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Abstract. In this review, we survey work that has been carried out in the attempts of biomathematicians to understand the
dynamic behaviour of simple bacterial operons starting with the initial work of the 1960’s. We concentrate on the simplest of
situations, discussing both repressible and inducible systems and then turning to concrete examples related to the biology of the
lactose and tryptophan operons. We conclude with a brief discussion of the role of both extrinsic noise and so-called intrinsic
noise in the form of translational and/or transcriptional bursting.

1. Introduction

The operon concept for the regulation of bacterial
genes, first put forward in [1], has had an astonishing
and revolutionary effect on the development of under-
standing in molecular biology. It is a testimony to the
strength of the theoretical and mathematical biology
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community that modeling efforts aimed at clarifying
the implications of the operon concept appeared so
rapidly after the concept was embraced by biologists.
Thus, to the best of our knowledge the first analysis
of operon dynamics appeared in [2] and in [3]. These
first attempts were swiftly followed by Griffith’s anal-
ysis of a simple repressible operon [4] and an inducible
operon [5], and these and other results were beautifully
summarized in [6].

Since these modeling efforts in the early days of
development in molecular biology, both our biologi-
cal knowledge and level of sophistication in modeling
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have proceeded apace to the point where new knowl-
edge of the biology is actually driving the development
of new mathematics. This is an extremely exciting
development and one which many have expected–that
biology would act as a driver for mathematics in the
21st century much as physics was the driver for math-
ematics in the 19th and 20th centuries. However, as
this explosion of biological knowledge has proceeded
hand in hand with the development of mathematical
modeling efforts to understand and explain it, the diffi-
culty in comprehending the nature of the field becomes
ever deeper due to the sheer volume of work being
published.

In this highly idiosyncratic review we discuss work
from our group over the past few years directed at the
understanding of really simple operon control dynam-
ics. We start this review in Section 2 by discussing
transcription and translation kinetics (Section 2.1) and
then pass to general dynamics considerations in Sec-
tion 2.2 which is largely a recap of earlier work with
additional insights derived from the field of nonlinear
dynamics. We then pass to the role of transcriptional
and translational delays in Section 2.3 and finish with
a short consideration of fast and slow variables in Sec-
tion 2.4. Following this, in Sections 3.1 and 3.2 we pass
from the realm of mathematical nicety to biological
reality by looking at realistic models for the lactose and
tryptophan operons respectively. These two examples,
two of the most extensively experimentally studied sys-
tems in molecular biology, and for which we have vast
amounts of data, illustrate the reality of dealing with
experimental biology and the difficulties of applying
realistic modeling efforts to understand that biology.

Finally, in Section 4 we turn to one of the more
interesting and challenging aspects of understanding
operon dynamics. In the last few years with the advent
of ever improved imaging techniques combined with
rapid data acquisition techniques experimentalists have
acquired the ability to peer ever more closely into
the details of these dynamics at virtually the sin-
gle molecule level. This means, therefore, that all
manner of interesting statistical behaviours are being
uncovered–behaviours that reveal many interesting
types of ‘random’ behaviour not well understood from
a mathematical perspective. We explore aspects of this
in Section 4.1 where we consider the effects of tran-
scriptional and/or translational bursting, and in Section
4.2 where we look at the effects of fluctuations in degra-
dation rates. The review ends with a brief discussion
in Section 5.

2. Generic deterministic models of prokaryotic
gene regulation

The central tenet of molecular biology was put for-
ward some half century ago, and though modified
in detail still stands in its basic form. Transcription
of DNA produces messenger RNA (mRNA, denoted
M here). Then through the process of translation of
mRNA, intermediate protein (I) is produced which
is capable of controlling metabolite (E) levels that
in turn can feedback and affect transcription and/or
translation. A typical example would be in the lactose
operon of Section 3.1 where the intermediate is β-
galactosidase and the metabolite is allolactose. These
metabolites are often referred to as effectors, and their
effects can, in the simplest case, be either stimulatory
(so called inducible) or inhibitory (or repressible) to the
entire process. This scheme is often called the ‘operon
concept’.

2.1. Kinetic aspects of regulation of transcription
and translation

We first outline the relatively simple molecular
dynamics of both inducible and repressible operons
and how effector concentrations can modify tran-
scription rates. If transcription rates are constant and
unaffected by any effector, then this is called a ‘no
control’ situation.

2.1.1. Inducible regulation
The lac operon considered below in Section 3.1 is

the paradigmatic example of inducible regulation. In
an inducible operon when the effector (E) is present
then the repressor (R) is inactive and unable to bind
to the operator (O) region so DNA transcription can
proceed unhindered. E binds to the active form R of the
repressor and we assume that this binding reaction is

R + nE
k+

1−⇀↽−
k−

1

REn,

in which k+
1 and k−

1 are the forward and backward
reaction rate constant, respectively. The equilibrium
equation for the reaction above is

K1 = REn

R · En
, (2.1)

where K1 = k−
1 /k+

1 is the reaction dissociation con-
stant and n is the number of effector molecules required
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to inactivate repressor R. The operator O and repressor
R are also assumed to interact according to

O + R
k+

2−⇀↽−
k−

2

OR,

which has the following equilibrium equation:

K2 = OR

O · R
, K2 = k−

2

k+
2

.

The total operator Otot is given by

Otot = O + OR = O + K2O · R = O(1 + K2R),

while the total repressor is Rtot

Rtot = R + K1R · En + K2O · R.

Furthermore, by definition the fraction of opera-
tors free to synthesize mRNA (i.e., not bound by
repressor) is

f (E) = O

Otot

= 1

1 + K2R
.

If the amount of repressor R bound to the operator O

is small

Rtot � R + K1R · En = R(1 + K1E
n)

so

R = Rtot

1 + K1En
,

and consequently

f (E) = 1 + K1E
n

1 + K2Rtot + K1En
= 1 + K1E

n

K + K1En
, (2.2)

where K = 1 + K2Rtot . Maximal repression occurs
when E = 0 and even at that point mRNA is pro-
duced (so-called leakage) at a basal level proportional
to K−1.

Assume that the maximal transcription rate of DNA
(in units of time−1) is ϕ̄m. Assume further that tran-
scription rate ϕ in the entire population is proportional
to the fraction of unbound operators f . Thus we expect
that ϕ as a function of the effector level will be given
by ϕ = ϕ̄mf , or

ϕ(E) = ϕ̄m

1 + K1E
n

K + K1En
. (2.3)

2.1.2. Repressible regulation
The tryptophan operon considered below in Section

3.2 is the classic example of a repressible system. This
is because the repressor is active (capable of binding to
the operator) when the effector molecules are present
which means that DNA transcription is blocked. Using
the same notation as before, but realizing that the effec-
tor binds the inactive form R of the repressor so it
becomes active and take this reaction to be the same
as in Equation 2.1. However, we now assume that the
operator O and repressor R interaction is governed by

O + REn

k+
2−⇀↽−
k−

2

OREn,

with the following equilibrium equation

K2 = OREn

O · REn

, K2 = k−
2

k+
2

. (2.4)

The total operator is

Otot = O + OREn = O + K1K2O · R · En

= O(1 + K1K2R · En),

so the fraction of operators not bound by repressor is

f (E) = O

Otot

= 1

1 + K1K2R · En
.

Assuming, as before, that the amount of R bound to O

is small compared to the amount or repressor gives

f (E) = 1 + K1E
n

1 + (K1 + K1K2Rtot)En
= 1 + K1E

n

1 + KEn
,

where K = K1(1 + K2Rtot). In this case we have
maximal repression when E is large, and even when
repression is maximal there is still be a basal level of
mRNA production (again known as leakage) which
is proportional to K1K

−1 < 1. Variation of the DNA
transcription rate with effector level is given by ϕ =
ϕ̄mf or

ϕ(E) = ϕ̄m

1 + K1E
n

1 + KEn
. (2.5)

Both (2.3) and (2.5) are special cases of

ϕ(E) = ϕ̄m

1 + K1E
n

A + BEn
= ϕ̄mf (E). (2.6)

The constants A, B ≥ 0 are defined in Table 2.1.
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Table 2.1
The parameters A, B, �, � and θ for the inducible and repressible

cases. See the text and Section 2.1 for more detail

Parameter Inducible Repressible

A K = 1 + K2Rtot 1
B K1 K = K1(1 + K2Rtot)
B
A

K1
K

K

� = A K 1
� = BK−1

1 1 KK−1
1

θ = κd
n�

(
1 − �

�

)
κd
n

· K−1
K

> 0 κd
n

· K1−K
K

< 0

2.2. General dynamic considerations

The Goodwin model for operon dynamics [2] con-
siders a large population of cells, each of which
contains one copy of a particular operon, and we use
that as a basis for discussion. We let (M, I, E) respec-
tively denote the mRNA, intermediate protein, and
effector concentrations. For a generic operon with a
maximal level of transcription b̄d (in concentration
units), the dynamics are given by [2, 4, 5, 7, 8]

dM

dt
= b̄d ϕ̄mf (E) − γMM, (2.7)

dI

dt
= βIM − γII, (2.8)

dE

dt
= βEI − γEE. (2.9)

It is assumed here that the rate of mRNA production is
proportional to the fraction of time the operator region
is active, and that the rates of protein and metabolite
production are proportional to the amount of mRNA
and intermediate protein respectively. All three of the
components (M, I, E) are subject to random degrada-
tion, and the function f is as determined in Section 2.1
above.

To simplify things we formulate Equations
(2.7)–(2.9) using dimensionless concentrations. To
start we rewrite Equation (2.6) in the form

ϕ(e) = ϕmf (e),

where ϕm (which is dimensionless) is defined by

ϕm = ϕ̄mβEβI

γMγEγI

and f (e) = 1 + en

� + �en
, (2.10)

� and � are defined in Table 2.1, and a (dimensionless)
effector concentration (e) is defined by

E = ηe with η = 1
n
√

K1
.

We continue and define dimensionless intermediate
protein (i) and mRNA concentrations (m):

I = iη
γE

βE

and M = mη
γEγI

βEβI

,

so Equations (2.7)–(2.9) take the form

dm

dt
= γM[κdf (e) − m],

di

dt
= γI (m − i),

de

dt
= γE(i − e),

with the dimensionless constants

κd = bdϕm and bd = b̄d

η
.

To continue our simplifications we rename the
dimensionless concentrations through (m, i, e) =
(x1, x2, x3), and subscripts (M, I, E) = (1, 2, 3) to
finally obtain

dx1

dt
= γ1[κdf (x3) − x1], (2.11)

dx2

dt
= γ2(x1 − x2), (2.12)

dx3

dt
= γ3(x2 − x3). (2.13)

In all of these equations, γi for i = 1, 2, 3 denotes a
degradation rate (units of inverse time), and thus Equa-
tions (2.11)–(2.13) are not in dimensionless form. The
dynamics of this classic operon model have been fully
analyzed [9], the results of which we simply summarize
here. We set X = (x1, x2, x3) and let St(X) be the flow
generated by the system (2.11)–(2.13), i.e., the func-
tion t �→ St(X) is a solution of (2.11)–(2.13) such that
S0(X) = X. For both inducible and repressible oper-
ons, for all initial conditions X0 = (x0

1, x
0
2, x

0
3) ∈ R

+
3

the flow St(X0) ∈ R
+
3 for t > 0.

The steady state solutions of (2.11)–(2.13) are given
by the solutions of

x

κd

= f (x) (2.14)

and for each solution x∗ of Equation (2.14) there is a
steady state X∗ = (x∗

1, x
∗
2, x

∗
3) of (2.11)–(2.13) which

is given by
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x∗
1 = x∗

2 = x∗
3 = x∗.

Whether there is a single steady state X∗ or there are
multiple steady states will depend on whether we are
considering a repressible or inducible operon.

2.2.1. No control
No control simply means f (x) ≡ 1, and in this case

there is a single steady state x∗ = κd that is globally
asymptotically stable.

