of Ẽ to define a transition function
P : Ẽ×Σ → [0,1]. Usually, Σ is a σ -algebra of Borel subsets of Ẽ, thus we need to
introduce a topology on the space Ẽ. Since the space N is equipped with the topol-
ogy of weak convergence of measures, we can define open sets in Ẽ as preimages
through the function η of open sets in N . Another way to introduce a topology is
to construct directly a metric on the space Ẽ. Generally, a point process describes
the evolution of configurations of points in a state space which is a metric space
(S,ρ). First, we extend the state space S by adding ”the death element” ∗. We need
to define a metric on S∪{∗}. The best situation is if S is a proper subset of a larger
metric space S′. Then we simply choose ∗ as an element from S′ which does not
belong to S and we keep the same metric. In the other case, first we choose x0 ∈ S
and define ρ(∗,x) = 1+ρ(x0,x) for x ∈ S. Next, we define a metric d on the space
E by

d(x,y) = max
i∈N

ρ(xi,yi)

and, finally, we define a metric d̃ on the space Ẽ by

d̃([x], [y]) = min{d(a,b) : a ∈ [x], b ∈ [y]}.

We next show that the topology in Ẽ induced from N is equivalent to the topology
defined by d̃. Indeed, a sequence (µn) of finite counting measures converges weakly
to a finite counting measure µ iff the measures µ and µn, n ≥ 1 can be represented
in the form
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µ =
k

∑
i=1

δxi , µn =
kn

∑
i=1

δxi,n ,

where kn = k for sufficiently large n and limn→∞ ρ(xi,n,xi) = 0 for i = 1, . . . ,k. Thus
the convergence of counting measures implies that the sequence xn =(x1,n, . . . ,xkn,n)
converges to x = (x1, . . . ,xk) in the metric d, and the sequence [xn] converges to [x]
in d̃. The proof of the opposite implication goes in the same way.

3 Stochastic semigroups

Most of PDMPs define stochastic semigroups which describe the evolution of den-
sities of the distribution of these processes. n this section we recall the definition of
a stochastic semigroup and provide a couple of examples of such semigroups.

Let the triple (E,Σ ,m) be a σ -finite measure space. Denote by D the subset of
the space L1 = L1(E,Σ ,m) which contains all densities

D = { f ∈ L1 : f ≥ 0, ‖ f‖= 1}.

A linear operator P : L1→ L1 is called a stochastic (or Markov) operator if P(D)⊂
D. Let {P(t)}t≥0 be a C0-semigroup, i.e., it satisfies the following conditions:

(a) P(0) = I, i.e., P(0) f = f ,
(b) P(t + s) = P(t)P(s) for s, t ≥ 0,
(c) for each f ∈ L1 the function t 7→ P(t) f is continuous.

Then the C0-semigroup {P(t)}t≥0 is called stochastic iff each operator P(t) is
stochastic. The infinitesimal generator of {P(t)}t≥0 is the operator A with domain
D(A)⊆ L1 defined as

A f = lim
t↓0

1
t
(P(t) f − f ), D(A) = { f ∈ L1 : lim

t↓0

1
t
(P(t) f − f ) exists}.

Our first example of a stochastic semigroup is the following. Let g : Rd →Rd be
a C1 function and consider the differential equation

x′(t) = g(x(t)). (13)

Assume that E is a measurable subset of Rd with a positive Lebesgue measure such
that for each point x0 ∈ E the solution x(t) of (13) with x(0) = x0 exists and x(t)∈ E
for all t ≥ 0. We denote this solution by πtx0. Let Σ be the σ -algebra of the Borel
subsets of E and m be the Lebesgue on E. Let f : E→ [0,∞) be a density and let X0
be a random vector with values in E with density f , i.e., Prob(X0 ∈ B) =

∫
B f (x)dx

for each Borel subset B of E. Let X(t) = πtX0. Then the density of the distribution
of the random vector X(t) is given by
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P(t) f (x) =

 f (π−tx)det
[ d

dx
π−tx

]
, if x ∈ πt(E),

0, if x /∈ πt(E),

where π−t denotes the inverse of the one-to-one and onto mapping πt : E → πt(E).
The operators P(t), extended linearly from D to L1, form a stochastic semigroup. If
f is a C1 function then the function u(t,x) = P(t) f (x) satisfies the following partial
differential equation

