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1. Introduction

Trajectories of discrete time dynamical systems can be unpredictable and behave in a random-like way.
A series of numerical experiments with Langevin-type equations reported in [1, 2] led to speculate that
one can observe diffusive behaviour. In [14] we have reviewed how the Wiener process can be reproduced
by purely deterministic systems and studied a one dimensional Langevin-type equation

dv(t)

dt
= −γv(t) + η(t). (1.1)

Here γ is a positive constant and a perturbation η(t) consists of a series of delta-function like impulses
given by

η(t) = κ(τ)
∞
∑

j=0

h(ξ(t))δ(t− jτ) (1.2)

with τ > 0 and a scaling parameter κ(τ) > 0. The real valued function h is defined on a probability space
(Y,B, ν) (a measure space with ν(Y ) = 1) and ξ(t) = ξj for jτ ≤ t < (j + 1)τ , j ≥ 0, with ξj+1 = T (ξj)
and ξ0(y) = y, y ∈ Y , where T : Y → Y is a ’chaotic’ map. One particular example is given by the tent
map T on the interval [−1, 1] defined by:

T (y) =

{

2
(

y + 1
2

)

for y ∈ [−1, 0) ,
2
(

1
2 − y

)

for y ∈ [0, 1] ,
(1.3)
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and ν being the normalized Lebesgue measure on [−1, 1]. For any τ > 0 we say that vτ (t), t ≥ 0, is a
solution of (1.1) starting at v0 ∈ R if, for each j ≥ 0, vτ (t) is a solution of problem

{

dvτ (t)

dt
= −γvτ (t), t ∈ (jτ, (j + 1)τ),

vτ (jτ) = vτ (jτ−) + κ(τ)h(ξj),

where we set vτ (0−) = v0 and we write vτ (s−) for the left-hand limit limt↑s vτ (t) when s > 0. The
solution is of the form

vτ (t) = e−γtv0 + κ(τ)e−γt
∑

jτ≤t

eγτjh(ξj), t ≥ 0. (1.4)

It was shown in [14, Section 4] that in the limit τ → 0 we may reproduce the characteristics of an
Ornstein-Uhlenbeck velocity process V = {V (t) : t ≥ 0} given by

V (t) = e−γtv0 + e−γt

∫ t

0

eγsσdW (s), t ≥ 0, (1.5)

where W = {W (t) : t ≥ 0} is a Wiener process, provided that κ(τ)2/τ converges to 1 as τ → 0 and the
functional central limit theorem (FCLT) holds for h

wτ
d−→ σW, where wτ (t) =

√
τ
∑

jτ≤t

h(ξj), t ≥ 0. (1.6)

The notation ‘
d−→’ refers to weak convergence of distributions of stochastic processes with paths in the

space D of càdlàg functions, i.e., functions ψ on [0,∞) that are right-continuous and have finite left-hand
limits ψ(t−) for every t > 0, endowed with the topology of uniform convergence on compact subsets of
[0,∞); see [3,12,24] for weak convergence of probability measures and stochastic-process limits. We recall
background material on convergence to processes with continuous sample paths in section 2.

The first general FCLT was obtained by Donsker [5] for random walks, which in our notation corre-
sponds to the random variables h(ξj) being independent and identically distributed (i.i.d.) with mean
0 and variance σ2. It follows from the central limit theorem for random walks and it was subsequently
generalized from random walks to dependent random variables; see [3, 14, 16] and the references therein.
In section 3 we recall a sufficient condition for FCLT from [20] and a couple of examples from [14].

Since the paths of wτ are piecewise constant functions with finitely many discontinuities on every time
interval [0, t], we can write

wτ (t) =
∑

0≤s≤t

∆wτ (s),

where we set wτ (0−) = 0 and ∆wτ (s) = wτ (s)− wτ (s−), s ≥ 0. Consequently, if φ is a locally bounded
Borel measurable function on R+ then the Lebesgue-Stieltjes integral of φ with respect to wτ over the
interval [0, t] is equal to

∫ t

0

φ(s)dwτ (s) =
∑

0≤s≤t

φ(s)∆wτ (s).

For the particular representation in (1.6) we have

∫ t

0

φ(s)dwτ (s) =
√
τ
∑

0≤jτ≤t

φ (jτ)h(ξj).

