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Abstract. A new sufficient condition is proved for the existence of sto-
chastic semigroups generated by the sum of two unbounded operators. It
is applied to one-dimensional piecewise deterministic Markov processes,
where we also discuss the existence of a unique stationary density and
give sufficient conditions for asymptotic stability.

1. Introduction

The development of cell cycle models to account for the statistical prop-
erties of division dynamics in populations of cells inevitably led to the con-
sideration of stochastically perturbed dynamical systems [5, 11, 13, 23, 24].
These applied considerations have been followed by work on the behaviour of
Poisson driven dynamical systems in a pure mathematical context [14, 21].
More recently other areas of application related to the role of intrinsic (as
opposed to extrinsic) noise in gene regulatory dynamics [9, 15, 4] have made
the understanding of stochastic perturbations of dynamical systems of more
than passing interest.

We were originally motivated by the work of Lasota et al. [13] who con-
sidered a (biological) system which produces ‘events’ and has an internal
or physiological time in addition to the laboratory time t. We denote this
internal time by τ to distinguish from the time t. When an event appears
the physiological time τ = τe is reset to τ = 0. We assume that the rate
dτ/dt depends on the amount of an ‘activator’ which we denote by a. Thus
we have

(1.1)
dτ

dt
= ϕ(a), ϕ ≥ 0.
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The activator is produced by a dynamics described by the differential equa-
tion

(1.2)
da

dt
= g(a),

where g ≥ 0 is a continuous function on an open interval that may or may
not be bounded. When an event is produced at a time τe and activator level
ae, then a portion ρ(ae) of ae is consumed so the level of the activator after
the event is then

(1.3) σ(ae) := ae − ρ(ae).

We also allow the possibility that the portion ρ(ae) depends on an environ-
mental or external factor so that ρ is a function of two variables ρ(ae, θe)
where θe ∈ Θ is distributed according to some probability measure ν on Θ.
The solution of (1.2) with the initial condition a(0) = x will be denoted by

a(t) = πtx

and we assume that it is defined for all t ≥ 0. Then the solution of equation
(1.1) with the initial condition τ(0) = 0 is given by

τ(t) =

∫ t

0

ϕ(πrx)dr.

It is reasonable to require that also τ(t) is finite for all t ≥ 0.
Lasota et al. [13] studied the statistical behavior of a sequence of such

events occurring at random times

0 = t0 < t1 < · · · < tn < · · ·
and denoted an = a(tn) to find

(1.4) an+1 = T (an, τn), where τn =

∫ tn

tn−1

ϕ(πs−tn−1an−1)ds

were exponentially distributed independent random variables, giving a rela-
tion between successive activator levels at event occurrence and studying a
discrete time system with stochastic perturbations by the τn. Here we have
extended these considerations to a continuous time situation by examining
what happens at all times t and not merely what happens at t0, t1, t2, · · · .
Thus we arrive at a continuous time piecewise deterministic Markov process,
whose sample paths between the jump times t0, t1, · · · are given by the so-
lution of (1.2) and at the jump times the state of the process is selected
according to a jump stochastic kernel, which is the transition probability
function for (1.3). This leads us to study evolution equations of the form

(1.5)
∂u

∂t
= A0u− ϕu+ P (ϕu), where A0u(x) = − d

dx
(g(x)u(x)),
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on the space of integrable functions L1, where P is a stochastic operator on
L1 corresponding to the jump stochastic kernel and ϕ need not be bounded.
We supplement (1.5) with the initial condition u(0) = u0 which is the density
of the distribution of the initial amount of the activator.

Let us write

(1.6) Au = A0u− ϕu and Cu = Au+ P (ϕu).