2.2.2. Inducible regulation
Single versus multiple steady states. For an inducible
operon (with f given by Equation (2.2)) there may be
one (X∗

1 or X∗
3), two (X∗

1, X
∗
2 = X∗

3 or X∗
1 = X∗

2, X
∗
3),

or three (X∗
1, X

∗
2, X

∗
3) steady states, with the order-

ing 0 < X∗
1 ≤ X∗

2 ≤ X∗
3, corresponding to the possible

solutions of Equation (2.14) (cf. Figure 2.1). The small-
est steady state (X∗

1) is typically called the un-induced
state, while the largest steady state (X∗

3) corresponds to
the induced state. The steady state values of x are easily
obtained from (2.14) for given parameter values, and
the dependence on κd for n = 4 and a variety of values
of K is shown in Fig. 2.1. Figure 2.2 shows a graph of
the steady states x∗ versus κd for various values of the
leakage parameter K.

Fig. 2.1. A schematic illustration of the possibility of one, two or
three solutions of Equation (2.14) for varying values of κd in the
presence of inducible regulation. The monotone increasing graph is
f of Equation (2.10), and the straight lines correspond to x/κd for
(in a clockwise direction) κd ∈ [0, κd−), κd = κd−, κd ∈ (κd−, κd+),
κd = κd+, andκd+ < κd . This figure was constructed with n = 4 and
K = 10 for which κd− = 3.01 and κd+ = 5.91 as computed from
(2.17). See the text for details. Taken from [9] with permission.

Fig. 2.2. Logarithmic plot of the steady state values of x∗ versus κd

for an inducible operon obtained from Equation (2.14), for n = 4
and K = 2, 5, 10, and 15 (left to right) illustrating the dependence
of the occurrence of bistability on K. See the text for details. Taken
from [9] with permission.

Analytic conditions for the existence of one or more
steady states come from Equation (2.14) in conjunc-
tion with the observation that the delineation points are
marked by the values of κd at which x/κd is tangent to
f (x) (see Figure 2.1). Differentiation of (2.14) yields
a second condition

1

κdn(K − 1)
= xn−1

(K + xn)2 . (2.15)

From Equations (2.14) and (2.15) the values of x at
which tangency will occur are given by:

x±

= n

√√√√K − 1

2

{[
n − K + 1

K − 1

]
±

√
n2 − 2n

K + 1

K − 1
+ 1

}
.

(2.16)

The corresponding values of κd at which a tangency
occurs are given by

κd± = x∓
K + xn∓
1 + xn∓

. (2.17)

A necessary condition for the existence of two or
more steady states is obtained by requiring that the
radical in (2.16) is non-negative:

K ≥
(

n + 1

n − 1

)2

. (2.18)
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Fig. 2.3. This figure presents a parametric plot (for n = 4) of the
bifurcation diagram in (K, κd ) parameter space separating one from
three steady states in an inducible operon as determined from Equa-
tions (2.14) and (2.15). The upper (lower) branch corresponds to κd−
(κd+), and for all values of (K, κd ) in the interior of the cone there are
two locally stable steady states X∗

1, X
∗
3, while outside there is only

one. The tip of the cone occurs at (K, κd ) = ((5/3)2, (5/3) 4
√

5/3)

as given by Equations (2.18) and (2.19). For K ∈ [0, (5/3)2) there
is a single steady state. Taken from [9] with permission.

Thus a second necessary condition follows:

κd ≥ n + 1

n − 1
n

√
n + 1

n − 1
. (2.19)

Further, from Equations (2.14) and (2.15) we can find
the boundaries in (K, κd) space in which there are
one or three locally stable steady states as shown in
Fig. 2.3. There, we have given a parametric plot (x is
the parameter) of κd versus K, using

K(x) = xn[xn + (n + 1)]

(n − 1)xn − 1
and

κd(x) = [K(x) + xn]2

nxn−1[K(x) − 1]
,

for n = 4 obtained from Equations (2.14) and (2.15).
As is clear from the figure, when leakage is appre-
ciable (small K, e.g for n = 4, K < (5/3)2) then the
possibility of bistable behaviour is lost.

We can make some general comments on the influ-
ence of n, K, and κd on the appearance of bistability
from this analysis. First, the degree of cooperativity
(n) in the binding of effector to the repressor plays
a significant role and n > 1 is a necessary condition
for bistability. If n > 1 then a second necessary con-
dition for bistability is that K satisfies Equation (2.18)

so the fractional leakage (K−1) is sufficiently small.
Furthermore, κd must satisfy Equation (2.19) which is
quite interesting. For n → ∞ the limiting lower limit
is κd > 1 while for n → 1 the minimal value of κd

becomes quite large. This simply tells us that the ratio
of the product of the production rates to the product
of the degradation rates must always be greater than
1 for bistability to occur, and the lower the degree of
cooperativity (n) the larger the ratio must be.

If n, K and κd satisfy these necessary conditions
then bistability is only possible if κd ∈ [κd−, κd+] (c.f.
Figure 2.3). The locations of the minimal (x−) and
maximal (x+) values of x bounding the bistable region
are independent of κd . And, finally, (x+ − x−) is a
decreasing function of increasing n for constant κd, K

while (x+ − x−) is an increasing function of increasing
K for constant n, κd .

Local and global stability. Although the local stability
analysis of the inducible operon is possible [9], the
thing that is interesting is that the global stability is
possible to determine.

Theorem 2.1. [7, 10, Proposition 2.1, Chapter 4] For
an inducible operon with ϕ given by Equation (2.3),
define II = [1/K, 1]. There is an attracting box BI ⊂
R

+
3 defined by

BI = {(x1, x2, x3) : xi ∈ II, i = 1, 2, 3}
such that the flow St is directed inward everywhere on
the surface of BI . Furthermore, all X∗ ∈ BI and

1. If there is a single steady state, i.e. X∗
1 for κd ∈

[0, κd−), or X∗
3 for κd+ < κd , then it is globally

stable.
2. If there are two locally stable nodes, i.e. X∗

1 and
X∗

3 for κd ∈ (κd−, κd+), then all flows St(X0) are
attracted to one of them. (See [8] for a delineation
of the basin of attraction of X∗

1 and X∗
3.)

2.2.3. Repressible regulation
As is clear from a simple consideration of our

dynamical equations the repressible operon has a sin-
gle steady state corresponding to the unique solution x∗
of Equation (2.14). Again, rather remarkably, we can
characterize the global stability of this single steady
state through the following.

Theorem 2.2. [10, Theorems 4.1 & 4.2, Chapter 3] For
a repressible operon with ϕ given by Equation (2.5),
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define IR = [K1/K, 1]. There is a globally attracting
box BR ⊂ R

+
3 defined by

BR = {(x1, x2, x3) : xi ∈ IR, i = 1, 2, 3}
such that the flow St is directed inward everywhere on
the surface of BR. Furthermore there is a single steady
state X∗ ∈ BR. If X∗ is locally stable it is globally
stable, but if X∗ is unstable then a generalization of the
Poincare-Bendixson theorem [10, Chapter 3] implies
the existence of a globally stable limit cycle in BR.

2.3. The appearance of cell growth effects and
delays due to transcription and translation

The considerations of the previous sections must,
however, be tempered by the realization that some-
times cell growth has to be taken into account as well
as the fact that significant delays may enter into the
dynamical equations [11]. The effects of growth are
obvious in that if a cell increases its volume then there
is an effect on concentrations. But where do these
delays come from? Their origin is simple to under-
stand and arises from the fact that the transcription and
translation processes take place at a finite velocity and
therefore require a non-zero time for completion. The
existence of these delays has been known for some
time by modelers [12] and whether the incorporation
of the delays will potentially change the qualitative
nature of the model dynamics will depend on the type
of regulation. Generally when the regulation is that of
an inducible operon there will be no change, but if the
system is a repressible one then the inclusion of the
transcriptional and translational delays may lead to the
prediction of limit cycle behaviour.

Once we take growth and these transcriptional and
translational delays into account, our basic dynamical
equations are modified to the form

dM

dt
= b̄d ϕ̄mf (e−µτM EτM ) − γ̄MM, (2.20)

dI

dt
= βIe

−µτI MτI − γ̄II, (2.21)

dE

dt
= βEI − γ̄EE. (2.22)

In Equations (2.20)–(2.22) there are several changes to
be noted. The first is the appearance of the terms e−µτM

and e−µτI which account for an effective dilution of
the mRNA (M) and intermediate protein (I) because
the cell is growing at a rate µ (time−1). The second

is the alteration of the decay rates γi to γ̄i ≡ γi + µ

because the cell growth leads to an effective increase
in the rate of destruction. The last is the altered notation
EτM (t) = E(t − τM) and MτI (t) = M(t − τI ) indicat-
ing that both E and M are now to be evaluated at a
time in the past due to the non-zero times required for
transcription and translation. From a dynamic point of
view, the presence of these delays can have a dramatic
effect.

Equations (2.20)–(2.22) can be put in a simpler form,
just as we did for (2.7)–(2.9), but by now setting

E = ηe with η = 1

e−µτM n
√

K1
,

I = iη
γE

βE

and M = mη
γEγI

βEβI

e−µτI

so Equations (2.20)–(2.22) take the form

dm

dt
= γ̄M[κdf (eτM ) − m],

di

dt
= γ̄I (mτI − i),

de

dt
= γ̄E(i − e),

with

κd = b̄dϕmβIβE

γ̄Mγ̄I γ̄Eη
e−µτI . (2.23)

To finish our simplifications, as before rename the
dimensionless concentrations (m, i, e) = (x1, x2, x3),
and subscripts (M, I, E) = (1, 2, 3) to obtain

dx1

dt
= γ̄1[κdf (x3,τ1 ) − x1], (2.24)

dx2

dt
= γ̄2(x1,τ2 − x2), (2.25)

dx3

dt
= γ̄3(x2 − x3). (2.26)

Again Equations (2.24)–(2.296) are not in dimension-
less form.

It is important to realize that the appearance of the
delays τM and τI (or τ1 and τ2 ) plays absolutely no role
in the determination of the steady state(s) of inducible
and repressible systems as discussed above.

For an inducible operon in which f ′(X∗) > 0 a sim-
ple extension of the proof in [10, Proposition 6.1,
Chapter 6] shows that the global stability properties
are not altered by the presence of the delays (τ1, τ2).
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However, for a repressible operon there are, at this
point in time, no extensions of the global stability
results of [10, Theorem 4.1 & Theorem 4.2, Chapter
3] for inducible systems. The best that we can do is to
linearize Equations (2.24)–(2.26) in the neighborhood
of the unique steady state X∗ to obtain the eigenvalue
equation g(λ) = P(λ) + ϑe−λτ = 0 wherein

P(λ) = (γ̄1 + λ)(γ̄2 + λ)(γ̄3 + λ) and

ϑ = −κdf
′(X∗)γ̄1γ̄2γ̄3 > 0 (2.27)

and τ = τ1 + τ2. Writing out g(λ) we have

g(λ) = λ3 + a1λ
2 + a2λ + a3 + ϑe−λτ, (2.28)

where

a1 =
3∑

i=1

γi, a2 =
3∑

i /= j=1

γiγj, a3 =
3∏

i=1

γi.

Let λ(τ) = α(τ) + iω(τ) be the root of Equation
(2.28) satisfying α(τ0) = 0 and ω(τ0) = ω0, and set
p = a2

1 − 2a2, q = a2
2 − 2a1a2, r = a2

3 − ϑ2, and let
h(z) = z3 + pz2 + qz + r. [13, Theorem 2.4] gives the
conditions for X∗ to be locally stable and for the exis-
tence of a Hopf bifurcation.

Theorem 2.3. [13, Theorem 2.4]

1. If r ≥ 0 and � = p2 − 3q < 0, then all roots of
Equation (2.28) have negative real parts for all
τ ≥ 0.

2. If r < 0 or r ≥ 0, z1 > 0 and h(z1) < 0, then all
roots of Equation (2.28) have negative real parts
when τ ∈ [0, τ0).

3. If the conditions of (2) are satisfied, τ = τ0 and
h′(ω2

0) /= 0, then ±iω0 is a pair of simple purely
imaginary roots of Equation (2.28) and all other
roots have negative real parts. Moreover,

dReλ(τ0)

dτ
> 0.

2.4. Fast and slow variables

Identifying fast and slow variables can give con-
siderable simplification and insight into the long term
behaviour of the system. A fast variable in a given
dynamical system relaxes much more rapidly to an
equilibrium than a slow one [14]. Differences in degra-
dation rates in chemical and biochemical systems lead
to the distinction that the slowest variable is the one
that has the smallest degradation rate.

