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Repression of mRNA synthesis is discussed for situations in which the 
repressor is either the protein encoded by the mRNA or a metabolite 
formed under the catalytic control of that protein. Following Goodwin 
(1965), plausible physicochemical equations are set up. They contain a 
non-linear element. Standard methods of the theory of non-linear 
equations are used to determine the properties of these equations for 
general values of the parameters contained therein. Undamped oscillations 
in the concentrations of the components can never occur for any values 
of the parameters when the repression is accomplished by the protein. 
Such oscillations are possible when repression is due to the metabolite, but 
only when there is a co-operative repression of such a high order as to be 
unlikely in practice. 

1. Introduction 
Considerable interest exists in the control equations involving protein 
synthesis and the regulation of mRNA production. Two questions par- 
ticularly have arisen. One asks in what circumstances stable oscillations in 
the concentrations of the components can occur? (Goodwin, 1963, 1965). 
The other asks when a particular arrangement of control interactions can 
lead to more than one possible stable, i.e. enduring, set of concentrations. 
The second question is especially important in relation to the mechanism of 
differentiation, proposed by Monod & Jacob (1961), and subsequently 
used as a basis for explanatory hypotheses about various biological problems 
(Bonner, 1965; Roberts 8~ Flexner, 1966; Griffith, 1967a,b). 

One theoretical method of tackling these questions is by means of computer 
simulations. However, simulations can only be run for certain chosen values 
of the parameters in the control equations and, although these may range 
over many choices, they obviously cannot work through all of them. Hence 
it is desirable, as far as this is possible, to complement these simulations with 
general mathematical proofs of the existence or non-existence of oscillations 
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or other features for wide classes of equations. The equations concerned are 
non-linear and this fact increases the mathematical difficulties enormously. 
Nevertheless we shall find that useful information can be obtained by applying 
standard methods of the theory of non-linear equations. We shall consider 
several simple and representative examples and start, in this paper, with the 
simplest kind of self-repressing, or negative feedback, system. In it, a single 
gene G produces a mRNA, M, which codes for a protein E. Either this 
protein, or a metabolite, P, formed in a reaction catalysed by E, acts as a 
repressor for the same gene G. This situation has been discussed previously 
by Goodwin (1963, 1965) and Maynard Smith (1965), and very similar 
equations, in more variables, to the ones we shall use have appeared in the 
work of Walter (1968) on enzyme-catalysed sequences of reactions. 

2. The Equations 
Following Goodwin (1963, 1965) we shall suppose the repressor, R, 

combines with the gene, G, according to the equation 
G+mR = CR, (1) 

and that G, but not GR,, is active for the production of mRNA. R may be 
either E or P. Current experimental evidence on repression suggests that the 
case m = 1 will prove the most important (Koch, 1967), but we shall make 
our analysis for other values of m also. It follows from equation (1) that the 
proportion of time G is active is given by 

1 
P=l+KXm (2) 

where x is the concentration of R, and K is the equilibrium constant of 
equation (1). Equation (2) becomes inaccurate near x = 0 (see Koch, 1967), 
but we shall be interested primarily in the behaviour of the control equations 
away from x = 0 and so shall neglect that fact here. 

If we assume we can write ordinary macroscopic equations for the con- 
centrations of mRNA and protein then, in the case that E is the repressor, 
we shall take them as 

&=lii=-- 
dM a bM / 

l+KF 

(3) 

where a, b, c, dare positive constants. Equations (3) are of the type discussed 
by Goodwin (1965) and assume that the rate of messenger production is 
proportional to the fraction of time G is active, and that the protein is 
synthesized at a rate proportional to the amount of messenger present. 
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M and E decay in proportion to their concentrations, which must surely 
often happen, even if it is not always so. It follows at once from equations (3) 
that if, initially, M > 0 and E > 0, then they both remain non-negative 
subsequently. This is obviously necessary, because of the physical significance 
of M and E, and in the mathematical analysis which follows, we shall not 
concern ourselves with negative values for them. 