Thus, the solution (1.4) with κ(τ) =
√
τ has the representation

vτ (t) = e−γtv0 + e−γt

∫ t

0

eγsdwτ (s), t ≥ 0.
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We can also rewrite (1.1) as the integral equation

vτ (t) = v0 − γ

∫ t

0

vτ (s)ds+

∫ t

0

dwτ (s), t ≥ 0, (1.7)

and use the shorthand notation in the differential form

dvτ (t) = −γvτ (t)dt+ dwτ (t).

It is our aim to consider the general Langevin-type equation, as studied numerically in [2],

dzτ (t) = A(zτ (t))dt+ dwτ (t), (1.8)

and to give a simple proof of the following result.

Theorem 1.1. Let zτ be the unique solution of

zτ (t) = z0 +

∫ t

0

A(zτ (s))ds+ wτ (t), t ≥ 0,

for all sufficiently small τ , where A : R → R is of class C1. If wτ
d−→ σW as τ → 0 then zτ

d−→ Z where
Z is the solution of

Z(t) = z0 +

∫ t

0

A(Z(s))ds+ σW (t), (1.9)

provided that Z is non-exploding, i.e., the explosion time e = inf{t ≥ 0 : |Z(t)| = +∞} is infinite with
probability one.

Weak convergence of distributions of stochastic processes is often obtained by showing that the family
is weakly relatively compact and all its limit points are the same, see [7, 19] for convergence in the class
of Markov processes and [12] in the case of general semimartingales and processes derived from them.
We aim to make our results more accessible by using a direct approach through the continuous mapping
theorem (CMT), recalled in section 2, which allows us to obtain new limit theorems from existing ones.
To use the CMT we need measurability and continuity of the corresponding mapping which is proved in
Theorem 4.2 and generalizes [17, Theorem 4.1].

We also extend our approach to include multiplicative perturbations. We add a perturbation η as in
(1.2) to the equation of the form

1

x(t)

dx(t)

dt
= g(x(t)). (1.10)

To simplify our exposition we assume that h as in (1.2) is bounded, that g : (0,∞) → R in (1.10) is of
class C1, and that for each x0 ∈ (0,∞), the solution x of (1.10) satisfying x(0) = x0 is defined for all
times t ≥ 0, so that it does not exit the state space (0,∞) in a finite time. Thus for each τ > 0, we
consider the equation

xτ (t) = x0 +

∫ t

0

xτ (s)g(xτ (s))ds+

∫ t

0

xτ (s−)dwτ (s), t ≥ 0, (1.11)

with x0 ∈ (0,∞), where both integrals in (1.11) are Lebesgue-Stieltjes integrals. Since the solution of
(1.11) is continuous on intervals of the form (jτ, (j + 1)τ), we can replace x(s) with x(s−) in the first
integral, which leads to the following differential form

dxτ (t) = xτ (t−)g(xτ (t−))dt+ xτ (t−)dwτ (t).
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Theorem 1.2. Suppose that the FCLT (1.6) holds where h and ξj are such that for all t ≥ 0

τ
∑

jτ≤t

h2(ξj) −→ σ2
0t a.s. as τ → 0. (1.12)

Let xτ be the solution of (1.11). Then xτ
d−→ X as τ → 0 where X is the solution of the Itô equation

X(t) = x0 +

∫ t

0

X(s)
(

g(X(s)) +
1

2
(σ2 − σ2

0)
)

ds+ σ

∫ t

0

X(s)dW (s), (1.13)

provided that X is non-exploding, i.e., the explosion time ζ = inf{t : X(t) 6∈ (0,∞)} is infinite with
probability one.

We provide some examples of deterministic perturbations in section 3. The case of σ2 6= σ2
0 is possible

only when the random variables h(ξj) are dependent, since for i.i.d. sequences condition (1.12) holds
with σ2

0 = σ2 by the law of large numbers.

Corollary 1.3. Suppose that h(ξj), j ≥ 0, are independent and identically distributed random variables

with mean zero and variance σ2 > 0. Let xτ be the solution of (1.11). Then xτ
d−→ X as τ → 0 where X

is the solution of the Itô equation

X(t) = x0 +

∫ t

0

X(s)g(X(s))ds+ σ

∫ t

0

X(s)dW (s),

provided that X is non-exploding.