Typically the degradation rate of mRNA is much
greater than the corresponding degradation rates for
both the intermediate protein and the effector (γ1 �
γ2, γ3) so in this case the mRNA dynamics are fast
and we have the approximate relationship

x1 � κdf (x3).

If γ1 � γ2 � γ3 so that the effector is the slowest
variable, then we have

x2 � x3

and the three variable system (2.11)–(2.13) describing
the generic operon reduces to a one dimensional system

dx3

dt
= γ3[κdf (x3) − x3] (2.29)

for the relatively slow effector dynamics. If instead
the effector qualifies as a fast variable (as for the lac
operon) so that γ1 � γ3 � γ2 and

x3 � x2

then the intermediate protein is the slowest variable
described by the one-dimensional equation

dx2

dt
= γ2[κdf (x2) − x2]. (2.30)

Consequently both Equations (2.30) and (2.29) are of
the form

dx

dt
= γ[κdf (x) − x], (2.31)

where γ is either γ2 for protein (x2) dominated dynam-
ics or γ3 for effector (x3) dominated dynamics.

Eliminating fast variables, also known as the adia-
batic elimination technique [14], has been extended to
stochastically perturbed systems when the perturbation
is a Gaussian distributed white noise, c.f. [15, Section
11.1], [16, 17], and [18, Section 6.4]. For the case of
perturbation being a jump Markov process we refer to
[19].

3. Specific examples in various systems

3.1. The lactose operon

Glucose is the favourite carbon and energy source
for E. coli, as well as for many other organisms.
Although this bacterium can also feed on other sug-
ars, it only does so when glucose is absent. A typical
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Fig. 3.1. Typical diauxic growth curve. Note the existence of two
different exponential growth phases, separated by a short interval
in which the culture does not grow. The first (second) phase corre-
sponds to the bacterial culture feeding on glucose (lactose), while the
interval with no growth corresponds to the time required for the bac-
teria to turn on the genes needed to metabolize lactose after glucose
exhaustion.

population of E. coli doubles its size approximately
every hour in presence of a pure sugar, like glucose or
lactose. The existence of the lactose operon was con-
jectured by Jacob and Monod after observing that a
population of E. coli is initially unable to digest lac-
tose, when it is fed with a mixture of the glucose and
lactose sugars.

Monod [20] observed in his PhD work that in the
presence of a mixture of glucose and lactose the expo-
nential growth begins as usual, then it pauses for about
one hour before resuming at a similar pace. The bacte-
rial growth curve shows two distinctive phases, as can
be seen in Fig. 3.1. The key observation was that the
timing of the pauses was controlled by the ratio of the
initial amounts of glucose and lactose: the larger ini-
tial amount of glucose the later the pause would begin.
Monod realized that E. coli is initially unable to digest
lactose, so that the bacteria initially feeds exclusively
on glucose, until it is totally consumed and the bac-
teria then needs to change its internal metabolism to
consume lactose. It is worth mentioning at this point
that diauxic growth only occurs in batch cultures, and
simultaneous usage of sugars is often observed in con-
tinuous cultures [21].

Jacob and co-workers [1] proposed the lactose
operon model as a mechanism for explaining these
features. Thus, the lac genes that encode the enzymes
necessary for lactose absorption and hydrolysis are all
controlled by a single mechanism, and they are all
turned off in the presence of glucose or the absence

of lactose. Properly speaking, the lactose operon is
a DNA segment composed of a promoter/operator
region, followed by the structural genes lacZ, lacY,
and lacA, and finally by the corresponding termina-
tor. The promoter/operator is the DNA region where
the transcription factors (RNA polymerase, lactose
repressor, cyclic-AMP receptor protein, et cetera) bind
in order to initiate the transcription of a correspond-
ing mRNA strand or to regulate the corresponding
transcription process. The gene lacZ codes for the
enzyme β-galactosidase (LacZ) that in E. coli cleaves
the disaccharide lactose into glucose and galactose.
The gene lacY codes for the enzyme β-galactoside per-
mease (LacY), an inner membrane-bound symporter
that pumps lactose into the cell using a proton gradi-
ent. Finally, lacA encodes the enzyme β-galactoside
transacetylase (LacA) that transfers an acetyl group
from acetyl-sides. Nevertheless, it is not completely
understood what its precise function is.

The β-galactosidase enzyme. Few genes have a his-
tory of study as long and distinguished as lacZ. The
lacZ gene encodes an open reading frame of 1024
amino acids and was one of the first large genes to
be completely sequenced. In E. coli, the biologically
active β-galactosidase protein exists as a tetramer of
four identical subunits and has a molecular weight of
approximately 480–500 kDa. The primary enzymatic
function of β-galactosidase relevant to its role as a
biotechnological tool is to cleave the chemical bond
between the anomeric carbon and glycosyl oxygen of
appropriate substrates; see for example [22].

lacZ was chosen as the target of a very extensive
early analysis, in part owing to specific experimental
advantages accompanying work with β-galactosidase.
These advantages continue to provide a rationale for
using this protein in biotechnological applications
today.

The β-galactoside permease protein. Active trans-
porters (pumps) require a cellular energy source
(i.e. ATP hydrolysis) to catalyze the transport of
charged components against an electrochemical gra-
dient. Depending on their energy source, active trans-
porters are classified as primary or secondary. In
particular, secondary transporters use the free energy
stored in a given electrochemical ion gradient, as shown
in [23]. β-galactoside permease is a secondary trans-
porter that couples free energy released from downhill
translocation of protons to drive the uphill transloca-
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tion of galactosides against a concentration gradient.
This protein is composed of 417 amino acid residues
and has 12 helices that transverse the membrane in
a zigzag fashion, connected by relatively hydrophilic
loops with both N and C termini on the cytoplasm
side. β-galactoside permease is encoded by the lacY
gene, the second structural gene in the lactose operon.
lacY was the first gene encoding a membrane transport
protein to be cloned into a recombinant plasmid, over-
expressed and sequenced; see for example [24] and the
references therein. This success in the early days of
molecular biology opened the study of secondary active
transport at the molecular level. Thus, β-galactoside
permease was the first protein of its class to be solu-
bilized and purified in a completely functional state,
thereby demonstrating that this single gene product is
solely responsible for all the translocation reactionscat-
alyzed by the galactoside transport system in E. coli.
[24] has also shown that this protein is both structurally
and functionally a monomer in the membrane.

The lactose operon regulatory pathway. The lactose
operon plays two main important roles in the E. coli
metabolism: It controls the production of the enzymes
necessary for lactose absorption and hydrolysis, but
it also closes a positive feedback loop, the so called
lactose operon regulatory pathway. Once the disac-
charide lactose is pumped inside the bacteria by the
β-galactoside (lac) permease, the second enzyme β-
galactosidase has the dual role of transforming the
lactose into allolactose and hydrolyzing both (lactose
and allolactose) into the monosaccharides galactose
and glucose. The positive feedback loop is closed when
the intermediary sugar allolactose interacts with the
control mechanisms of the lactose operon. Thus the
allolactose binds to the lactose repressor lacI reducing
its ability to repress the transcription and expression of
the structural genes lacZ, lacY, and lacA. We refer the
reader to the cartoon in Fig. 3.5. for a better understand-
ing. Consequently an increment in the concentration
of lactose or allolactose inside the bacteria enhances
the production of the enzymes β-galactosidase and
β-galactoside permease, via the expression of the struc-
tural genes lacZ and lacY. This incremental enzyme
production enhances the absorption of more external
lactose and its transformation into allolactose, closing
the feedback loop.

In summary, the lactose operon is an excellent exam-
ple of the inducible operon reviewed in Section 2.2.
However, it took a while to interpret the lactose operon

subtle behaviour in terms of what we now call bistabil-
ity. This interpretation was first introduced by Novick
and Wiener [25] and Cohn and Horibata [26], who sug-
gested that a single cell may have two alternative states:
induced, in which it can metabolize lactose, or unin-
duced, in which the corresponding genes are switched
off and lactose metabolism does not occur. From their
results, Novick and Wiener, as well as Cohn and Hori-
bata, interpreted the so called maintenance effect as
the consequence of a high permease concentration in
induced cells, which would enable these cells to main-
tain the induced state and to transmit it to their progeny,
even if placed in a medium with a low concentration
of inducer. Although this interpretation accounts for
the existence of two distinct phenotypes and provides
an explanation of why induced cells placed in media
with low inducer concentrations remain indefinitely
induced, whereas cells that have never been induced
stayed uninduced, it does not explain what makes the
cells switch between alternative states. This switching
remained a mystery that had to wait for the introduction
of the concept of multistability to be fully explained.

We have seen in Section 2.2 that Griffith [5]
introduced a mathematical model for a single gene
controlled by a positive feedback loop, and found
that, under certain conditions, two stable states may
be accessible for the system simultaneously. How-
ever, Griffith did not use his model to explain the
maintenance effect of the lac operon. The first mod-
els explicitly aimed at unraveling this phenomenon
were due to Babloyantz and Sanglier [27] and to
Nicolis and Prigogine [28], who were able to inter-
pret the maintenance effect as the biological facet of
the physical process of multistability. These models
were quite complex, and took into account all the
information regarding the lactose operon regulatory
pathway available at the time. However, the level of
detailed knowledge about the underlying molecular
mechanisms has expanded greatly in the intervening
decades. Thus, more detailed and sophisticated mod-
els are possible. Below, we review some of the most
recent modeling studies of the lactose operon, many of
which are by our group.

Transcription of the structural genes. Let P(OP ) be
the probability that a polymerase is bound to the pro-
moter/operator region of the lactose operon and it is
ready to initiate transcription. The dynamical equations
for the lacZ and lacY ribosome binding sites (RBSs)
in the mRNA molecule are given [30–32] by
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Fig. 3.2. Cartoon representation of the lactose operon regulatory pathway. Labeled rectangles represent chemical species, arrows with empty
heads denote processes through which one chemical species is transformed into another, arrows with solid heads indicate interactions that
enhance the process they point to, and finally, lines ending in perpendicular bars denote interactions that diminish (inhibit) the process they point
to. Taken from [29] with permission.

dMZ

dt
= DkMPτZ (OP ) − (γM + µ)MZ, (3.1)

dMY

dt
= DkMPτY (OP ) − (γM + µ)MY. (3.2)

Variable MZ and MY respectively denote the con-
centrations of lacZ and lacY RBSs. D stands for
the concentration (number of molecules per average
bacteria) of lactose promoters, kM is the maximum
transcription initiation rate of the promoter, γM denotes
the mRNA degradation rate, and µ is the average
bacterias grown rate. µ is included along with the
degradation rateγM to account for the effective loss due
to dilution. Both (3.1) and (3.2) share the same param-
eters because the structural genes lacZ and lacY are
located in tandem after the promoter, and thus they are
transcribed by the same polymerase one after the other.
Finally, the notation PτZ (∗)(t) stands for P(∗)(t−τZ),
and we use it to take into account the time delay τZ

existing between transcription initiation and transla-
tion initiation. Hence, τZ is the time interval between
transcription initiation and the moment when the cor-
responding RBS is transcribed, so that a ribosome can
bind to it and initiate the translation. Obviously, the
time delay τY is larger than τZ, because the structural

genes lacZ are located close to the promoter and so
are transcribed first. Note that the symmetry between
Equations (3.1) and (3.2) implies that MY (t) is equal
to MZ(t−τ) for the difference τ = τY−τZ, so that we
need to use only one of these equations.

Translation of mRNA. The dynamical equations for
the concentration of the proteins encoded by the genes
lacZ and lacY are given [30–32] by

dEZ

dt
= kZe−µτ∗

ZMZ,τ∗
Z

− (γZ + µ)EZ, (3.3)

dEY

dt
= kYe−µτ∗

Y MY,τ∗
Y

− (γY + µ)EY . (3.4)

The variable EZ (EY ) denotes the concentration of
LacZ (LacY) polypeptides. The parameter kZ stands
for the maximum translation initiation rate at the lacZ
RBS, τ∗

Z is the time necessary to fully translate a
LacZ polypeptide, γZ denotes the protein EZ degra-
dation rate, and µ is as before. The exponential factor
e−µτ∗

Z accounts for dilution of mRNA concentration
due to cell growth in the time interval [t−τ∗

Z, t]. Finally,
the notation MZ,τ∗

Z
(t) stands for the delayed function

MZ(t−τ∗
Z). The parameters kY , τ∗

Y , and γY in Equa-
tion (3.4) have the same meaning as above for the
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dynamics of protein EY . Since the lacY mRNA seg-
ment has its own ribosome binding site, it is translated
independently from lacZ mRNA segment.