If ϕ is unbounded then C is the sum of two unbounded operators, so the
existence and uniqueness of solutions to the Cauchy problem in L1 is prob-
lematic; (1.5) may have multiple solutions [2]. We make use of perturba-
tion results for positive semigroups on L1-spaces which go back to [10] (see
Section 3), from which it follows that the operator C has an extension C
generating a positive contraction semigroup {P (t)}t≥0 provided that the op-
erator A is the infinitesimal generator of a positive contraction semigroup
on L1 and C is defined on the domain of A. In general, if the closure of
C is the generator C of {P (t)}t≥0 then the Cauchy problem is uniquely
solved and {P (t)}t≥0 is a stochastic semigroup. In Section 3 we prove a
new sufficient condition for uniqueness and in Section 5 we show that if the
discrete process has a strictly positive stationary density then uniqueness
holds. This simplifies the analysis of (1.5) when compared with the ap-
proach in [2], and allows us to investigate both the uniqueness of solutions
and their asymptotic properties.

The outline of this paper is as follows. We recall basic definitions and fun-
damental theorems from the theory of stochastic operators and semigroups
in Section 2 and perturbation results for positive semigroups on L1-spaces
in Section 3, which closes with the proof of our main general result (The-
orem 3). In Section 4 we prove that the operators A0 and A defined on
suitable domains are generators. In Section 5 we show the applicability of
Theorem 3 to equation (1.5) when P is an arbitrary stochastic operator and
also give sufficient conditions for asymptotic stability. In Section 6 we let
the operator P have a definite form that fits directly into our framework,
and give several concrete examples drawn from work on the regulation of
the cell cycle as well as classical integro-differential equations. In Section 7
we extend our results to the situation in which there is degradation (as
opposed to growth) and illustrate their applicability using models for the
stochastic regulation of gene expression.

In a companion paper [22], these and other results are placed in the gen-
eral context of semigroup theory and probability theory with applications to
piecewise deterministic Markov process without ‘active boundaries’. There
we also prove that when the semigroup {P (t)}t≥0 is stochastic then (1.5) is
the corresponding evolution equation for densities of such processes.
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2. Stochastic operators and semigroups

Let (E, E ,m) be a σ-finite measure space. We denote by D the set of all
densities on E, i.e.

D = {u ∈ L1 : u ≥ 0, ‖u‖ = 1},
where ‖ · ‖ is the norm in L1 = L1(E, E ,m). A linear operator P : L1 → L1

such that P (D) ⊂ D is called stochastic or Markov [12].
Let P : L1 → L1 be a stochastic operator. A density u is said to be

invariant or stationary for P if Pu = u. We say that P overlaps supports
if for every u, v ∈ D there is a positive integer n ≥ 1 such that

m(suppP nu ∩ suppP nv) > 0,

where the support of u ∈ L1 is defined up to a set of measure zero by the
formula suppu = {x ∈ E : u(x) 6= 0}. Note that if P overlaps supports then
it can have at most one invariant density [18, see the proof of Corollary 1].

Let J : E × E → [0, 1] be a stochastic transition kernel, i.e. J (x, ·) is
a probability measure for each x ∈ E and the function x 7→ J (x,B) is
measurable for each B ∈ E , and let P be a stochastic operator on L1. If

(2.1)
∫

E

J (x,B)u(x)m(dx) =

∫
B

Pu(x)m(dx) for all B ∈ E , u ∈ D(m),

then P is called the transition operator corresponding to J .
If J (x,B) = 1T−1(B)(x) for x ∈ E, B ∈ E , where T : E → E is a

nonsingular measurable transformation, i.e. m(T−1(B)) = 0 for all B ∈ E
such that m(B) = 0, then there exists a unique stochastic operator P on
L1 satisfying (2.1) and P defined by (2.1) is called the Frobenius-Perron
operator corresponding to T .