∂u(t,x)
∂ t

=−div(g(x)u(t,x)). (14)

If A is an infinitesimal generator of the semigroup {P(t)}t≥0 then

A f (x) =−div(g(x) f (x)) =−
d

∑
i=1

∂

∂xi
(gi(x) f (x)). (15)

Now we consider the processes X(t) = (x(t), i(t)) with switching dynamics de-
scribed in Section 2.3. We assume that each flow π i

t , i ∈ I = {1, . . . ,k}, is defined as
the solution of a system of differential equations x′= gi(x) on a measurable subset E
of Rd . Let {Si(t)}t≥0 be the stochastic semigroup related to π i

t and let the operator Ai
be its generator. If f = ( f1, . . . , fk) is a vertical vector consisting of functions fi such
that fi ∈D(Ai), we set A f = (A1 f1, . . . ,Ak fk) which is also a vertical vector. We de-
fine q j j(x) =−∑i 6= j qi j(x) and denote by Q(x) the matrix [qi j(x)]. Then the process
X(t) induces a stochastic semigroup on the space L1(E× I,B(E× I),m) with the
infinitesimal generator Q+A. Here B(E× I) is the σ -algebra of Borel subsets of
E× I and m is the product measure on B(E× I) given by m(B×{i}) = µ(B).

Finally, we provide stochastic semigroups for the flows with jumps X(t) from
Section 2.2. Let πtx be a the semiflow describing solutions of equation (13) and let
λ (x) be the intensity of jumping from the point x to a point y ∈ B chosen according
to the transition probability P(x,B). Suppose that there is a stochastic operator P on
L1(E,Σ ,m) induced by P(x, ·), i.e.,∫

E
P(x,B) f (x)m(dx) =

∫
B

P f (x)m(dx) for all B ∈ Σ , f ∈ D. (16)

If λ is bounded then the process X(t) induces a stochastic semigroup on the space
L1(E,Σ ,m) with infinitesimal generator of the form A0 f −λ f +P(λ f ), where A0 is
as in (15). If λ is unbounded then one may need to impose additional constraints on
A0, λ , and/or P to obtain a stochastic semigroup for X(t), see [27, 28] for necessary
and sufficient conditions. For the particular example of the model of the cell cycle
on E = (0,∞) with one phase we have P f (x) = 2 f (2x) for x > 0. Suppose that
g : (0,∞)→ (0,∞) is continuous and ϕ/g is locally integrable with∫

∞

x̄

1
g(r)

dr =
∫

∞

x̄

ϕ(r)
g(r)

dr = ∞ (17)
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for some x̄ > 0. Then the process X(t) induces a stochastic semigroup {P(t)}t≥0 on
L1 = L1((0,∞),Σ ,m), where Σ is the Borel σ -algebra of subsets of (0,∞) and m is
the Lebesque measure, with infinitesimal generator of the form [14]

A f (x) =− d
dx

(g(x) f (x))−ϕ(x) f (x)+2ϕ(2x) f (2x)

defined for f ∈D(A) = D0∩L1
ϕ , where L1

ϕ = { f ∈ L1 : ϕ f ∈ L1} and

D0 = { f ∈ L1 : g f is absolutely continuous, (g f )′ ∈ L1},

together with the boundary condition limx→0 g(x) f (x) = 0 when
∫ x̄

0 1/g(r)dr < ∞.
For the two phase model we can restrict the state space to the set (0,∞)×{0}×

{1} ∪ (0,∞)× [0, tB]×{2}. We consider the corresponding stochastic semigroup
{P(t)}t≥0 on the product space L1((0,∞))×L1((0,∞)× [0, tB]). Let f = ( f1, f2) be
the density of the process at time t, where f1(t,x) and f2(t,x,y) denote the partial
densities related to the phases A and B, respectively. If f1, f2 are smooth functions
then they satisfy the following equations

∂ f1(t,x)
∂ t

=− ∂

∂x
(g(x) f1(t,x))−ϕ(x) f1(t,x)+2 f2(t,2x, tB),

∂ f2(t,x,y)
∂ t

=− ∂

∂x
(g(x) f2(t,x,y))−

∂

∂y
( f2(t,x,y)),

with the boundary conditions

f2(t,x,0) = ϕ(x) f1(t,x), x > 0, t ≥ 0,

lim
x→0

g(x) f1(t,x) = lim
x→0

g(x) f2(t,x,y) = 0, y ∈ [0, tB], t ≥ 0.