Observe that if the set of parameters (kZ, τ∗
Z, γZ)

is identically equal to (kY , τ∗
Y , γY ), then the symmetry

between Equations (3.3) and (3.4) implies that EY (t) is
equal to EZ(t−τ) for τ = τY−τZ, because we already
know that MY is equal to MZ,τ .

Lactose absorption and hydrolysis into lactose and
allolactose. Once the lacZ and lacY polypeptides are
produced, they pass through several biochemical pro-
cesses like folding and tetramerization in order to
produce the corresponding enzymes β-galactosidase
and β-galactoside permease. The internal dynamics of
these biochemical processes are not modeled in general
(the corresponding reversible reactions are assumed to
always be in equilibrium), and so one may take

B = EZ/4 and Q = EY, (3.5)

where B is the internal concentration of β-
galactosidase and Q denotes the concentration of
β-galactoside permease. The factor 1/4 comes from
the fact that β-galactosidase is a homo-tetramer made
up of four identical lacZ polypeptides. We thus assume
that all the β-galactosidase monomers are incorporated
into tetramers.

Dynamical equations for the concentration of intra-
cellular lactose L in bacteria were developed in [30]
and [31], and then later improved [32] to include
explicitly the effects of the external glucose Ge in the
absorption of lactose. This latter formulation took the
form

dL

dt
= kLβL(Le)βG(Ge)Q − k�β�(L)Q

−φMM(L)B − (γL+µ)L. (3.6)

L, as before, is the concentration of intracellular
lactose, while GE (LE) denotes the concentration
of extracellular glucose (lactose). The first term
kLβLβGQ in (3.6) stands for the gain of intracel-
lular lactose L obtained due to the action of the
β-galactoside permease Q in the transport of extracel-
lular lactose L; the second term k�β�(L)Q expresses
the loss of intracellular lactose to the extracellular fluid
due to the reversible nature of the permease mediated
transport; the third term φMM(L)B accounts for the
β-galactosidase mediated conversion of lactose into
allolactose as well as the hydrolysis of lactose to glu-

cose and galactose. The last term in (3.6) stands for
the decrease in internal lactose due to degradation and
dilution. βL(Le) is an increasing function of the extra-
cellular lactose Le, and βG(Ge) is decreasing with
respect to the external glucose Ge to take into account
the negative influence of the glucose on the absorption
of lactose:

βL(Le) = Le

κL + Le

and βG(Ge) = 1 − φG Ge

κG + Ge

.

(3.7)
Furthermore, the terms β�(L) and M(L) are both func-
tions of the internal lactose

β�(L) = L

κ� + L
and M(L) = L

κM + L
. (3.8)

The dynamical equation for the concentration of
allolactose A is much simpler:

dA

dt
= αφMM(L)B − φAM(A)B − (γA + µ)A,

(3.9)
where α is the fraction of internal lactose L trans-
formed by β-galactosidase B into allolactose instead of
being hydrolyzed into glucose and galactose. The term
φAM(A)B represents the hydrolysis of allolactose into
glucose and galactose mediated by β-galactosidase,
while the last term in (3.9) stands for the decrease in
internal allolactose due to degradation and dilution. We
implicitly assume that the dynamics of lactose and allo-
lactose hydrolysis are so similar that the same functions
M(L) and M(A) can be used to represent both.

In particular, if αφM � φA holds, γA + µ is close
to zero, and the allolactose dynamics are fast (so that
Equation (3.9) is always close to equilibrium), then we
conclude that A ≈ L and is independent of B.

The lactose operon control system. The system of
Equations (3.1) to (3.9) gives a mathematical model
of the biochemical reactions involved in the transcrip-
tion and translation of the lac structural genes, the
absorption of the extracellular lactose, its later transfor-
mation into allolactose, and the hydrolysis of lactose
and allolactose into glucose and galactose. The one
thing left to specify is an exact expression for the
probability P(OP ) that a polymerase is bound to the
promoter/operator region of the lactose operon and it
is ready to initiate transcription. We need an explicit
formula for P(OP ) in order to substitute it into Equa-
tions (3.1)–(3.2) and to model how allolactose and
glucose control the production of the enzymes nec-
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Fig. 3.3. (A) Schematic of the regulatory elements located in lactose operon DNA. P denotes the promoter, O1, O2, and O3 correspond to
the three operators (repressor-binding sites), and C is the binding site for the cAMP–CRP complex. The different ways in which a repressor
molecule can interact with the operator sites are represented in panels B to E. Namely, a free repressor molecule (B), one with a single subunit
bound by allolactose (D) or one with the two subunits in the same side bound by allolactose (E) can bind a single operator. Moreover, a free
repressor molecule can bind two different operators simultaneously (C). Taken from [29] with permission.

essary for the lactose absorption, transformation, and
hydrolysis, closing in this way the positive feedback
loop described previously.

The system (3.1) to (3.9) was presented in [30–32]
and has not been significantly modified since the time
it was originally developed. However, the probabil-
ity P(OP ) has changed significantly from the original
form

P(OP ) = a + An

b + An

proposed by [30].
Other investigators [29, 33–35] have proposed dif-

ferent formulas for P(OP ) adding more and more new
details on the lactose operon control system, which
is quite complex as the most recent discoveries show.
Thus [36] and [37] have established that the lactose
operon regulatory elements (pictured in Fig. 3.3a) are
distributed along the DNA chain as follows: the lac-
tose promoter is located between bp −36 (bp stands
for base pair, and positions are referred relative to the
starting point of gene lacZ, bp +1) and bp −7. Oper-
ator O1 is 21 bp long and centred around bp +11.
There are two additional operators, denoted O2 and O3,
which are, respectively, located at 401 bp downstream
and 92 bp upstream from O1. Finally, the activator
(CAP)-binding site spans from bp −72 to bp −50.

The lactose repressor is a homo-tetramer (consisting
of two functional homo-dimers) of lacI polypeptides,

according to [38] and [39]. Each functional dimer can
bind operators O1, O2 and O3. Furthermore, DNA can
also fold in such a way that a single repressor binds
two operators simultaneously, one per dimer. Each
monomer in the lactose repressor can be bound by an
allolactose molecule, inhibiting the capability of the
corresponding dimer to bind an operator. This means
that free repressors can bind one operator (Fig. 3.3b) or
two of them simultaneously (Fig. 3.3c), repressors with
three free monomers can bind one but not two opera-
tors (Fig. 3.3d), repressors with two free monomers can
bind one operator, if the bound monomers belong to the
same dimer (Fig. 3.3e), or none at all, and that repres-
sors with only one free monomer are unable to bind
any operator, as are repressors with all four monomers
bound by allolactose; see for example [40].

Deletion experiments [41] have shown that a repres-
sor bound to O1 inhibits transcription initiation, while
a repressor bound to either O2 or O3 has almost no
effect on the expression of the lactose operon structural
genes. Nevertheless, O2 and O3 do have an indirect
effect because the complex formed by a single repres-
sor simultaneously bound to O1 and either O2 or O3
is far more stable than that of a repressor bound only
to O1. The consequence of this is that interacting with
the lactose repressor operator O1 is only capable of
decreasing the expression of the operon genes 18 times;
when it cooperates with O2, the repression level can be
as high as 700-fold; when O1 and O3 act together, they
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can reduce the operon activity up to 440 times; when
all three operators are present, the repression intensity
can be as high as 1300-fold.

Also, in [36] it has been established that the intra-
cellular production of cyclic AMP (cAMP) decreases
as the concentration of extracellular glucose increases.
cAMP further binds a specific receptor molecule (CRP)
to form the so-called CAP complex. Finally, CAP binds
a specific DNA site (denoted here as C) upstream from
the lac promoter, and by doing so it increases the
affinity of the mRNA polymerase for this promoter.
This regulatory mechanism is known as catabolite
repression.

A novel source of cooperativity has been recently
discovered [42] in the lactose operon: when a CAP
complex is bound to site C, it bends DNA locally and
increases the probability of the complex in which a
repressor simultaneously binds operators O1 and O3.

The last regulatory mechanism in the lac operon is
a so-called inducer exclusion. In it, external glucose
decreases the efficiency of lac permease to transport
lactose, and by doing so negatively affects the induc-
tion of the operon genes; see for example [36].

These regulatory mechanisms which we have briefly
reviewed above are summarized in Fig. 3.3. As we
have seen, the activity of the lactose operon is reg-
ulated by extracellular glucose and lactose. While
extracellular glucose decreases the operon activity via
catabolite repression and inducer exclusion, extracel-
lular lactose increases the operon expression level by
deactivating the repressor. Another important point is
the existence of a positive feedback loop: as more
molecules of lactose permease and β-galactosidase
are produced, there is an elevated lactose uptake flux
and an increased lactose metabolism rate; this further
increases the production of allolactose and, as a con-
sequence, diminishes the amount of active repressor.
This, in turn, increases the operon activity, and thus
more lactose permease and β-galactosidase molecules
are produced.

The reader interested in the details of the lac
operon regulatory mechanisms is referred to the excel-
lent review [43] and the references therein. A good
description of the operon regulatory elements and their
location on the DNA chain can be found in [36]. The
most recent discoveries regarding the cooperativity
between CAP-binding site and operator O3 are [42].

Probability that a polymerase is bound to the promoter
and a transcription initiates. Santillan and co-workers

([34] and [29]) have taken into account all the details of
the lactose operon control system described above and
deduced an explicit formula for the probability P(OP )
as a function of the allolactose A and external glucose
Ge concentrations. This rather complicated expression
is given by

P(OP ) = ppc(Ge)PR(A), (3.10)

ppc(Ge) = pp

1 + (kpc−1)pc(Ge)

1 + (kpc−1)pppc(Ge)
, (3.11)

pcp(Ge) = pc(Ge)
1 + (kpc−1)pp

1 + (kpc−1)pppc(Ge)
, (3.12)

pc(Ge) = Km
G

Km
G + Gm

e

, (3.13)

PR(A) = (1 + ξ2ρ(A))(1 + ξ3ρ(A)) + ξ∗
1ρ(A)2

Z(A) + ∏
j=1,2,3(1 + ξjρ(A))

,

(3.14)

Z(A) =
∑

j=1,2,3

pcp(Ge)δ2j
(
1 + ξjρ(A)

)
ξ∗
j ρ(A)2,

(3.15)

ρ(A) =
(

KA

KA + A

)2

. (3.16)

In the following few paragraphs we explain, step by
step, the elements of this expression.

The function PR(A) in (3.14) accounts for the reg-
ulation of transcription initiation by active repressors,
giving the probability that the lactose promoter is not
repressed by an active repressor bound to Operator O1.
It accounts for the interactions of the repressor and allo-
lactose molecules, of the repressor molecules and the
three different lactose operators (including DNA loop-
ing), of the CAP activator and the mRNA polymerase,
and of CAP and the DNA loop involving operators O1
and O3.

Repressor molecules are tetramers formed by the
union of two active dimers. Every one of the four
repressor subunits can be bound by an allolactose
molecule. According to [40], free repressors, repres-
sors bound by one allolactose, and repressors bound
by two allolactoses in the same dimer can bind a
single operator. The fraction of repressors able to do
so is denoted by ρ(A) in (3.16). Conversely, only free
repressors, whose fraction is given by ρ(A)2, can bind
two different operators simultaneously.
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The function ppc(Ge) in (3.11) denotes the mod-
ulation of transcription initiation by the cooperative
interaction between a CAP activator and a polymerase,
each bound to its respective site. Production of cyclic
AMP (cAMP) is inhibited by extracellular glucose Ge.
cAMP further binds the so-called cAMP receptor pro-
tein to form the CAP complex. Finally, CAP binds a
specific site near the lactose promoter and enhances
transcription initiation. The probability of finding a
CAP molecule bound to its corresponding site is given
by pc(Ge) in (3.13).

The probability that a CAP activator is bound to its
corresponding site is given by the function pcp(Ge) in
(3.12). Its presence in the definition of PR(A) in (3.14)
accounts for the fact that it affects the formation of the
DNA loop in which a single repressor binds operators
O1 and O3 at the same time. Note that (pcp)δ2j is equal
to pcp only when j = 2 and it is equal to one in any
other case.