Remark 1.4. If instead of wτ we use its linearly interpolated continuous version

w̃τ (t) = wτ (jτ) +
t− jτ√

τ
h(ξj+1), jτ ≤ t < (j + 1)τ, j = 0, 1, . . . ,

then the solution of the equation

x̃τ (t) = x0 +

∫ t

0

x̃τ (s)g(x̃τ (s))ds+

∫ t

0

x̃τ (s)dw̃τ (s), t ≥ 0,

will converge in distribution to the process

X̃(t) = x0 +

∫ t

0

X̃(s)g(X̃(s))ds+ σ

∫ t

0

X̃(s) ◦ dW (s),

where the last integral is the Stratonovich stochastic integral. This is the Wong-Zakai approximation
[26]. Then the corresponding Itô equation for X̃ is of the form

X̃(t) = x0 +

∫ t

0

(

X̃(s)g(X̃(s)) +
σ2

2
X̃(s)

)

ds+ σ

∫ t

0

X̃(s)dW (s)

and our approximation gives a different process in the limit.

The Wong-Zakai approximations and examples where in the limit one obtains neither Itô nor
Stratonovich equations are described in [11]. Finally, we refer the reader to [9, 10, 15] and the refer-
ences therein for related results. In particular, [9,10] studied linearly interpolated discrete time sequences
with perturbations coming from ergodic systems extending in yet another direction the approach of [1,2].
A description of possible generalizations of our results is provided in the last section.
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2. Preliminaries

In this section we collect basic tools and notions used in the paper. Recall that W = {W (t) : t ≥ 0}
defined on a probability space (Ω,F ,P) is called a Wiener process (standard Brownian motion) if:

1. The increments are independent: for all times 0 ≤ t0 < t1 < . . . < tn

P(W (ti)−W (ti−1) ∈ Bi, i ≤ n) =
∏

i≤n

P(W (ti)−W (ti−1) ∈ Bi)

and all Borel measurable sets B1, . . . , Bn ∈ B(R).
2. For t > 0, s ≥ 0, W (t+ s)−W (s) is Gaussian distributed with mean 0 and variance t.
3. The sample paths are continuous and W (0) = 0.

The existence of Brownian motion was shown by Wiener [25], who constructed the corresponding distri-
bution of W as a probability measure P on Ω = C[0,∞), the space of continuous functions [0,∞), under
which the coordinate process W (t) = πt, t ≥ 0, has the required properties, where each πt : C[0,∞) → R

denotes the projection πt(ω) = ω(t), ω ∈ C[0,∞). The space C[0,∞) endowed with the topology of
uniform convergence on compact subsets of [0,∞) is metrizable with a complete and separable metric
du. The Borel σ-algebra of subsets of C[0,∞), i.e., the smallest σ-algebra containing all open sets, is
the same as the σ-algebra generated by projections, i.e., the smallest σ-algebra with respect to which
the projections πt, t ≥ 0, are measurable. Thus finite-dimensional distributions uniquely determine the
measure P.

We endow D with the local uniform topology and we write ψn → ψ iff

‖ψn − ψ‖m = sup
0≤s≤m

|ψn(s)− ψ(s)| → 0 for all m > 0.

This topology in D is metrizable with a complete metric du, but it fails to be separable and its Borel σ-
algebra contains too many sets, as concern the weak convergence of distributions of stochastic processes.
Thus, we consider D with the σ-algebra D generated by projections πt : D → R, t ≥ 0, which is the same
as the σ-algebra generated by open balls in (D, du) [3, Section 15].

We write Wτ
d−→W0 as τ → 0 iff for all D-measurable bounded continuous f : D → R

Eνf(Wτ ) −−−→
τ→0

Ef(W0), (2.1)

where Eν , E are the expectation operators, Eν on the probability space (Y,B, ν) and E on a probability
space (Ω,F ,P) on which the process W0 is defined. We note that the space D is more naturally endowed
with the Skorohod J1 topology [18], which is metrizable with a complete and separable metric d and
the Borel σ-algebra of (D, d) is then equal to D (see e.g. [23], [3, Section 16] or [12, Section 6]). In
particular, a function f : D → R which is continuous on (D, d) is D-measurable, since for each a the set
{ψ ∈ D : f(ψ) < a} is open in (D, d), thus belongs to D, but a continuous function on (D, du) need not
be D-measurable. Since we consider convergence to processes with continuous sample paths and C[0,∞)

is a closed and separable subset of (D, du), it follows from [3, Theorem 6.6] that Wτ
d−→W0 is equivalent

to the weak convergence of distributions in D with the Skorohod J1-topology.