A stochastic operator P on L1 is called partially integral or partially kernel
if there exists a measurable function p : E × E → [0,∞) such that∫

E

∫
E

p(x, y)m(dy)m(dx) > 0 and Pu(x) ≥
∫

E

p(x, y)u(y)m(dy)

for every density u. If, additionally,∫
E

p(x, y)m(dx) = 1, y ∈ E,

then P corresponds to the stochastic kernel

J (x,B) =

∫
B

p(y, x)m(dy), x ∈ E,B ∈ E

and we simply say that P has kernel p.
A strongly continuous semigroup {P (t)}t≥0 on L1 is called a stochastic

semigroup or Markov semigroup if P (t) is a stochastic operator for all t ≥ 0.
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A density u∗ is called invariant or stationary for {P (t)}t≥0 if P (t)u∗ = u∗
for every t ≥ 0.

A stochastic semigroup {P (t)}t≥0 is called asymptotically stable if there
is a stationary density u∗ such that

lim
t→∞

‖P (t)u− u∗‖ = 0 for u ∈ D

and it is called partially integral if, for some t0 > 0, the operator P (t0) is
partially integral.

Theorem 1 ([17]). Let {P (t)}t≥0 be a partially integral stochastic semi-
group. Assume that the semigroup {P (t)}t≥0 has only one invariant density
u∗. If u∗ > 0 a.e. then the semigroup {P (t)}t≥0 is asymptotically stable.

3. Perturbation results in L1

Let (A0,D(A0)) be the infinitesimal generator of a stochastic semigroup,
ϕ ≥ 0 be a measurable function, and

L1
ϕ = {u ∈ L1 :

∫
E

ϕ(x)|u(x)|m(dx) <∞}.

Let P be a stochastic operator on L1 and let the operators A and C, as
given in (1.6), be defined on D(A) ⊆ D(A0)∩L1

ϕ. Assume that the operator
(A,D(A)) is the infinitesimal generator of a positive strongly continuous
contraction semigroup {S(t)}t≥0 on L1. Then it is known [10, 25, 1, 2] that
there exists a positive strongly continuous contraction semigroup {P (t)}t≥0

on L1 satisfying the following:
(1) the infinitesimal generator C of {P (t)}t≥0 is an extension of the

operator C, i.e. D(A) ⊆ D(C) and Cu = Cu for u ∈ D(A);
(2) if {P̄ (t)}t≥0 is another semigroup generated by an extension of C

then P̄ (t)u ≥ P (t)u for all u ∈ L1, u ≥ 0, i.e. {P (t)}t≥0 is the
minimal semigroup;

(3) the generator C is characterized by

(3.1) R(λ,C)u = lim
N→∞

R(λ,A)
N∑

n=0

(P (ϕR(λ,A)))nu, u ∈ L1, λ > 0,

where R(λ, ·) is the resolvent operator;
(4) the semigroup {P (t)}t≥0 satisfies the equation

(3.2) P (t)u = S(t)u+

∫ t

0

P (t− s)P (ϕS(s)u) ds, u ∈ D(A).

We can not conclude, in general, that the semigroup {P (t)}t≥0 is sto-
chastic [10, Example 4.3]. Discussing various conditions for this to hold has
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been a major objective of study [10, 25, 1, 7, 2] and leads to the following
result.

Theorem 2. If for some λ > 0

(3.3) lim
n→∞

‖(P (ϕR(λ,A)))nu‖ = 0 for all u ∈ L1

then {P (t)}t≥0 is a stochastic semigroup and its generator C is the closure
of the operator (C,D(A)).

We now prove our main result.

Theorem 3. If for some λ > 0 there is v ∈ L1 such that v > 0 a.e. and
P (ϕR(λ,A))v ≤ v, then condition (3.3) holds.

Proof. We can assume that v is a density. Set Kλ = P (ϕR(λ,A)). The
operator Kλ is a positive contraction. Since Kλv ≤ v, the sequence Kn

λv is
strongly convergent in L1 to a fixed point u∗ of the operator Kλ. From [2,
Theorem 4.3] it follows that u∗ = 0. For any density u we have

0 ≤ Kn
λuk ≤ kKn

λv, where uk = min{u, kv}, k ≥ 1, n ≥ 1.