Reduced model. The system of equations devel-
oped above can be reduced after assuming that
the set of parameters (τZ, kZ, τ∗

Z, γZ) is equal to
(τY , kY , τ∗

Y , γY ), because in this case Equations (3.1)
and (3.2) are identical, and in the same way (3.3) is
identical to (3.4). Thus, recalling Equations (3.6) and
(3.10), we obtain the reduced system

dMZ

dt
= DkMppc(Ge)PR(A) − (γM + µ)MZ, (3.17)

dEZ

dt
= kZe−µτ∗

ZMZ,τ∗
Z

− (γZ + µ)EZ, (3.18)

dL

dt
= kLβL(Le)βG(Ge)Q − k�β�(L)Q

−φMM(L)B − (γL + µ)L. (3.19)

The functions ppc(Ge) and PR(A) are given in Equa-
tions (3.10) to (3.16). Finally, if we assume in (3.9) that
the equality αφM = φA holds, the sum γA + µ is very
small (close to zero), and the allolactose dynamics is
very fast, then we can assume that A = L. Thus, we
complete the model for the lactose operon by adding
the Equations (3.5) to (3.8),

B = EZ/4, (3.20)

Q = EZ, (3.21)

A = L, (3.22)

βL(Le) = Le

κL + Le

, (3.23)

Table 3.1
Values of the parameters in the lactose operon model equations. The
parameter KA is the only one that we were unable to estimate. The

unit mpb stands for molecules per average-size bacterium

D ≈ 2mpb kM ≈ 0.18/min
µ ≈ 0.02/min γM ≈ 0.46/min
pp ≈ 0.127 kpc ≈ 30
KG ≈ 2.6µM m ≈ 1.3
ξ1 ≈ 17 ξ2 ≈ 0.85
ξ3 ≈ 0.17 ξ∗

1 ≈ 0
ξ∗

2 ≈ 430.6 ξ∗
3 ≈ 1261.7

KA ≥ 0 mpb kZ ≈ 18.8/min
γZ ≈ 0.01/min τZ ≈ 0.1min
τ∗
Z ≈ 0.42min kL ≈ 6.0 × 104/min

k� ≈ 0/min κ� ≈ 680µM

φM ∈ [0, 3.8 × 104]/min κL ≈ 680µM

φG ≈ 0.35 κG ≈ 1.0µM

κM ≈ 7.0 × 105mpb

βG(Ge) = 1 − φG

Ge

κG + Ge

, (3.24)

β�(L) = L

κ� + L
, (3.25)

M(L) = L

κM + L
. (3.26)

The parameters of the model (3.10) to (3.26) are
given in Table 3.1 as estimated from the experimental
literature, see [32, 34] and [29].

Comparison with experimental results. In [44], exper-
iments were carried out in which E. coli cultures
were grown in M9 minimal medium, with succinate
as the main carbon source, supplemented with varying
amounts of glucose and trimethylglycine (TMG). They
engineered a DNA segment in which the gfp gene was
under the control of the wild-type lactose promoter,
and inserted this segment into the chromosome of the
cultured E. coli bacteria, at the λ-insertion site. In these
mutant bacteria, Ozbudak et al. estimated the lactose
operon expression level in each bacterium by simply
measuring the intensity of green fluorescence.

Experimentally [44] it has been observed that the
histograms of fluorescence intensities were unimodal,
and that the mean value corresponded to low induc-
tion levels of the lactose operon, when the bacterial
growth medium had low TMG levels. After the TMG
concentration surpassed a given threshold, the his-
tograms became bimodal, which can be viewed as
evidence for bistability: the original (new) mode cor-
responds to the uninduced (induced) steady state.
With further increments of the TMG concentration,
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Fig. 3.4. Bifurcation diagrams in the Le versus Ge parameter space, calculated with the present model under various conditions. In both
cases, the bistability region is shaded, while the monostable induced (top) and uninduced (bottom) regions are uncoloured. In the left graph we
used the parameter values tabulated in Table 3.1, and set KA = 8.2×105mpb. In the right graph all parameters ξj and ξ∗

j were reduced to 0.15

times the value reported in Table 3.1, and KA was set to 2.8 × 106mpb. To calculate the graphs, we set φM = 0/min to simulate induction of
the lac operon with the non-metabolizable TMG. The KA values referred to above were chosen to fit the experimental results of [44], which are
shown with solid diamonds. Taken from [34] with permision.

the mode corresponding to the uninduced state dis-
appeared, and the histogram became unimodal again.
When the experiment was repeated by decreasing the
concentrations of TMG, the opposite behaviour was
observed. Ozbudak et al. measured the range of TMG
concentrations for which bistability was obtained, for
several concentrations of external glucose. When they
repeated the same experiments with the natural inducer
(lactose), they were unable to find analogous evidence
for bistability, even when lactose was given at satura-
tion levels. In these last experiments, they employed
glucose concentrations in the same range as in the
experiments with TMG.

Noting that TMG inactivates the lactose repressor,
but it is not metabolizable, we simulate the Ozbudak
et al. experiments. For this, we set φM = 0/min to
account for the presence of a reliable carbon source
(succinate) and induction with TMG, which is not
metabolized by β-galactosidase. Then, we calculated
the bifurcation points and plotted them in the Le versus
Ge parameter space. We took KA as a free param-
eter, and found that KA = 8.2 × 105mpb (here and
thereafter mpb means molecules per average-size bac-
terium) gives a reasonable fit to the experimental points
of Ozbudak et al. Both the model bifurcation diagram
and the experimental points are presented in Fig. 3.4A.
Note that the bistability region predicted by the model
is wider than the experimental one. There are three
possible explanations for this discrepancy: 1) the lac-
tose promoter-gfp fusion employed by Ozbudak et al.
as a reporter lacks operators O2 or O3; 2) the diffi-

culty in measuring exactly the Le values at which the
bimodal histograms appear and disappear; and 3) the
phase diagram of Fig. 3.4A is based upon a mean-
field analysis, and so biochemical noise can change
the phase boundaries; see Section 4 below. A fourth
possible explanation for the disagreement between the
model and the experimental results is that our estimated
parameter values differ from those corresponding to
the E. coli strain used by Ozbudak et al. To account for
this possibility, we explored the parameter space look-
ing for a better fit. We found that it can be obtained
by decreasing the parameters ξj and ξ∗

j to 15% of
the values reported in Table 3.1, and by setting KA =
2.8 × 106mpb. The results are shown in Fig. 3.4B.

3.2. The tryptophan operon

Tryptophan is one of the 20 amino acids out of
which all proteins are made. Arguably, tryptophan is
the most expensive amino acid to synthesize, biochem-
ically speaking. Perhaps, for this reason, humans and
many other mammals do not have the enzymes neces-
sary to catalyze tryptophan synthesis and instead they
find this amino acid in their diet.

However, microorganisms like E. coli generally
posses the machinery to produce tryptophan, but the
production process is tightly regulated in all cases. In
the particular case of E. coli, the tryptophan operon is
a DNA segment containing a promoter (trpR) where
transcription starts and regulation by repression takes
place, a leader region (trpL) where regulation by
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Fig. 3.5. Schematic representation of the tryptophan operon regulatory pathway. Solid lines represent the processes involved in gene expression
and tryptophan synthesis, while dashed lines correspond to the operon regulatory mechanisms.

transcriptional attenuation occurs, and five structural
genes (trpE to trpA) that code for the polypeptides
comprising the enzymes responsible for the catalysis
of tryptophan biosynthesis. There are three differ-
ent regulatory mechanisms involved in the control
of the tryptophan operon dynamics: repression, tran-
scriptional attenuation, and enzyme inhibition. The
tryptophan regulatory pathway is illustrated in Fig. 3.5.

Repression occurs when an active repressor binds
to one of the three available binding sites within
the promoter, inhibiting the binding of a RNA poly-
merase, and so of transcription initiation. The repressor
molecule is a homo-dimer made up of two TrpR
polypeptides. Each subunit has a binding site for tryp-
tophan, and the repressor molecules activate when both
tryptophan binding sites are occupied. Of the three
repressor binding sites within the promoter, the two
closest to the transcription initiation site interact coop-
eratively. That is, when two are bound to such sites, the
resulting complex is much more stable than it would
be expected from the addition of the individual binding
energies.

Transcriptional attenuation is regulated by the DNA
leading region. The RNA strand resulting from tran-
scription of trpL can fold into three alternative
hairpin-like structures, as a result of Watson-Crick
base pairing. Soon after transcription initiation, the first
hairpin structure is formed, and this causes the poly-
merase to pause transcription. When a ribosome binds
to the nascent RNA strand to start translation, it even-
tually disrupts the hairpin and both transcription and
translation proceed together. Not long after that, the

ribosome encounters two tryptophan codons in tan-
dem. Under conditions of abundant tryptophan, there
is a large amount of charged trp transfer RNA, and
so the two consecutive tryptophan codons are rapidly
translated. When this occurs, a second hairpin struc-
ture, that serves as a transcription termination signal,
forms and transcription is prematurely aborted. Con-
versely, if tryptophan is scarce, the ribosome stops at
the trp codons while the RNA polymerase continues
transcribing the rest of the leading region. This prevents
the formation of the transcription-terminating hairpin
and instead promotes the formation of a third structure
that allows the polymerase to go into the structural
genes to transcribe them.

Tryptophan biosynthesis takes place through a series
of reactions, each one catalyzed by enzymes formed
from the polypeptides coded by genes trpE-A. The first
of those reactions, and the slowest one, is catalyzed
by the enzyme anthranilate synthase. In this reaction,
anthranilate is synthesized out of chorismic acid. Being
the slowest reaction of the tryptophan synthesis path,
anthranilate synthesis determines the velocity of the
whole process. Furthermore, anthranitale synthase is
a heterotetramer made up of two TrpE and two TrpD
subunits. Each TrpE subunit has a binding site for tryp-
tophan, and when they are bound by this amino acid,
the whole enzyme suffers an allosteric transformation
that makes it unable catalyze the corresponding reac-
tion. This regulatory mechanism is known as enzyme
inhibition.

A deterministic model for this regulatory path-
way can be constructed as follows. Consider first the
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dynamics of promoter switching. Denote the state of
repression of the promoter as (i, j, k)—with i, j, k =
0, 1; a value of 1 means that the corresponding repres-
sor binding site is occupied, while a value of 0 means
that it is empty. If Pijk represents the average number
of promoters whose state is (i, j, k), the chemical reac-
tions through which the promoter switches between its
different available states are:

P000
α1−⇀↽−
β1

P100, P000
α2−⇀↽−
β2

P010,

P000
α3−⇀↽−
β3

P001, P100
α2−−−⇀↽−−−

β2/kC

P110,

P100
α3−⇀↽−
β3

P101, P010
α1−−−⇀↽−−−

β1/kC

P110,

P010
α3−⇀↽−
β3

P011, P001
α1−⇀↽−
β1

P101,

P001
α2−⇀↽−
β2

P011, P110
α3−⇀↽−
β3

P111,

P101
α2−−−⇀↽−−−

β2/kC

P111, P011
α1−−−⇀↽−−−

β1/kC

P111.

In these reactions αi represents the effective reaction
rate constant for the binding of an active repressor to the
i-th binding site in the promoter, βi is the correspond-
ing unbinding reaction rate constant, and kC accounts
for the cooperativity between the first two repressor
binding sites.

By making use of the theory of chemical kinetics
we can write the following set of differential equations
governing the dynamics of variables Pijk:

dP000

dt
= −(α1 + α2 + α3)P000 + β1P100

+β2P010 + β3P001, (3.27)

dP100

dt
= −(β1 + α2 + α3)P100 + α1P000

+β2

kC

P110 + β3P101, (3.28)

dP010

dt
= −(α1 + β2 + α3)P010 + β1

kC

P110

+α2P000 + β3P011, (3.29)

dP001

dt
= −(α1 + α2 + β3)P001 + β1P101

+β2P011 + α3P000, (3.30)

dP110

dt
= −

(
β1

kC

+ β2

kC

+ α3

)
P110 + α1P010

+α2P100 + β3P111, (3.31)

dP101

dt
= − (β1 + α2 + β3) P101 + α1P001

+β2

kC

P111 + α3P100, (3.32)

dP011

dt
= − (α1 + β2 + β3) P011 + β1

kC

P111

+α2P001 + α3P010, (3.33)

dP111

dt
= −

(
β1

kC

+ β2

kC

+ β3

)
P111 + α1P011

+α2P101 + α3P110. (3.34)

These equations do not constitute a complete set
because the effective binding reaction rate constants αi

are directly proportional to the amount of active repres-
sors,RA, which is, in turn, a function of the intracellular
tryptophan concentration.