4 Long time behavior

In this section we study asymptotic properties of stochastic semigroups induced
by PDMPs. We will consider two properties: asymptotic stability and sweeping.
A stochastic semigroup {P(t)}t≥0 on L1(E,Σ ,m) is called asymptotically stable if
there is a density f∗ such that

lim
t→∞
‖P(t) f − f∗‖= 0 for f ∈ D. (18)

A density f∗ which satisfies (18) is invariant , i.e., P(t) f∗ = f∗ for each t > 0.
A stochastic semigroup {P(t)}t≥0 is called sweeping with respect to a set B ∈ Σ

if for every f ∈ D

lim
t→∞

∫
B

P(t) f (x)m(dx) = 0.
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Let us now recall two general results concerning asymptotic properties of par-
tially integral semigroups. A stochastic semigroup {P(t)}t≥0 on L1(E,Σ ,m) is
called partially integral if there exists a measurable function k : (0,∞)×E×E →
[0,∞), called a kernel, such that

P(t) f (x)≥
∫

E
k(t,x,y) f (y)m(dy)

for every density f and ∫
E

∫
E

k(t,x,y)m(dy)m(dx)> 0

for some t > 0.

Theorem 1 ([17]). Let {P(t)}t≥0 be a partially integral stochastic semigroup. As-
sume that the semigroup {P(t)}t≥0 has a unique invariant density f∗. If f∗ > 0 a.e.,
then the semigroup {P(t)}t≥0 is asymptotically stable.

To prove asymptotic stability, it is sometimes difficult to check directly that the
semigroup {P(t)}t≥0 has a unique invariant density f∗. Therefore, the following
theorem can be useful in checking whether a semigroup is asymptotically stable or
sweeping.

Theorem 2 ([19]). Let E be a metric space and Σ = B(E) be the σ–algebra
of Borel subsets of E. We assume that a partially integral stochastic semigroup
{P(t)}t≥0 with the kernel k has the following properties:
(a) for every f ∈ D we have

∫
∞

0 P(t) f dt > 0 a.e.,
(b) for every y0 ∈ E there exist ε > 0, t > 0, and a measurable function η ≥ 0 such
that

∫
η dm > 0 and

k(t,x,y)≥ η(x)

for x ∈ E and y ∈ B(y0,ε), where B(y0,ε) is the open ball with center y0 and ra-
dius ε . Then the semigroup {P(t)}t≥0 is asymptotically stable if it has an invariant
density and it is sweeping with respect to compact sets if it has no invariant density.
In particular, if E is a compact set then the semigroup {P(t)}t≥0 is asymptotically
stable.

We are now ready to apply Theorems 1 and 2 to stochastic semigroups induced
by PDMPs with switching dynamics. In many applications a PDMP with switch-
ing dynamics is induced by flows π i

t , i ∈ I = {1, . . . ,k}, acting on an open subset
G of Rd , and we start with a stochastic semigroup {P(t)}t≥0 defined on the space
L1(G× I,B(G× I),dx× di), but this semigroup has a stochastic attractor having
some additional properties. By a stochastic attractor we understand here a measur-
able subset S of G such that for every density f ∈ L1(G× I) we have

lim
t→∞

∫
S×I

P(t) f (x, i)dxdi = 1. (19)
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For example, if there exists a measurable subset S of G such that x(t)(ω) ∈ S for
t > t(ω) for almost every ω then S is a stochastic attractor. If a stochastic semigroup
has a stochastic attractor S then it is enough to study the restriction of the semigroup
{P(t)}t≥0 to the space L1(E,B(E),m), where E = S× I and dm = dx×di.

Let us now explain how to check conditions (a) and (b) of Theorem 2. We can
obtain condition (a) if we check that m-almost every two states (x, i) ∈ E, (y, j) ∈ E
can be joined by a path of the process (x(t), i(t)). To be precise there exist n ∈ N,
i = (i1, . . . , in) ∈ In, and t = (t1, . . . , tn) ∈ (0,∞)n such that i1 = i, in = j, and

y = π
i
t(x) = π

in
tn ◦ · · · ◦π

i2
t2 ◦π

i1
t1 (x).