Since ‖uk − u‖ → 0 as k →∞, this completes the proof of (3.3). �

4. The semigroup {S(t)}t≥0

Let E be an open interval in R, bounded or unbounded, E = B(E) and
m be the Lebesgue measure. We shall denote by L1

loc the space of all Borel
measurable functions on E which are integrable on compact subsets of E
and by AC the space of all absolutely continuous functions on E. We assume
from now on that E = (d0, d1), where −∞ ≤ d0 < d1 ≤ ∞, g : E → R is
a continuous strictly positive function, and ϕ ∈ L1

loc is nonnegative. In this
section we study the first order differential operators A0 and A which are
meaningful for any function u ∈ L1

loc for which gu ∈ AC. We will define the
operators A0 and A on suitable domains D(A0) and D(A) so that they are
generators of corresponding semigroups as described in Section 3.

Since 1/g, ϕ/g ∈ L1
loc, we can define

(4.1) G(x) =

∫ x

x0

1

g(z)
dz and Q(x) =

∫ x

x1

ϕ(z)

g(z)
dz,

where x0 = d0 and x1 = d0 when the integrals exist for all x and, oth-
erwise, x0, x1 are any points in E. The function G is strictly monotonic,
continuously differentiable on E, G(d0) ∈ {0,−∞}, and G(d1) is either fi-
nite or equal to +∞. The function Q is monotonic with Q(d0) ∈ {0,−∞}
and Q(d1) is either finite or equal to +∞. G is invertible with G−1 well
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defined on G(E). If G(E) 6= R, then we extend G−1 continuously so that
G−1(R \G(E)) = {d0, d1}. The formula

a(t, x) = G−1(G(x) + t), x ∈ E, t ∈ R,
defines a monotone continuous function in each variable with values in
[−∞,∞] which is a solution of (1.2). If G(d1) = +∞ then πtx = a(t, x)
is finite for all t ≥ 0, x ∈ E, and πt(E) ⊆ E, t ≥ 0. In the case when
|G(d0)| = G(d1) = ∞ the value a(t, x) is finite for all t ∈ R and x ∈ E, so
that we have, in fact, a flow πt on E such that πt(E) = E.

For t > 0 we define the operators P0(t) and S(t) on L1 by

(4.2) P0(t)u(x) = 1E(π−tx)u(π−tx)
g(π−tx)

g(x)
, x ∈ E, u ∈ L1

and

(4.3) S(t)u(x) = eQ(π−tx)−Q(x)P0(t)u(x), x ∈ E, u ∈ L1.

Theorem 4. If G(d1) = +∞ then {P0(t)}t≥0 is a stochastic semigroup and
{S(t)}t≥0 is a positive strongly continuous contraction semigroup on L1.

Proof. P0(t) is a stochastic operator because it is the Frobenius-Perron oper-
ator for the transformation x 7→ πtx. Since Q is nondecreasing and t 7→ πtx
is increasing, we always have

eQ(π−tx)−Q(x)1E(π−tx) ≤ 1E(π−tx).

Hence S(t) is a positive contraction. To check the semigroup property
observe that if x ∈ E and π−s−tx ∈ E, then πs(π−s−tx) ∈ E, by assumption,
and thus πs(π−s−tx) = π−tx ∈ E. Furthermore, if x ∈ E and π−tx ∈ E then
π−s(π−tx) = π−s−tx. Hence

1E(π−tx)1E(π−s(π−tx)) = 1E(π−s−tx),

which shows that S(t)S(s)u(x) = S(s + t)u(x) for t, s ≥ 0, x ∈ E, u ∈ L1.
Finally we must show that {S(t)}t≥0 is strongly continuous. Let u ∈ Cc(E),
where Cc(E) is the space of continuous functions which are equal to zero
near boundaries. For every x ∈ E and all sufficiently small t > 0 we have
1E(π−tx) = 1 and π−tx→ x as t ↓ 0. Consequently,

lim
t↓0

S(t)u(x) = u(x) x ∈ E,

which, by the Lebesgue dominated convergence theorem, implies

lim
t↓0

‖S(t)u− u‖ = 0.