Equations (3) contain a large number of constants and in a mathematical 
analysis it is desirable to simplify them as much as we can do without thereby 
reducing the generality of the problem. We do this by a change of units for 
each of M, E and t. After a little simple algebra, it is apparent that the units 
can be chosen so that 

1 &f=-- 
l+E”’ 

aM 

ri = M-BE (4) 

without loss of generality. a and /I are both positive constants. The analogous 
equations to (3), which arise when the metabolite P acts as the repressor, 
can similarly be shown to be reducible to the form 

1 n;i=-- 
l+P” 

aM 

2 = M--BE (5) 

P= E-yP 
with a, jI and y positive. 

Goodwin (1963) has remarked that a two-variable equation may be 
regarded as a limiting case of a three-variable one. Suppose y is very large in 
equation (5). Then P will change much more rapidly than M or E and will 
usually be close to its “equilibrium” value for fixed E, i.e. P = y- ‘E. This 
enables us to simplify equations (5) by eliminating P and thus reducing them 
to the form (3) which can then, by a change of units, be transformed to the 
form (4). Evidently we can go further and, in (4), let /I be large. This suggests 
considering, together with (4) and (5), the one-variable equation 

1 n;r=-- 
l+M” aM. 

In this equation, as M runs from 0 to co so (1 +M”)-’ runs monotonically 
from 1 to 0. Hence &f = 0 for a unique value M = M,, satisfying 

aM,(l +M’;f) = 1. (7) 
When M < M,,, &f > 0 and when M > M,, &i < 0. Hence M + M,, 
whatever the initial value of M. 
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3. The Two-variable Case 
Here we use standard techniques of the theory of non-linear equations 

(see, e.g. Leimanis & Minorsky (1958); Andronov, Vitt k Khaikin (1966). 
First we set ti = E = 0 in equations (4) to obtain the stationary points. 
They occur when M and E satisfy 

M = /IE, 
a/?E(l +E”‘) = 1. (8) 

As with equation (7) there is just one solution and so just one stationary 
point, (M,, EJ say. We expand near this point by writing M = M,,+ X, 
E = E,, + Y and obtain 

g= - ma2j12Er+’ Y - aX + 0( Y’), 
f = X-BY. (9) 

E,, a and /3 are all positive and therefore the point satisfies the conditions 
for stability for all values of the parameters (for these conditions see Leimanis 
& Minorsky (1958, p. 121). 

We conclude the analysis by showing that there are no limit cycles and 
that the motion in the phase plane (the M, E plane) contains no trajectories 
which go off towards i&rity. Both these are easy. The quantity 

&(@ + $j(.G) = -a-j?, 

has constant sign everywhere which allows us to apply the Bendixson 
criterion (Andronov et al., 1966, p. 305) which says that it follows that no 
motion can describe a closed trajectory in the phase plane. So there are no 
limit cycles and hence no stable oscillations for any values of a, B and m. 
The behaviour towards infmity is treated by observing that the motion is 
entirely inwards across the boundaries of the rectangle having vertices 
(0, 0), (0, A), (/X4, 0), (/?A, A) for any A satisfying a@ > 1. 

It is interesting to refer here to the equations discussed by Goodwin 
(1963), which are of the form 

&f 1 
=1+F-a, 

d=M+ 
He showed that these give oscillatory behaviour of arbitrary amplitude. 
These oscillations are of indifferent stability (Leimanis & Minorsky, 1958, 
p. 129) rather than limit cycles. However, equations (10) are not satisfactory 
when E and M are small because if we start the system with M = E = 0 
we find ti = 1 -a, E = -/I and so E subsequently becomes negative, which 
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is physically unacceptable. Hence the best we can do is to replace /3 with 
some function j(E) such that f(E) z /I for E large, but limf(E) = 0. If 

f(E) is also a monotonic function of E withy(E) > 0, for all E, we may 
apply Bendixson’s criterion to show there can be no stable oscillations. 
However, there may still be damped oscillations with very slow decay of 
amplitude. 