We say that a mapping G on D is a.s. continuous at W0, if there is a set D0 ∈ D such that P(W0 ∈
D0) = 1 and G(ψn) → G(ψ) whenever ψn → ψ with ψ ∈ D0. We need the following version of the
continuous mapping theorem (see [3, Theorem 6.3]).

Theorem 2.1 (CMT). Let G : D → D be a measurable mapping. Suppose that Wτ
d−→ W0 as τ → 0 and

W0 has continuous sample paths. If G is a.s. continuous at W0 then G(Wτ )
d−→ G(W0).
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Observe that a mapping g : D → D is measurable iff πt ◦ G : D → R, where πt is the projection, is
D-measurable for all t ≥ 0. Finally, if the FCLT (1.6) holds then for every D-measurable f : D → R

which is a.s. continuous at W
f(wτ )

d−→ f(σW ) in R as τ → 0 (2.2)

or, equivalently,
lim
τ→0

ν(f(wτ ) ≤ x) = P(f(σW ) ≤ x)

for all x ∈ R that are points of continuity of the right-hand side, i.e., such that P(f(σW ) = x) = 0.
Condition (2.2) is the way that Donsker [5] expressed his FCLT and the convergence of the functionals
explains the name. In particular, condition (2.2) is equivalent to convergence of one-dimensional distri-
butions for f = πt and t > 0, and to convergence of finite dimensional distributions for f being a finite
linear combination of projections, by the Cramer-Wald theorem. However, the result goes beyond con-
vergence of finite dimensional distributions, since, for example, we can take f(ψ) = sup0≤s≤t ψ(s) and
many others; see [3]. Some special functionals of random walks were treated by Erdös and Kac [6], who
noted a principle that the limit depends only on the single parameter σ and is the same for all random
walks. Thus the FCLT is also called the (weak) invariance principle.

We next recall well-known results (see e.g. [13, Chapter 5]) about the solutions of one-dimensional
stochastic differential equations. Let A : R → R be a locally Lipschitz function, i.e., for each k there is a
constant Lk > 0 such that for every |z1|, |z2| ≤ k:

|A(z1)−A(z2)| ≤ Lk|z1 − z2|. (2.3)

Consider the equation

Z(t) = y0 +

∫ t

0

A(Z(s))ds+ σW (t)

where z0 ∈ R, σ > 0, and W is the Wiener process on (Ω,F ,P). Then there exists a unique process Z
such that if e = inf{t ≥ 0 : Z(t) = −∞ or Z(t) = +∞}, then Z is continuous on [0, e),

P

(

Z(t) = z0 +

∫ t

0

A(Z(s))ds+ σW (t) for all t < e
)

= 1,

and Z on the set {e < ∞} stays after e at −∞ or +∞ at which it exits the state space (−∞,∞). To
check whether Z is non-exploding we can use Feller’s test for explosions [8]. By [13, Theorem 5.5.29], we
have e = ∞ a.s. if and only if

φ(±∞) = ∞, where φ(x) =

∫ x

0

∫ x

y

exp
{

− 2

σ2

∫ u

y

A(z)dz
}

dudy.

In particular, if A is globally Lipschitz, i.e., (2.3) holds with k = ∞, then e = ∞, thus Z is non-
exploding. Finally, let f : R → (0,∞) be continuous, strictly increasing, and invertible with f(−∞) = 0
and f(+∞) = ∞. If the process Z exits its state space at the time e then the process X = f(Z) exits its
state space (0,∞) exactly at the same time and vice-versa.