Condition (b) can be checked by using Lie brackets. We now recall the definition
of Lie brackets. Let a(x) and b(x) be two vector fields on Rd . The Lie bracket [a,b]
is a vector field given by

[a,b] j(x) =
d

∑
k=1

(
ak

∂b j

∂xk
(x)−bk

∂b j

∂xk
(x)
)
.

Let a PDMP with switching dynamics be defined by the systems of differential
equations x′ = gi(x), i ∈ I, with intensities q ji(x). We say that the Hörmander’s
condition holds at a point x if qi j(x)> 0 for all 1≤ i, j ≤ k and if vectors

g2(x)−g1(x), . . . ,gk(x)−g1(x), [gi,g j](x)1≤i, j≤k, [gi, [g j,gl ]](x)1≤i, j,l≤k, . . .

span the space Rd . Let y0 ∈ S and assume that there exist n∈N, i∈ In and t∈ (0,∞)n

such that the Hörmander’s condition holds at the point y given by

y = π
i
t(y0),

then y0 satisfies condition (b). This fact is a simple consequence of [2, Theorem 4].
Finally, we give some examples of applications to biological models.

Example 1 (Gene expression). The model of gene expression from Section 2.3 is a
special case of the following PDMP with switching dynamics. We have two flows
induced by one-dimensional differential equations x′ = gi(x), i = 1,2, where gi are
C∞-functions with the following property: there exist points x1 < x2 such that

gi(x)> 0 for x < xi and gi(x)< 0 for x > xi.

It is obvious that almost all trajectories enter the set S = [x1,x2]. Observe that any
two states (x, i) and (y, j) with x,y ∈ (x1,x2) and i, j ∈ {0,1} can be joined by a
path of the process (x(t), i(t)). Hence, condition (a) of Theorem 2 is fulfilled. Since
g2(x)− g1(x) > 0 for x ∈ S, the Hörmander’s condition holds at each point x ∈ S
and, therefore, condition (b) is fulfilled. Since the set E = S×{1,2} is compact,
the semigroup induced by our PDMP is asymptotically stable. More precisely, there
exists a density f∗ : R×{1,2} → [0,∞) such that f∗(x, i) = 0 for x /∈ [x1,x2] and
limt→∞ ‖P(t) f − f∗‖= 0 for every density f ∈ L1(R×{1,2}).
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Example 2 (Population model with and without Allee effect). Consider a PDMP with
switching dynamics induced by two differential equations

x′(t) = λ

(
1− x(t)

K
− Ai

1+Bx(t)

)
x(t), (20)

where i = 0,1 and A,B,K are positive constants such that KB > 1 and

1 < A <
(BK +1)2

4KB
. (21)

The number x(t) > 0 describes the size of a population. If i = 0 then (20) reduces
to a logistic equation and limt→∞ x(t) = K. If i = 1 then (20) has three stationary
states x0,x1,x2 such that x0 = 0 < x1 < x2 < K with the following properties. If
x(0) ∈ (0,x1) then limt→∞ x(t) = 0 (called Allee effect) and if x(0) ∈ (x1,∞) then
limt→∞ x(t) = x2. Now we consider a PDMP induced by these equations with posi-
tive and continuous intensities of switching. Almost all trajectories enter the interval
S = [x2,K], thus S is a stochastic attractor. Since almost all states in E = S×{0,1}
can be joined by paths of the process (x(t), i(t)) and g0(x)> g1(x), the assumptions
of Theorem 2 are fulfilled and the semigroup induced by our process is asymptoti-
cally stable.