4. The Three-variable Case 
Again, there is a unique stationary point (MO, E,, PO), where 

MO = PO, 
Eo = YPO, 

ajQJP,( 1+ P’I;) = 1. 
(11) 

The stability of this point is discussed by expanding about it by writing 
M = MO+& E = Eo+ Y, P = PO +Z. Let us write R for the column 
vector (X, Y, 2) and retain only the first order terms in X, Y and Z. We 
readily find k = QR, where Q is the matrix 

Q= 1” 
L 

OB 
h(Wo - 1) 

0 
0 1 -Y 1 

and we have set 4 = ~$7. The point is stable if and only if the real parts of 
all the eigenvalues of the matrix Q are negative. To test this, we use Hurwitz’s 
criteria (Uspenski, 1948) applied to the characteristic equation, which is 

(E+a)(E+~)(E+y)+~m(l-UP,) = 0. (12) 
Hurwitz’s criteria applied to a cubic equation 

E3+p2E2+plE+po = 0 
are satisfied if and only if p1 > 0 and p1p2 -p. > 0. As p1 = c@+& + yor, 
it is evidently positive. The other condition reads 

D = (Ca>(Cap>-~-~m(l-~p,> > 0 (13) 
where 

ca = cr+j?+y and x@ = @+/3y+ycr. 
We now use the well-known result (Hardy, Littlewood & Polya, 1952) that 
for all positive cr, B, y 

3 c fx 2 (3 c @9* 2 (@Y)*, 
and equality holds only if 01 = /I = y. Hence 

<~40( a/J) 2 J3(c ab)3’2 2 9apy. (14) 
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So we have 
D 3 84 - &rr(l - 4P0) = +(8 - m) + mt$'P, (15) 

and therefore D > 0, and thus the point is stable, for m < 8 and any values 
of a, B, Y- 

On the other hand, when m > 8, we can always find values of a, /l and y 
which make D negative and the stationary point unstable. For if we let 
CI = p = y, equations (14) and (15) become equalities, and we then require 

+Po < l-8m-‘, $P,(l+P’;f) = 1. (16) 
Now as 

~#~+O,soP,,+coand+P,,=(l+~-‘+O, 
so this can always be done by taking 4 small enough. 

No trajectories can go off to infinity. This is easily seen by using equations 
(5) to show that all motion is inwards across the faces of the rectangular 
box which has its sides parallel to the axes of co-ordinates and two opposite 
vertices at (0, 0,O) and (ByA, yA, A), where c$?rA > 1. 

The foregoing results indicate strongly that there will be one limit cycle 
whenever m > 8 and D < 0, and none in any other circumstances. I have 
been unable to establish rigorously that there are none under the latter 
conditions. However, we have run a large number of simulations on a digital 
computer, with various choices for the parameters, in complete agreement 
with the predictions. In these simulations, whenever an oscillation has been 
found, it has been carefully checked that it is really a limit cycle and it has 
been observed to be unique. The present results are inconsistent with the 
report of Goodwin (1965), who claimed to have found a limit cycle for 
m = 1 and certain values of a, /I and y. He informs me, however, that he 
now considers his result to have arisen erroneously out of errors in the 
analogue simulation which he employed. 

Our mathematical formulation has depended upon equations (1) and (2), 
which do not represent the only ways in which repression could occur. The 
inclusion of an aporepressor in the scheme, or replacing equation (2) with 
the more complicated one suggested in Koch’s (1967) work would greatly 
complicate the analysis. However, the absence of limit cycles in the two- 
variable case should still hold, whilst in the three-variable case it would be 
surprising if limit cycles appeared for very low values of m. Thus the present 
work must be regarded as casting serious doubt on the possibility that 
negative feedback from a product of a single gene can ever give rise in practice 
to undamped oscillations in the concentrations of cellular constituents. It 
has not, however, discussed at all the question of whether such oscillations 
might arise in systems in which two or more genes are inductively or re- 
pressively coupled. 
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