3. Perturbations from deterministic systems

In this section we describe the case when ξj = T j , j ≥ 0, and T is an ergodic measure preserving
transformation (e.m.p.t.) on the probability space (Y,B, ν), that is ν is invariant for T , i.e., ν(T−1(B)) =
ν(B) for all B ∈ B and T is ergodic (with respect to ν), i.e., for each B ∈ B with T−1(B) = B we have
ν(B) ∈ {0, 1}. Let Lp(ν) = Lp(Y,B, ν) for p ≥ 1. We define the transfer operator PT : L1(ν) → L1(ν) by

∫

B

PTh(y)ν(dy) =

∫

T−1(B)

h(y)ν(dy), h ∈ L1(ν), B ∈ B.
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We have the following consequence of [20, Theorem 1] and the Birkhoff ergodic theorem.

Theorem 3.1. Let T be an e.m.p.t. on (Y,B, ν) and let h ∈ L2(ν) be such that

∫

Y

h(y)ν(dy) = 0 and ‖h‖22 =

∫

Y

h2(y)ν(dy) > 0.

If there is β > 1/2 such that

lim sup
n→∞

nβ‖Pn
Th‖2 <∞, (3.1)

then condition (1.12) holds with σ2
0 = ‖h‖22 and the FCLT holds wτ

d−→ σW with

σ = lim
n→∞

‖∑j≤n h ◦ T j‖2√
n

. (3.2)

We refer the reader to [14, Section 2] for a collection of various examples of transformations and
functions h for which (3.1) is satisfied. Observe that if PT (h) = 0 then (3.1) holds and

∫

h(y)h(T j(y))ν(dy) =

∫

Pj
Th(y)h(y)ν(dy) = 0

for all j ≥ 1, which gives σ2 = σ2
0 > 0. In particular, the variables h(ξj) are uncorrelated and the same

conclusion holds as in Corollary 1.3. We illustrate solvability of the equation PT (h) = 0 with the tent
map.

Example 3.2. The tent map on [−1, 1] defined by (1.3) is ergodic with respect to the normalized
Lebesgue measure on [−1, 1] and has a transfer operator given by

PTh(y) =
1

2

[

h

(

1

2
y − 1

2

)

+ h

(

1

2
− 1

2
y

)]

.

Note that we have PTh = 0 iff h is such that h(z) + h(−z) = 0. In particular, let r ∈ R and define
h(y) = yr for y ≥ 0 and h(y) = −h(−y) for y < 0. Then h ∈ L2(ν) iff r > −1/2.

Remark 3.3. If PT (h) 6= 0 then it might be difficult to calculate the exact value of σ directly from
formula (3.2) and it can also happen that σ = 0, a situation which should be avoided to get a diffusion
process in the limit. The following argument might be helpful [20, Corollary 3]. If h is bounded and

lim sup
n→∞

n2β‖Pn
Th‖1 <∞ (3.3)

for some β > 1/2, then condition (3.1) holds, since ‖Pn
Th‖2 ≤ ‖h‖1/2∞ ‖Pn

Th‖
1/2
1 . Moreover,

σ2 − σ2
0 = 2

∞
∑

n=1

∫

h(y)h(Tn(y))ν(dy) = 2
∞
∑

n=1

∫

Pn
Th(y)h(y)ν(dy)

and σ = 0 if and only if h = f ◦ T − f for some f ∈ L1(ν).

Finally, we give two particular examples of transformations for which σ2 6= σ2
0 .
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Example 3.4. The dyadic map on [−1, 1] is given by

T (y) =

{

2y + 1, y ∈ [−1, 0] ,
2y − 1, y ∈ (0, 1] .

(3.4)

Like the tent map, it is ergodic with respect to the normalized Lebesgue measure on [−1, 1]. It has a
transfer operator given by

PT f(y) =
1

2

[

h

(

1

2
y − 1

2

)

+ h

(

1

2
y +

1

2

)]

.

If we take h(y) = y then PTh = h/2 and, by iterating this equality, we obtain Pn
Th = h/2n for all n.

Thus condition (3.2) holds. In this example we have σ2
0 = 1/3 and, by Remark 3.3, σ2 − σ2

0 = 2σ2
0 , hence

σ2 = 1. Consequently, the process X will satisfy

X(t) = x0 +

∫ t

0

X(s)
(

g(X(s)) +
1

3

)

ds+

∫ t

0

X(s)dW (s).

Example 3.5. The quadratic map

T (y) = 1− 2y2

on [−1, 1] is ergodic with respect to the measure ν on [−1, 1] with the density

g∗(y) =
1

π
√

1− y2
.