To complete the differential equation system let M

represent the concentration of mRNA molecules result-
ing from transcription of the tryptophan operon, E be
the concentration of anthranilate synthase enzymes,
and T denote the intracellular tryptophan level. Fol-
lowing the development in previous sections, the
differential equations accounting for the dynamics of
these variables are:

dM

dt
= kMP000A(T ) − γMM, (3.35)

dE

dt
= kEM − γEE, (3.36)

dT

dt
= kT EI(T ) − γT

T

T + KT

, (3.37)

in which kM is the transcription initiation rate, A(T )
represents the probability that a newly initiated tran-
scriptional event is not prematurely aborted due to
attenuation, γM accounts for the mRNA degradation
rate, kE is the enzyme synthesis rate per mRNA
molecule, γE is the enzyme degradation rate, kT

represents the tryptophan synthesis rate per active
enzyme, I(T ) is the probability that an enzyme is
not inhibited by tryptophan, γT is the maximal trypto-
phan consumption rate due to the cellular metabolism,
and KT is the corresponding half saturation
constant.
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The reaction rate constants for repressor binding are
proportional to the concentration of active repressors
RA(T ). That is,

αi = aiRA(T ). (3.38)

Thus, expressions for RA(T ), A(T ), and I(T ) are
required to complete the model. These functions cor-
respond to the three known regulatory mechanisms
in this system: repression, transcriptional attenuation,
and enzyme inhibition, respectively. Functions RA(T ),
A(T ), and I(T ) were derived in [45] from chem-
ical kinetics considerations by taking into account
all the chemical reactions behind the correspond-
ing regulatory mechanisms. The resulting expressions
are:

RA(T ) = RTot

(
T

T + KA

)2

, (3.39)

A(T ) =
1 + 2α T

KG+T(
1 + α T

KG+T

)2 , (3.40)

I(T ) = Kn
I

Kn
I + T n

. (3.41)

Here, RTot is the total number of repressor molecules,
KT the dissociation constant between tryptophan and
one binding site of a repressor, KG is the dissociation
constant between tryptophan and the corresponding
transfer RNA, α the probability per unit time that a
charged tRNATrp arrives at a tryptophan codon so that
it is translated, KI is the dissociation constant between
tryptophan and one of the TrpE subunits in anthranilate
synthase, and n is a Hill coefficient.

Equations (3.27)–(3.41) constitute a complete sys-
tem of differential equations that model the dynamics
of the tryptophan operon. However, due to its high
dimensionality, this system is quite difficult to ana-
lyze. For that reason, some simplifying assumptions
are useful. One which has been widely employed
consists in supposing that the dynamics of repressor
binding and unbinding are much faster than those of
mRNA and protein synthesis and degradation, as well
as those of tryptophan production and consumption.
If this is the case, the subsystem given by Equations
(3.27)–(3.34) is much faster than that given by Equa-
tions (3.35)–(3.37), and so one can make a quasi steady
state approximation (also known as adiabatic elimi-
nation) for Equations (3.27)–(3.34), with which the
model transforms into

dM

dt
= kMP000(T )A(T ) − γMM, (3.42)

dE

dt
= kEM − γEE, (3.43)

dT

dt
= kT EI(T ) − γT

T

T + KT

. (3.44)

The concentration of non-repressed promoters is given
in this case by

P000(T ) =
(

1 + a1

β1
RA(T ) + a2

β2
RA(T ) + a3

β3
RA(T )

+kC

a1

β1

a2

β2
R2

A(T ) + a1

β1

a3

β3
R2

A(T )

+ a2

β2

a3

β3
R2

A(T ) + kC

a1

β1

a2

β2

a3

β3
R3

A(T )

)−1

.

(3.45)

P000(T ), A(T ), and I(T ) are monotonic sigmoidally
decreasing functions of T , and so is the product
P000(T )A(T ). This product is sometimes replaced by
a decreasing Hill function [46].

As explored extensively in Section 2, an elementary
classification of systems subject to feedback regulation
includes those with negative feedback or, alternately,
those with positive feedback. This is important because
the type of feedback determines the kind of expected
dynamic behaviour. Thus, positive feedback is nec-
essary for bistability, while negative feedback is the
mechanism underlying cyclic behaviour. Given that
the tryptophan operon has been experimentally stud-
ied for several decades (and, thus, is one of the best
known molecular systems), and that it is regulated by
three different negative feedback loops, this system has
become a paradigm for studying the effects of neg-
ative feedback regulation on gene expression. Below
we review some of the most prominent past studies of
the tryptophan operon.

As discussed in Section 2.2, the first mathematical
model for a repressible operon was due to Goodwin
[3], who developed a model with a structure equiv-
alent to that in Equations (3.42)–(3.44), except that
the regulatory functions accounting for transcriptional
attenuation and enzyme inhibition were not taken into
account. The repression regulatory function was mod-
eled in the Goodwin model by a monotone decreasing
Hill function. In a later paper, Goodwin [2] presented
analog computer simulations of limit cycles (sustained
oscillations) obtained from this model with a Hill expo-
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nent of one. However, Griffith [4] later demonstrated
that the steady state is locally stable up to a Hill expo-
nent equal to 8, making limit cycle oscillations highly
unlikely for low exponent values. In a large number
of simulations Griffith found limit cycles only if the
steady state was unstable. Apparently, there was an
error in Goodwin’s analog simulation. The controversy
was finally resolved by Tyson [47], who analytically
proved the existence of at least one periodic solution
whenever the steady state is unstable.

As we saw in the previous paragraph, the first mod-
eling studies on a repressible operon focused on the
possibility of sustained oscillations, and ended with
a negative conclusion. This question was revisited in
[48], who modified the Goodwin model to include the
transcriptional and translational time delays as well as
the regulatory function accounting for enzyme inhi-
bition. Bliss et al. demonstrated that time delays can
induce sustained oscillations, but only when enzyme
inhibition is weakened. They also presented experi-
mental results with a mutant strain of E. coli in which
the enzyme anthranilate synthase cannot be inhib-
ited by tryptophan. This strain was first grown in a
tryptophan-rich medium and then suddenly changed
to a tryptophan-less medium to induce expression of
the tryptophan operon genes. Both the simulations and
the experiments showed periodic oscillation in both
the enzyme and the tryptophan intracellular concen-
trations.

In later work [49] the Goodwin model was further
refined by deriving a repression regulatory func-
tion from first principles, taking into consideration
the underlying chemical reactions. Nonetheless, they
dismissed the regulatory functions corresponding to
transcription attenuation and enzyme inhibition. In
[49] the possible complex behaviours the tryptophan
operon can show, given the architecture of the regu-
latory network, was investigated. They found that the
steady state, although normally stable, becomes unsta-
ble for super-repressing strains, even at low values of
the cooperativity of repression. However, in order for
this to happen it is necessary that the demand for end-
product saturates at large end-product concentrations.
Finally, in [49] it was proved that the system can also
show bistability, in which a stable steady state and a
stable limit cycle coexist.

In 1990, other investigators [50] introduced one
more model for the tryptophan operon regulatory
pathway, and used it to investigate the possibility of
engineering an E. coli strain to overproduce trypto-

phan. The model [50] has a similar structure to that
in Equations (3.42)–(3.44) but, as some of the mod-
els reviewed in the former paragraphs, it ignores the
transcriptional attenuation and the enzyme inhibition
regulatory mechanisms. Through analytical studies
and numerical simulations the authors were able to
demonstrate that stable overproduction is feasible.
Nevertheless, under some specific circumstances the
operon may become unstable and lead to periodic syn-
thesis. In [51] the models of [49] and [50] were further
refined and employed to study the influence of periodic
fluctuations in the intracellular demand for tryptophan.

In our group we have studied the dynamic behaviour
of the tryptophan operon regulatory pathway for some
time. In [52] we developed a mathematical model that
accounts for all known regulatory mechanisms, as well
as for the time delays due to transcription and transla-
tion. Moreover, we put special attention to estimating
all of the model parameters from reported experimental
data. Although involving one extra differential equa-
tion, a more careful analysis reveals that this model
is equivalent to that in Equations (3.42)–(3.44). To
test the model feasibility, we compared its predic-
tions with available dynamic experiments from wild
type and two mutant strains. Later [45], we simpli-
fied our original model, but still considered all three
existing regulatory mechanisms, and analyzed their
influence on the system dynamic behaviour. We numer-
ically showed that enzyme inhibition is the fastest
responding mechanism. However, although it could
suffice to efficiently control tryptophan biosynthe-
sis, it would be very expensive because it would
imply continuous production of enzymes. Although
repression and transcription attenuation respond con-
siderably more slowly, they allow bacteria to diminish
the energy expended in enzyme synthesis when tryp-
tophan demand is low for longer periods of time. In
other words, the redundancy of feedback regulatory
mechanisms allows E. coli to efficiently respond to
both slow (via repression and transcription attenua-
tion) and fast (via enzyme inhibition) fluctuations of
tryptophan demand. These numerical results were ana-
lytically corroborated in [53], where we studied the
global stability of the tryptophan operon model using
the second Lyapunov method.

As we have seen, the first modeling studies on
the tryptophan operon focused on the possibility
that this system shows sustained oscillations under
given circumstances. Interestingly, there is only one
experimental report of such oscillatory behaviour in
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Fig. 3.6. Oscillatory behaviour during a de-repression experiment
with an enzyme-inhibition-less E. coli mutant strain, as predicted by
the deterministic model in [54].

the tryptophan operon [48]. Taking into considera-
tion the lack of experimental evidence, as well as
recent discoveries regarding the existence of multi-
ple repressor binding sites within the trp promoter,
and of cooperativity between two of them, we have
further investigated the possibility of observing sus-
tained oscillations in this system [54]. To that end, we
improved the model in [45] by incorporating the dis-
coveries discussed above and analyzed it numerically.
We found that indeed, a mutant bacterial strain lack-
ing enzyme inhibition can behave cyclically, and that
the time delays due to transcription and translation are
essential for this behaviour. In Fig. 3.6 we show the
model results, which show a very good agreement with
the experimental results in [48].

On the other hand, regular periodic oscillations are
observed in the model of [54], but only when the system

Fig. 3.7. (A) Stochastic quasi-oscillatory behaviour observed dur-
ing a de-repression experiment with an enzyme-inhibition-less E.
coli mutant strain, as predicted by the stochastic model in [54]. (B)
Average behaviour of 100 independent cells.

intrinsic stochasticity is ignored. When the so-called
intrinsic biochemical noise is taken into account, the
system shows oscillations with variable periods, and
this causes the global system behaviour in a cell pop-
ulation to be non cyclic overall. These results stress
the necessity of further studying the appearance of
oscillations in the tryptophan operon, both analytically
and experimentally; not only to satisfy some people’s
scientific curiosity, but also because answering this
question may shed some light into the dynamics of
gene regulation. In Fig. 3.7 we show the stochastic
quasi-periodic dynamic behaviour predicted by the
mathematical model, as well as the average of 100
independent cells.

All the models reviewed so far have the structure
of the model represented by Equations (3.42)–(3.44).
This means that, either explicitly or implicitly, they
assume that promoter gating between the various
repressed and the non-repressed states is much
faster than the transcription and translation processes.
Nevertheless, recent detailed measurements of the
repressor-promoter kinetics revealed that this assump-
tion is not valid—see [55] and references therein.
This further implies that the assumed separation of
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Fig. 3.8. Comparison of experimental results (circles and triangles) and model predictions for de-repression experiments carried out with a
wild-type and an enzyme-inhibition-less mutant strain of E. coli.

time scales employed to obtain the simplified model
in Equations (3.42)–(3.44) does not exist, and one
is obliged to work with the full model: Equations
(3.27)–(3.37). In a recent paper [55] we studied the
stochastic behaviour of such a model, but analytical
and numerical studies of the deterministic counterpart
are still missing.