Example 3 (Population model with two different birth rates). Now we consider a
population model with a constant death rate µ and birth rates bi(x)= bi−cx, i= 0,1,
which can change in time. Thus, the size x ≥ 0 of the population is described by a
PDMP with switching dynamics defined by two differential equations

x′ = gi(x)

with gi(x) = (bi−cx)x−µx for i = 0,1. Denote by qi(x) the intensities of changing
the state i to 1− i. We assume that b0 < µ and b1 > µ and that the intensities qi(x)
are continuous, positive, and bounded functions. Observe that gi(0) = 0 for i = 0,1,
g0(x) < 0 for x > 0 and that there exists a point a > 0 such that g1(x) > 0 for
x ∈ (0,a) and g1(x)< 0 for x > a. The interval S = (0,a] is a stochastic attractor for
this PDMP. Since almost all states in E = S×{0,1} can be joined by paths of the
process (x(t), i(t)) and g0(x)< g1(x) for x > 0, conditions (a) and (b) of Theorem 2
are fulfilled. Consequently, the semigroup induced by our process is asymptotically
stable or sweeping from compact subsets of E.

In order to get asymptotic stability of this semigroup, we need to check whether
this semigroup has an invariant density. Observe that if f (x, i) is an invariant den-
sity then the functions fi(x) = f (x, i) for i = 0,1 should be stationary solutions of
the Fokker-Planck equation, i.e., f0, f1 satisfy the following system of differential
equations {

(g0(x) f0(x))′ = q1(x) f1(x)−q0(x) f0(x),

(g1(x) f1(x))′ = q0(x) f0(x)−q1(x) f1(x).
(22)

Fix a point x0 ∈ (0,a) and let
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r(x) =
q0(x)
g0(x)

+
q1(x)
g1(x)

and R(x) =
∫ x

x0

r(s)ds.

Then the functions

f̄0(x) =−e−R(x)/g0(x) and f̄1(x) = e−R(x)/g1(x)

are positive in the interval (0,a) and they satisfy the system (22). If

α =
∫ a

0
( f̄0(x)+ f̄1(x))dx < ∞, (23)

then the semigroup {P(t)}t≥0 has an invariant density f∗(x, i) given by f∗(x, i) =
α−1 f̄i(x), i = 0,1, and, consequently, this semigroup is asymptotically stable.

If inequality (23) does not hold, then the semigroup {P(t)}t≥0 has no invari-
ant density. Indeed, if it has an invariant density, say f�(x, i), then the semigroup
{P(t)}t≥0 should be asymptotically stable and, at the same time, if we extend the
semigroup {P(t)}t≥0 to nonnegative measurable functions then f̄ (x, i) is a non-
integrable stationary point of this semigroup. Let us define f n(x, i) = f n

i (x) =
f̄i(x)∧n and cn =

∫ a
0 ( f n

0 (x)+ f n
1 (x))dx. Then limn→∞ cn = ∞ and

liminf
t→∞

P(t) f̄ ≥ lim
t→∞

P(t) f n = cn f�,

for all n∈N, which contradicts the fact that P(t) f̄ = f̄ . Thus, if inequality (23) does
not hold, then the semigroup {P(t)}t≥0 has no invariant density and according to
Theorem 2 this semigroup is sweeping from compact subsets of E. Since [ε,a]×
{0,1} is a compact subset of E for each ε ∈ (0,a), sweeping means here that

lim
t→∞

∫
[0,ε]×{0,1}

P(t) f (x, i)m(dx,di) = 1. (24)

Let pi = q1−i(0)/(q0(0)+ q1(0)). The numbers pi can be interpreted as the mean
time of staying in the state i if the population is small. One can check that con-
dition (24) can be replaced by a stronger one: the measures µt given by dµt =
P(t) f (x, i)m(dx,di) converge weakly to the measure µ∗ = p0δ(0,0)+ p1δ(0,1).

Now, we assume additionally, that g′i(0) 6= 0 for i = 0,1 and g′1(a) 6= 0 and we
check that stability and sweeping of the semigroup {P(t)}t≥0 depends on the sign
of the constant

r0 =
q0(0)
g′0(0)

+
q1(0)
g′1(0)

.

It is easy to check that both functions f̄i are integrable in each interval outside the
neighborhood of 0. For any positive δ and sufficiently small x we have

(r0−δ )x−1 ≤ r(x)≤ (r0 +δ )x−1.
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It follows from these inequalities that there are some positive numbers c1, c2 such
that

c1x−(r0+δ ) ≤ e−R(x) ≤ c2x−(r0−δ )

for x from a neighborhood of 0. Since qi(x) = q′i(0)x+o(x), we obtain that inequal-
ity (23) holds when r0 < 0 and that it does not hold when r0 > 0. Observe that r0 > 0
iff

q0(0)q′1(0)+q1(0)q′0(0)> 0.