The transfer operator is given by

PTh(y) =
1

2

[

h

(

√

1

2
y +

1

2

)

+ h

(

−
√

1

2
y +

1

2

)]

.

Here we also have PTh = 0 for h(y) = y and σ2
0 = σ2 = 1/2. If, instead, we take h(y) = y2 − 1/2, then

PTh(y) = y/2 and P2
Th = 0. Thus, for such h we have σ2 − σ2

0 = 1/2.

4. Proofs

In this section we first study integral equations

z(t) = z0 +

∫ t

0

b(z(s))ds+ ψ(t), t ≥ 0, (4.1)

for ψ ∈ D, where z0 ∈ R is fixed and b : R → R is locally Lipschitz-continuous. The proofs of Theorems
1.1 and 1.2 will be given later on. We have the following results.

Theorem 4.1 ([17, Theorem 4.1]). Assume that b : R → R is globally Lipschitz-continuous. Then for
each ψ ∈ D the integral equation (4.1) has a unique solution z ∈ D and if ψ is a continuous function then
so is z. The function G : D → D mapping each ψ into the corresponding z is measurable and continuous
in D.

146



“TyranKaninska” — 2014/2/3 — 14:37 — page 147 — #9
i

i

i

i

i

i

i

i
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Theorem 4.2. For each k > 0, let Sk : D → [0,∞] be defined by

Sk(ψ) = inf{t ≥ 0 : |ψ(t)| ≥ k or |ψ(t−)| ≥ k}, ψ ∈ D,

where we set inf ∅ = +∞, and let the mapping Gk : D → D be given by the integral equation

z(t) = z0 +

∫ t

0

bk(z(s))ds+ ψ(t), t ≥ 0,

where bk is a Lipschitz continuous function on R such that bk(z) = b(z) for |z| ≤ k. Then, for each
ψ ∈ D, the following limits exist

G∞(ψ)(t) := lim
k↑∞

Gk(ψ)(t) for all t < S∞(ψ), S∞(ψ) := lim
k↑∞

Sk(Gk(ψ)),

and G∞(ψ) satisfies (4.1) for t ∈ [0, S∞(ψ)). The mapping G : D → D defined by

G(ψ)(t) =

{

G∞(ψ)(t), t < S∞(ψ)/2,
G∞(ψ)(S∞(ψ)/2), t ≥ S∞(ψ)/2,

is measurable and D0 := {ψ ∈ D : S∞(ψ) = ∞} ∈ D.
Moreover, if ψn → ψ and ψ ∈ D0 then G(ψn) → G(ψ).

Proof. Let l ≥ k > |z0| + |ψ(0−)|. For t < Sk(Gk(ψ)) we have sups≤t |Gk(ψ)(s)| < k, thus
bk(Gk(ψ)(s)) = bl(Gk(ψ)(s))) for all s ≤ t and

|Gk(ψ)(t)−Gl(ψ)(t)| ≤
∫ t

0

|bl(Gk(ψ)(s))− bl(Gl(ψ)(s))|ds

≤ Ll

∫ t

0

|Gk(ψ)(s)−Gl(ψ)(s)|ds,

where Ll is the Lipschitz constant of bl. From the Gronwall’s inequality it follows that

Gk(ψ)(t) = Gl(ψ)(t) for all t < Sk(Gk(ψ)), k ≤ l.

Observe that, for each ψ, the function k → Sk(ψ) is nondecreasing and hence Sk(Gl(ψ)) ≤ Sl(Gl(ψ))
for k ≤ l. Since Sk(Gk(ψ)) = Sk(Gl(ψ)), the sequence Sk(Gk(ψ)) is nondecreasing and the limit S∞(ψ)
exists. We have Gk(ψ)(s) = liml→∞Gl(ψ)(s) = G∞(ψ)(s) for all s ≤ t < Sk(Gk(ψ)). Hence, G∞(ψ)
satisfies (4.1) for t < Sk(Gk(ψ)), and letting k → ∞ we obtain that G∞(ψ) satisfies (4.1) for t < S∞(ψ).
For each k > 0, Sk is measurable, by [12, Propositions VI.2.10], and Gk is measurable, by Theorem 4.1,
thus the composition Sk ◦Gk is measurable and S∞, being the limit, is measurable. Hence D0 ∈ D. The
mapping G is measurable, since πt ◦ Gk are measurable, where πt are projections, as well as the limit
πt ◦G∞, when restricted to the set {ψ : S∞(ψ) > 2t} ∈ D. Finally, let ψ ∈ D0 and ψn → ψ. Fix m > 0.
Since S∞(ψ) = +∞, we can find k such that 2m < Sk(Gk(ψ)). Then G(ψ)(s) = Gk(ψ)(s) for all s ≤ m.
Since Gk is continuous, we have Gk(ψn) → Gk(ψ). It is easily seen that lim inf