We wish to emphasize that in our modeling studies
we have followed the strategy of producing models as
detailed as possible, given the available experimen-
tal evidence. This meant that not only we included
all known mechanisms into the model equations, but
also that we estimated all of the model parameters
from reported experimental data. Understandably, this
is not always possible when developing models for bio-
logical systems. However, in this particular case, the
tryptophan operon of E. coli is so well studied that
developing this kind of model is completely feasible.
A natural consequence of having quite detailed models
is the possibility of accurately reproducing dynamic
experiments. In particular, we have employed the
experimental results of [56] to compare with our mod-
els’ predictions. In Fig. 3.8 we show comparisons of
model predictions and the Yanofsky and Horn experi-
mental measurements for a wild type and for a enzyme-
inhibition-less mutant E. coli strain. The theoretical
simulations in Fig. 3.8 were carried out with our most
detailed model [55], but qualitatively similar results
are obtained with all the model versions previously
reviewed. In our opinion, it is essential for a model to
be able to reproduce existing dynamical experimental
data, before it can be employed to answer dynamical
questions not easily addressed experimentally.

E. coli is not the only bacterium with a trypto-
phan operon. Other bacteria also have an equivalent

system, in particular B. subtilis. Interestingly, the struc-
ture of the regulatory pathway in both systems is very
similar, although the specific mechanisms are very
different. For instance, instead of repression, the tryp-
tophan operon in B. subtilis involves a so-called TRAP
molecule that promotes premature transcription termi-
nation when it is bound by 11 tryptophan molecules.
Instead of transcriptional attenuation, B. subtilis has a
secondary at operon that is regulated by tryptophan and
produces a protein that modulates the effect of TRAP
proteins. The only mechanism that E. coli and B. sub-
tilis share in common is enzyme inhibition. A model
for the tryptophan operon of B. subtilis was developed
in [57] and shown that not only its regulatory pathway
has a similar structure to that of E. coli, but the anal-
ogous mechanisms in both systems play similar roles
from a dynamic perspective. Given that the lineages
of both organisms evolved separately several millions
of years ago, these similarities may be the result of
evolutionary convergence.

4. Noise effects in gene regulation: Intrinsic
versus extrinsic

In all areas of science, when making experimental
measurements it is noted that the quantity being mea-
sured does not have a smooth temporal trajectory but,
rather, displays apparently erratic fluctuations about
some mean value when the experimental precision
is sufficiently high. These fluctuations are commonly
referred to as ‘noise’ and usually assumed to have an
origin outside the dynamics of the systems on which
measurements are being made–although there have
been many authors who have investigated the possi-
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bility that the ‘noise’ is actually a manifestation of the
dynamics of the system under study. Indeed, a desire
to find ways to quantitatively characterize this ‘noise’
is what led, in large part, to the development of the
entire mathematical field loosely known as stochastic
processes, and the interaction of stochastic processes
with deterministic dynamics is of great interest since it
is important to understand to what extent fluctuations
or noise can actually affect the operation of the system
being studied.

Precisely the same issues have arisen in molecu-
lar biology as experimental techniques have allowed
investigators to probe temporal behaviour at ever finer
levels, even to the level of individual molecules. Exper-
imentalists and theoreticians alike who are interested in
the regulation of gene networks increasingly focus on
trying to assess the role of various types of fluctuations
on the operation and fidelity of both simple and com-
plex gene regulatory systems. Recent reviews [58–60]
give an interesting perspective on some of the issues
confronting both experimentalists and modelers.

As in other areas of science, in gene regulation the
debate often swirls around whether the fluctuations are
extrinsic to the system under consideration [61–64], or
whether they are an intrinsic part of the fundamental
processes they are affecting (e.g. bursting, see below).
The dichotomy is rarely so sharp however, but in [65]
an elegant experimental technique has been presented
to operationally distinguish between the two, see also
[66], while [67] and [68] have partially set the stage for
a theoretical consideration of this question. One issue
that is raised persistently in considerations of the role of
fluctuations or noise in the operation of gene regulatory
networks is whether or not they are ‘beneficial’ [69] or
‘detrimental’ [70] to the operation of the system under
consideration. This is, of course, a question of defini-
tion and not one that we will be further concerned with
here since it is a question without scientific meaning.

In this section we study the density of the molecular
distributions in generic bacterial operons in the pres-
ence of ‘bursting’ (commonly known as intrinsic noise
in the biological literature) as well as inherent (extrin-
sic) noise using an analytical approach. In a very real
sense, the whole field of intrinsic noise behaviour owes
its basis to the pioneering work of Berg [71] who first
studied the statistical fluctuations of protein numbers
in bacterial population (with division) through the mas-
ter equation approach, and introduced the concept of
what is now called bursting. Our work is further moti-
vated by the well documented production of mRNA

and/or protein in stochastic bursts in both prokaryotes
and eukaryotes [72–79], and follows other mathemati-
cal contributions [80–101]. We stress, however, that we
have not referenced studies in which stochasticity was
studied solely using Gillespie simulations since these
have become de rigeur for almost all supposed model-
ing efforts in spite of the fact that in and of themselves
they yield little if any real insight.

Because of its relevance to the analysis of experi-
mental data, we emphasize the behaviour of densities
of gene regulatory constituents. To our knowledge, the
analytical solution of the steady state density of the
molecular distributions in the presence of bursting was
first derived in [81]. Our approach emphasized here
extends these results to show the global stability of the
limiting densities and examines their bifurcation struc-
ture to give a complete understanding of the effect of
bursting on molecular distributions.

4.1. Dynamics with bursting

4.1.1. Generalities
In this section we model the amount of the domi-

nant protein as a Markov process {x(t)}t≥0 with values
in (0, ∞). Let x(t) denote the amount of the protein in a
cell at time t, t ≥ 0. Following [73, 81] we assume that
the amplitude of protein production through bursting
translation of mRNA is exponentially distributed, that
the frequency of bursting ϕ is dependent on the level of
the protein, and that protein molecules undergo degra-
dation with rate γ . We take here ϕ(x) = γκbf (x) and
κb ≡ ϕm in contrast to the deterministic case where
κd = bdϕm. If only degradation were present, then x(t)
would satisfy the equation

x′(t) = −γx(t), t ≥ 0.

However, we interrupt the degradation at random times

t1 < t2 < . . .

occurring with intensity ϕ, i.e.,

Pr(tk − tk−1 > t|x(tk−1) = x) = e
−

∫ t

0
ϕ(e−γsx)ds

,

t, x > 0.

At each tk a random amount ek of protein molecules is
produced according to an exponential distribution with
density
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h(x) = 1

b
e−x/b. (4.1)

Consequently the process is given by

x(t) =
{

e−γ(t−tk−1)x(tk−1), tk−1 ≤ t < tk,

e−γ(tk−tk−1)x(tk−1) + ek, t = tk, k = 1, 2, . . .

The corresponding master equation for the evolution
of the density u(t, x) of x(t) is given by

∂u(t, x)

∂t
− γ

∂(xu(t, x))

∂x

= −γκbf (x)u(t, x)

+γκb

∫ x

0
f (y)u(t, y)h(x − y)dy. (4.2)

A stationary solution of Equation (4.2), which now
becomes

−d(xu∗(x))

dx
= −κbf (x)u∗(x)

+κb

∫ x

0
f (y)u∗(y)h(x − y)dy,

with h given by (4.1) and nonnegative f , is of the form

u∗(x) = C
x
e−x/b exp

[
κb

∫ x f (y)

y
dy

]
, (4.3)

where C is a normalizing constant, if u∗ is integrable.
The next result follows from [102].

Theorem 4.1. Suppose that h is exponential as in (4.1)
with b > 0 and that

C :=
∫ ∞

0

1

x
e−x/b exp

[
κb

∫ x f (y)

y
dy

]
dx < ∞.

Then u∗ defined in (4.3) is the unique stationary density
of (4.2) and the solution u(t, x) of (4.2) is asymptoti-
cally stable in the sense that

lim
t→∞

∫ ∞

0
|u(t, x) − u∗(x)|dx = 0

for all initial densities u(0, x).

4.1.2. Distributions in the presence of bursting
We consider the situation in which the function f in

the burst frequency ϕ = γκbf is given [103] by

f (x) = 1 + �xn

� + �xn
,

where �, �, n are positive constants and � ≥ 0. We
take � = 1 to get f as defined in (2.10) for both the

generic inducible and repressible operons treated in
Section 2.1 with the constants �, � enumerated in
Table 2.1. We have

κb

∫ x f (y)

y
dy =

∫ x κb

y

[
1 + �yn

� + �yn

]
dy

= ln
{

xκb�
−1

(� + �xn)θ
}

,

where

θ = κb

n�

(
� − �

�

)
.

Thus, the stationary density (4.3) explicitly becomes

u∗(x) = Ce−x/bxκb�
−1−1(� + �xn)θ. (4.4)

Observe that in the absence of control, i.e., if f ≡ 1 or,
equivalently, � = � = � = 1, we obtain, as in [81],
the density of the gamma distribution:

u∗(x) = 1

bκb�(κb)
e−x/bxκb−1,

where �(·) denotes the gamma function. In particular,
the first two terms of Equation 4.4 are proportional to
the density of a gamma distribution.

The analysis of the qualitative nature of the sta-
tionary density (4.4) leads to different conclusions for
the inducible and repressible operon cases, since the
parameter θ is either positive or negative. In the rest of
this section we assume that � = 1. First note that we
have u∗(0) = ∞ if 0 < κb�

−1 < 1 while u∗(0) = 0
for κb�

−1 > 1 in which case there is at least one max-
imum at a value of x > 0. To calculate the number of
maxima we use the fact that u∗(x) > 0 for all x > 0
and that

u′
∗(x) = u∗(x)

(
κbf (x)

x
− 1

b
− 1

x

)
, x > 0.

Consequently, we have u′∗(x) = 0 for x > 0 if and
only if

κb

(x

b
+ 1

)
= 1 + xn

� + �xn
. (4.5)

For θ ≤ 0, as in the case of no control or a repressible
operon, we have � = 1, � ≥ 1, and graphical argu-
ments (see Fig. 4.1) easily show that Equation (4.5)
may have none or one solution. Therefore, we have a
stationary density which we can classify as
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Fig. 4.1. Schematic illustration that there can be one or no solution
of Equation (4.5), depending on the value of κb, with repressible
regulation. The straight lines correspond (in a clockwise direction)
to κb = 2 and κb = 0.8. This figure was constructed with n = 4,
� = 10 and b = 1. See the text for further details. Taken from [9]
with permission.

Unimodal type 1 if u∗(0) = ∞ and u∗ is decreasing,
or

Unimodal type 2 if u∗(0) = 0 and u∗ has a single
maximum at a value of x > 0.

Observe that the stationary density u∗ in the case of the
repressible operon is Unimodal of type 1 if 0 < κb < 1
and Unimodal of type 2 if 1 < κb.

For θ > 0, as in the case of an inducible operon, the
stationary density becomes

u∗(x) = Ce−x/bxκbK
−1−1(K + xn)θ,

θ = κb

n
(1 − K−1)

and there is the possibility that u∗ may have more than
one maximum, indicative of the existence of bistable
behaviour. Graphical arguments (see Fig. 4.2) show
that there may be up to three roots of

1

κb

(x

b
+ 1

)
= 1 + xn

K + xn
. (4.6)

There are two cases to distinguish. If 0 < κb < K then
u∗(0) = ∞ and there can be none, one, or two pos-
itive solutions to equation (4.6). If 0 < K < κb then
u∗(0) = 0 and there may be one, two, or three positive
roots of equation (4.6). If there are three we label them
as x̃1 < x̃2 < x̃3. The values x̃1, x̃3 will correspond to
the location of maxima in u∗ while x̃2 will be the loca-

Fig. 4.2. Schematic illustration of the possibility of one, two or three
solutions of equation (4.6) for varying values of κb with bursting
inducible regulation. The straight lines correspond (in a clockwise
direction) to κb ∈ (0, κb−), κb = κb−, κb ∈ (κb−, κb+) (and respec-
tively κb < K, κb = K, K < κb), κb = κb+, and κb+ < κb. This
figure was constructed with n = 4, K = 10 and b = 1 for which
κb− = 4.29 and κb+ = 14.35 as computed from (4.9). See the text
for further details. Taken from [9] with permission.

tion of the minimum between them. Consequently, the
stationary density u∗ can be classified as Unimodal
type 1, type 2, as well as

Bimodal type 1 if u∗(0) = ∞ and u∗ has a single
maximum at x > 0, or

Bimodal type 2 if u∗(0) = 0 and u∗ has two maxima
at x̃1, x̃3, 0 < x̃1 < x̃3.