This inequality can be rewritten in the following way

λ = p0q′0(0)+ p1q′0(0)> 0. (25)

In the initial model we have λ = b−µ , where b = p0b0 + p1b1, and the number λ

can be interpreted as the mean growth rate if the population is small. It explains why
the population becomes extinct if λ < 0 and it survives if λ > 0.

5 Conclusions and summary

In this paper we have presented a number of biological models described by PDMPs.
The models in Section 2 have been chosen in such a way as to show that bio-
logical processes can lead to various PDMPs, from a simple pure-jump Markov
process with values in an Euclidean space to more advanced Markov processes con-
nected with individual based models in Section 2.5. To study long-time behaviour of
PDMPs we use the tool of stochastic semigroups on L1-type spaces and their asymp-
totic properties. We provided several examples of such semigroups in Section 3.
Theorems 1 and 2 give criteria about asymptotic stability and sweeping with respect
to compact sets of such semigroups. Section 4 also contains examples of simple bio-
logical models which were used to illustrate advanced techniques required to check
that the related stochastic semigroup is asymptotically stable or sweeping. Although
these examples do not cover all models presented in Section 2, the authors believe
that these results can be successfully applied to a wide range of models. In order to
apply Theorem 2 one need to verify conditions (a) and (b), i.e., that the semigroup is
irreducible and has some kernel minorant. As we have mentioned in Section 4 one
can check (b) by using the Hörmander’s condition. The final problem is to verify
whether the semigroup is asymptotically stable if we already know that the alterna-
tive between asymptotic stability and sweeping holds. In more advanced models it
might be very difficult to prove the existence of an invariant density in which case
one can use the method of Hasminskiı̆ function (see [20]) to exclude sweeping.

Our methods work quite well in the case of processes with switching dynam-
ics or deterministic processes with jumps if the jumps are ”non-degenerated”. An
example of a ”degenerated” jump is when we jump from a large part of the phase
space to one point. Such a ”degenerated” jump appears in the neural activity model,
when we jump from points (x,0,1), x > θ − aE , to the point (0,0,2). Also in this
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model we have a ”degenerated” jump from the point (0, tR,2) to (0,0,1) because
(0,0,1) is a stationary point of the related system of differential equations and the
process visits point (0,0,1) with positive probability. But even in this case one can
induce a stochastic semigroup related to the PDMP if the measure m on the phase
space is an atom measure at the point (0,0,1) and the Lebesgue measure on the sets
{(x,0,1) : x ∈ (−∞,θ)} and {(0,y,2) : y ∈ [0, tR]}. We hope that it is possible to ap-
ply our technique to study the neural activity model and to prove that the stochastic
semigroup related to this model is asymptotically stable if aEλE > aIλI . A priori
our approach can not be applied to processes connected with individual based mod-
els from Section 2.5 where it would be more convenient to work with more general
semigroups of probability measures. However, we are not aware of general results
applicable in that example and further work is required here.
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20. R. Rudnicki, K. Pichór, M. Tyran-Kamińska, Markov semigroups and their applications, in:
Dynamics of Dissipation, P. Garbaczewski and R. Olkiewicz (eds.), Lecture Notes in Physics,
597, Springer, Berlin, 2002, 215-238.

21. R. Rudnicki, J. Tiuryn, and D. Wójtowicz, A model for the evolution of paralog families in
genomes, J. Math. Biology 53, 759–770, (2006).

22. R. Rudnicki and J. Tiuryn, Size distribution of gene families in a genome, Math. Models
Methods Appl. Sci. 24 (2014), 697–717.

23. R. Rudnicki and R. Wieczorek, Fragmentation – coagulation models of phytoplankton, Bull.
Pol. Acad. Sci. Math. 54 (2006), 175–191.

24. R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J. 5 (1965), 173–194.
25. R. B. Stein, Some models of neuronal variability, Biophys. J. 7 (1967), 37–68.
26. D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bac-

terium, Z. Wahrscheinlichkeitstheorie verw. Gebiete 28 (1974), 305–315.
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