n→∞
Sk(Gk(ψn)) ≥ Sk(Gk(ψ)),

thus 2m < Sk(Gk(ψn)) for all sufficiently large n, and for such n we have G(ψn)(s) = Gk(ψn)(s) for all
s ≤ m. Hence, we conclude that

lim
n→∞

sup
0≤s≤m

|G(ψn)(s)−G(ψ)(s)| = 0,

which completes the proof.

Remark 4.3. If S∞(ψ) < ∞ then the function G∞(ψ) is only well defined for t ∈ [0, S∞(ψ)). We
defined G by stopping at the finite time S∞(ψ)/2, but instead one can choose any measurable time
t∞(ψ) < S∞(ψ). Note also that if ψ is continuous then G(ψ) is continuous.
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Theorem 1.1 follows directly from the CMT and Theorem 4.2, since A, being of class C1, is locally
Lipschitz and the assumptions are such that zτ , σW ∈ D0.

Proof of Theorem 1.2. For all sufficiently small τ , define zτ (t) = log(xτ (t)), t ≥ 0. We have z′τ (t) =
g(exp(zτ (t))) if jτ < t < (j + 1)τ and

z(jτ) = log(xτ (jτ)) = log(xτ (jτ)(1 +
√
τh(ξj))) = z(jτ−) + log(1 +

√
τh(ξj)).

Consequently, zτ is the solution of the integral equation (4.1), where b(z) = g(exp(z)), z ∈ R, z0 = log x0,
and ψ(t) =Wτ (t) with

Wτ (t) =
∑

0≤jτ≤t

log(1 +
√
τh(ξj)).

We claim that conditions (1.6) and (1.12) imply Wτ
d−→W0, where

W0(t) = σW (t)− 1

2
σ2
0t, t ≥ 0. (4.2)

Observe that, for |a| < 1,

log(1 + a) =
∞
∑

n=1

(−1)n+1

n
an

and therefore

| log(1 + a)− (a− 1

2
a2)| ≤

∞
∑

n=3

|a|n ≤ |a|3
1− |a| ≤ 2|a|3,

if |a| ≤ 1/2. Thus,

Wτ (t) = wτ (t)− y(t) +Rτ (t) with y(t) =
1

2
σ2
0t, t ≥ 0,

where

Rτ (t) = y(t)− yτ (t) + rτ (t), yτ (t) =
1

2
τ
∑

0≤jτ≤t

h2(ξj), t ≥ 0,

and the error term rτ satisfies |rτ (t)| ≤ C
√
τ(t + τ) for some constant C, for all t, and all sufficiently

small τ , since h is bounded. Note that the mapping ψ 7→ ψ − y is measurable and continuous, since y

is continuous. Thus wτ − y
d−→ W0. From assumption (1.12) it follows that yτ (t) → y(t) a.s. for each t.

Since, for each τ , the process yτ has nondecreasing paths and y is continuous, we obtain sup0≤s≤m |yτ (s)−
y(s)| → 0 a.s. as τ → 0 for all m. Consequently, sup0≤s≤m |Rτ (s)| → 0 a.s. as τ → 0 for all m, which
implies the claim (see [3, Sections 2 and 6]).

By assumption Wτ ∈ D0 and zτ = G(Wτ ). From Itô formula and the final remark at the end of section
2, it follows that ζ = ∞ a.s. and X is the unique solution of (1.13) iff S∞(W0) = ∞ a.s. and Z = logX
is the unique solution of

Z(t) = z0 +

∫ t

0

(

b(Z(s))− σ2
0

2

)

ds+ σW (t). (4.3)

Thus W0 ∈ D0 and Z = G(W0) a.s. From Theorem 4.2 and the CMT it follows that G(Wτ )
d−→ G(W0).