There are two different bifurcation patterns that are
possible. In what will be referred as Bifurcation type
1, the maximum at x = 0 disappears when there is
a second peak at x = x̃3. The sequence of densities
encountered for increasing values of κb is then: Uni-
modal type 1 to a Bimodal type 1 to a Bimodal type
2 and finally to a Unimodal type 2 density. Figure 4.3
illustrates Bifurcation type 1, when n = 4, K = 4,
b = 1, and κb increases from low to high values. In the
Bifurcation type 2 situation, the sequence of density
types for increasing values of κb is: Unimodal type 1 to
a Unimodal type 2 and then a Bimodal type 2 ending
in a Unimodal type 2 density. Figure ?? shows Bifur-
cation type 2, when n = 4, K = 4, b = 1

10 , and the
parameter κb increases.

To find the analogy between the bistable behaviour
in the deterministic system and the existence of
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Fig. 4.3. In this figure we illustrate Bifurcation type 1 when intrin-
sic bursting is present. The stationary density u∗ is plotted versus
x between 0 and 6. The values of the parameters used in this fig-
ure are b = 1, K = 4, and n = 4. The parameter κb was taken to
be 3, 3.7, 4, 4.5, 5, 6.5, where for κb = 3 we have unimodal type
1 density, and increasing κb we obtain bimodal type 2 density for
κb = 4.5, 5.

Fig. 4.4. An illustration of Bifurcation type 2 for intrinsic bursting.
The stationary density u∗ is plotted versus x between 0 and 5. The
parameters used are b = 1, K = 4, and n = 4. The parameter κb

was taken to be 2.5, 22, 25, 28, 31, where we have Unimodal type
1 density for κb = 2.5, then Unimodal type 2 for κb = 22, Bimodal
type 2 for κb = 25, 28, and back Unimodal type 2.

bimodal stationary density u∗ we fix the parameters
b > 0 and K > 1 and vary κb as in Fig. 4.2. In gen-
eral we can cannot determine when there are three
roots of (4.6). Instead, using the argument of Section
2.2.2 one can determine when there are only two roots.
Differentiation of (4.6) yields the condition

n
xn−1

(K + xn)2 = 1

κbb(K − 1)
. (4.7)

Equations (4.6) and (4.7) can be combined to give an
implicit equation for the value of x± at which tangency
will occur

x2n − (K − 1)

[
n − K + 1

K − 1

]

xn − nb(K − 1)xn−1 + K = 0 (4.8)

and the corresponding values of κb± are given by

κb± =
(

x∓ + b

b

) (
K + xn∓
1 + xn∓

)
. (4.9)

We see then that the different possibilities depend on
the respective values of K, κb−, κb+, and κb. Note that it
is necessary for 0 < K < κb in order to obtain Bimodal
type 2 behaviour.

We now choose to see how the average burst size b

affects bistability in the density u∗ by looking at the
parametric plot of κb(x) versus K(x). Define

F (x, b) = xn + 1

nxn−1(x + b)
. (4.10)

Then

K(x, b) = 1 + xnF (x, b)

1 − F (x, b)
and

κb(x, b) = [K(x, b) + xn]
x + b

b(xn + 1)
. (4.11)

Figure 4.5 presents the regions of bimodality in the
presence of bursting in the (K, b · κb) parameter space,
which should be compared to the region of bistability
in the deterministic case in the (K, κd) parameter space
(bκb is the mean number of proteins produced per unit
of time, as is κd).

4.1.3. Recovering the deterministic case
The deterministic behaviour can be recovered from

the bursting dynamics with a suitable scaling limit of
parameters. The frequency κb and the amplitude b are
two important parameters in the bursting production,
while in the deterministic production there is only κd .
Thus, if we take the limit

b → 0, κb → ∞ with bκb ≡ κd,

in the implicit Equations (4.5) which define the maxi-
mum points of the steady state density, then we obtain
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Fig. 4.5. The presence of bursting can drastically alter regions of
bimodal behaviour as shown in this parametric plot (for n = 4) of the
boundary in (K, b · κb) parameter space delineating unimodal from
bimodal stationary densities u∗ in an inducible operon with bursting
and in (K, κd ) parameter space delineating one from three steady
states in the deterministic inducible operon. From top to bottom, the
regions are for b = 10, b = 1, b = 0.1 and b = 0.01. The lowest
(heavy dashed line) is for the deterministic case. Note that for b =
0.1, the two regions of bistability and bimodality coincide and are
indistinguishable from one another. Taken from [9] with permission.

Equations (2.14) and (2.15) which define the stable
steady states in the deterministic case.

Recovering Equation (2.17) in the limit implies that
the bifurcations will also take place at the same points.
Since we have κb > K when κb → ∞, Bimodality
type 1 as well as the Unimodal type 1 behaviours will
no longer be present. Moreover, the steady-state den-
sity u∗ will became more sharply peaked as b → 0 and
the mass will be more concentrated around the larger
maximum of u∗.

4.1.4. A discrete space bursting model
The number of protein molecules in a single cell can

also be described as a Markov process with values in
the discrete state space {0, 1, 2, . . .}. Here we follow
the approach of [103]. Let X(t) be the number of gene
product molecules at time t. If we have X(t) = m then
in a small time interval the change in the number of
molecules is

m
λm−→ m + k, m

γm−→ m − 1,

where γm, λm, m ≥ 0, are constants satisfying

λ0 > 0, γ0 = 0, γm > 0, λm ≥ 0,

m = 1, 2, . . . , (4.12)

while k is randomly chosen, independently of the
actual number of molecules, according to a probabil-
ity density function h = (hk)k≥1, so that

∑+∞
k=1 hk = 1,

hk ≥ 0, k ≥ 1. Of particular interest is the case when
h is geometric

hk = (1 − b)bk−1, k = 1, 2, . . . , (4.13)

with b ∈ (0, 1), which is the discrete space analog of
the exponential distribution given by (4.1). Let Pm(t)
be the probability that the cell at time t has m pro-
tein molecules of the gene product. Our general master
equation is an infinite set of differential equations

dPm

dt
= γm+1Pm+1 − γmPm

+
m∑

k=1

hkλm−kPm−k − λmPm,

m = 0, 1, . . . , (4.14)

where we use the convention that
∑0

k=1 = 0. We sup-
plement (4.14) with the initial condition Pm(0) = vm,
m = 0, 1, . . ., where v = (vm)m≥0 is a probability den-
sity function of the initial amount of the gene product.

The equation for the steady state p∗ = (p∗
m)m≥0 of

(4.14) is of the form

γm+1p
∗
m+1 − γmp∗

m

+
m∑

k=1

hkλm−kp
∗
m−k − λmp∗

m = 0,

m = 0, 1, . . . ,

which is uniquely solvable (up to a multiplicative con-
stant) by

p∗
m+1 = 1

γm+1

m∑
k=0

hm−kλkp
∗
k, m = 0, 1, . . . ,

(4.15)
where

hl =
∞∑

j=l+1

hj, l ≥ 0.

We have the following general result.

Theorem 4.2. [103, Theorem 3.1] Assume condi-
tion (4.12) and suppose that a strictly positive p∗ =
(p∗

m)m≥0 given by (4.15) satisfies
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∞∑
m=0

p∗
m = 1 and

∞∑
m=0

(λm + γm)p∗
m < ∞.

Then for each initial probability density function
Equation (4.14) has a unique solution and

lim
t→∞

∞∑
m=0

|Pm(t) − p∗
m| = 0.

In particular, if condition (4.12) holds and h is geo-
metric as in (4.13) then p∗ = (p∗

m)m≥0 as in (4.15) is
given by

p∗
m = p∗

0λ0

γm

m−1∏
k=1

λk + bγk

γk

, m = 1, 2, . . . . (4.16)

If additionally γm = γm, m ≥ 1, with γ > 0 and λm is
a Hill function of the form

λm = λ
1 + �mn

� + �mn
, (4.17)

where �, �, n > 0 and � ≥ 0 are constants, then all
assumptions of Theorem 4.2 are satisfied, implying that
the steady-state density p∗ = (p∗

m)m≥0 given by (4.16)
is the discrete state space analog of (4.4).

4.2. Distributions with fluctuations in the
degradation rate

We now examine the situation in which fluctuations
appear in the degradation rate γ of the generic Equation
(2.31). If the fluctuations are Gaussian distributed then
it follows from standard chemical kinetic arguments
[104] that the mean numbers of molecules decaying in
a time dt is simply γxdt and the standard deviation of
these numbers is proportional to

√
x. Consequently, we

replace Equation (2.31) with a stochastic differential
equation in the form

dx = γ[κdf (x) − x]dt + σ
√

xdw,

where w is a standard Brownian motion and we use the
Ito interpretation of the stochastic integral. The corre-
sponding Fokker Planck equation for the evolution of
the ensemble density u(t, x) is given by [105]

∂u(t, x)

∂t
= −∂

[
(γκdf (x) − γx)u(t, x)

]
∂x

+σ2

2

∂2(xu(t, x))

∂x2 . (4.18)

Since concentrations of molecules cannot become
negative the boundary at x = 0 is reflecting and the
stationary solution of Equation (4.18) is given by

u∗(x) = C
x
e−2γx/σ2

exp

[
2γκd

σ2

∫ x f (y)

y
dy

]
.

Set κe = 2γκd/σ
2. Then the stationary density is given

explicitly by

u∗(x) = Ce−2γx/σ2
xκe�

−1−1[� + �xn]θ, (4.19)

where �, � ≥ 0 and θ are given in Table 2.1. It fol-
lows from [106, Theorem 2] that the unique stationary
density of Equation (4.18) is given by Equation (4.19)
and that u(t, x) is asymptotically stable.

The form of the stationary density for the situation
with bursting (intrinsic noise) and extrinsic noise are
identical, provided that one replaces the average burst
amplitude b with b → σ2/2γ ≡ bw and κb → κe =
2γκd/σ

2 ≡ κd/bw. Consequently, all of the results of
the previous section can be carried over here. In par-
ticular, the regions of bimodality in the (K, κd)-plane
can be identified for a fixed value of bw. We have the
implicit equation for x±

x2n − (K − 1)

[
n − K + 1

K − 1

]
xn

−nbw(K − 1)xn−1 + K = 0

and the corresponding values of κd are given by

κd± = (x∓ + bw)

(
K + xn∓
1 + xn∓

)
.

Then the bimodality region in the (K, κd)-plane with
noise in the degradation rate is the same as the bimodal-
ity region for bursting in the (K, bκb)-plane.

Finally, we can recover the deterministic behaviour
from a limit in the extrinsic fluctuations dynamics. In
this case, however, the frequency and the amplitude
of the perturbation are already scaled. Then the limit
σ → 0 gives the same result as in the deterministic
case.

5. Discussion and conclusions

Here we have attempted to give an overview of the
mathematical techniques that have been used to gain
understanding about the operation of bacterial oper-
ons. We have looked at generic deterministic models



M.C. Mackey et al. / The utility of simple mathematical models in understanding gene regulatory dynamics 51

in a very general sense followed by more realistic
considerations of both the lactose and tryptophan oper-
ons. These two examples are ones for which we have,
arguably, the most extensive knowledge of the under-
lying biology as well as good data and if we cannot
successfully understand their operation from a mod-
eling perspective then there is little hope for more
complicated situations. Finally we have discussed very
recent results related to the role that noise (either
extrinsic or intrinsic) may play in the steady state char-
acteristics of a bacterial population. We have not dealt
with the use of simulation techniques per se in the study
of these systems as they fall far from our purpose and
are a subject of study in their own right.

Acknowledgments

This work was supported by the Natural Sciences
and Engineering Research Council (NSERC) of
Canada, the State Committee for Scientific Research
(Poland) Grant N N201 608240, and the Consejo
Nacional de Ciencia y Tecnologı́a (Conacyt) in
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