The mapping H : D → D defined by H(ψ)(t) = exp(ψ(t)), t ≥ 0, is continuous and measurable. Hence

H(zτ )
d−→ H(Z) and the process X(t) = H(Z)(t), t ≥ 0, is the unique solution of (1.13).

Remark 4.4. The assumption that each solution of x′(t) = x(t)g(x(t)), x(0) = x0, does not exit the
state space (0,∞) can be relaxed. Then we need to define xτ accordingly. We can take xτ (t) = log(zτ (t))
and zτ = G(Wτ ), where G is as in Theorem 4.2, which means that xτ satisfies (1.11) for t ∈ [0, tτ/2]

where tτ = inf{t ≥ 0 : xτ (t) 6∈ (0,∞) or xτ (t−) 6∈ (0,∞)} and xτ (t) = xτ (tτ ) for t ≥ tτ/2. Then xτ
d−→ X

provided that X is non-exploding. Similarly, we can redefine the Langevin equation in Theorem 1.1.
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5. Concluding remarks

In this paper we show that we can easily derive convergence in distribution of non-Markov piecewise
continuous deterministic processes to diffusion processes from the FCLT and the continuous mapping
theorem. We can extend our results for Langevin-type equations in Theorem 1.1 to situations when
wτ converges to a discontinuous limit, as in the case of Lévy walks, but we need to use the Skorohod
J1-topology in D. This may occur when h 6∈ L2(ν) and κ(τ) = τ1/α with α ∈ (0, 2) in (1.1) with the
change of

√
τ to τ1/α in the definition (1.6) of wτ . Then we may have convergence in distribution to

Lévy α-stable processes (also known as Lévy flights), see [21, 22] and the references therein. We give
one example based on the tent map. If h is as in Example 3.2 with r = −1/α and α ∈ (0, 2) then
h has infinite variance and power law distribution. From [22, Section 4.2] it follows that there exists

a positive constant σα such that wτ
d−→ σαWα, where Wα is a symmetric Lévy α-stable process, i.e.,

Wα(0) = 0, Wα has stationary independent increments, and Wα(1) has the characteristic function of the
form E(exp{iuWα(1)}) = exp{−cα|u|α}, u ∈ R, where cα is a positive constant and α ∈ (0, 2). Note
that the case of α = 2 corresponds to a constant multiple of the Wiener process. Since the mapping
in Theorem 4.1 is continuous in the Skorohod J1-topology by [17, Theorem 4.1], one can show that the
mapping G in Theorem 4.2 is also continuous in that topology, thus Theorems 1.1 and 4.2 remain true
for the Skorohod J1-topology. They also remain true in the case when all processes have values in R

d.
It is not so straightforward to extend Theorem 1.2 to the general case of multiplicative noise leading

to equations of the form

X(t) = x0 +

∫ t

0

(

g(X(s)) +
σ2 − σ2

0

2
a′(X(s))

)

a(X(s))ds+ σ

∫ t

0

a(X(s))dW (s),

where the function a is sufficiently smooth. We will report on that in a separate communication. However,
our results, even in the simple case of a(x) = x, x > 0, show that if the noise in the growth rate is bounded
and uncorrelated then in the limit we always obtain the Itô equation. For correlated noise we can get
an equation which is neither Itô nor Stratonovich. In particular, a question [4] whether one should use
Itô or Stratonovich calculus is irrelevant as long as stochastic equations are not written ad hoc. Deriving
them as approximations should give the correct answer.

Acknowledgements. This work was supported by State Committee for Scientific Research Grant N N201 608240.

References

[1] C. Beck. Ergodic properties of a kicked damped particle. Commun. Math. Phys., 130 (1990), 51–60.

[2] C. Beck, G. Roepstorff. From dynamical systems to the Langevin equation. Phys. A, 145 (1987), 1–14.

[3] P. Billingsley. Convergence of probability measures, 2nd edition. John Wiley & Sons Inc., New York, 1999.
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[20] M. Tyran-Kamińska. An invariance principle for maps with polynomial decay of correlations. Comm. Math. Phys.,
260 (2005), 1–15.
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