Since the set Cc(E) is a dense subset of L1, this shows the strong continuity
of the semigroup {S(t)}t≥0. If we take ϕ ≡ 0 then S(t) = P0(t) and we
recover the claim for {P0(t)}t≥0. �
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Now we identify the generators of the semigroups from Theorem 4. The
maximal domain of A0 in L1 consists of all functions u ∈ L1 such that
A0u ∈ L1. Then the integrability of A0u implies existence of the finite
limits

(4.4) l0(u) := lim
x↓d0

g(x)u(x) and l1(u) := lim
x↑d1

g(x)u(x).

A necessary condition for A0 to generate a stochastic semigroup is that the
limits li are equal. Recall that u ∈ L1

ϕ if and only if u ∈ L1 and ϕu ∈ L1.

Theorem 5. If G(d1) = +∞ then the operator A0 defined on the domain

(4.5) D(A0) = {u ∈ L1 : gu ∈ AC, A0u ∈ L1, lim
x↓d0

g(x)u(x) = 0}

is the generator of the semigroup {P0(t)}t≥0 and the operator A defined on
D(A) = D(A0) ∩ L1

ϕ is the generator of {S(t)}t≥0.

Before we give the proof of Theorem 5 we first provide general properties
of the operator A. Let λ > 0. Define the function rλ : E × E → [0,∞) by

(4.6) rλ(x, y) = 1(d0,x)(y)
eQλ(y)−Qλ(x)

g(x)
, where Qλ(z) = λG(z) +Q(z),

and the positive linear operator Rλ : L1 → L1 by

(4.7) Rλv(x) =

∫ d1

d0

rλ(x, y)v(y) dy.

Lemma 1. Let λ > 0. The operator Rλ satisfies

λ‖Rλv‖ ≤ ‖v‖, v ∈ L1.

For every v ∈ L1 we have gRλv ∈ AC and the function u = Rλv is a
particular solution in L1 of the equation

(4.8) λu− Au = v.

Proof. Rλ is an integral operator with nonnegative measurable kernel rλ.
Observe that

λrλ(x, y) ≤ 1(d0,x)(y)
λ

g(x)
eλ(G(y)−G(x)) for x, y ∈ E.

Thus for every y ∈ E we have

λ

∫ d1

d0

rλ(x, y) dx ≤ 1− e−λ(G(d1)−G(y)) ≤ 1,

because G(d1) ≥ G(y), showing λ‖Rλ‖ ≤ 1. Since e−Q ∈ AC, we can write

Au(x) = −e−Q(x) d

dx

(
g(x)u(x)eQ(x)

)
,
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for all u such that gu ∈ AC. We have

g(x)Rλv(x) = e−Qλ(x)

∫ x

d0

eQλ(y)v(y) dy

and Qλ(y) ≤ Qλ(α) for every y ≤ α < d1, thus the function eQλv is inte-
grable on intervals (d0, α] for every α < d1. Hence, gRλv ∈ AC and Rλv
satisfies (4.8). �

Lemma 2. If Qλ(d1) = +∞ then Rλ(L
1) ⊆ D(A) and

Rλ(λu− Au) = u for u ∈ D(A).

Proof. First we show that Rλ(L
1) ⊆ D(A). Let v ∈ L1. Then gRλv ∈ AC,

|g(x)Rλv(x)| ≤
∫ d1

d0

|g(x)rλ(x, y)||v(y)| dy for x ∈ E,

and |g(x)rλ(x, y)| ≤ 1(d0,x)(y) for all x, y ∈ E. From the definition of rλ and
the assumption Qλ(d1) = +∞ it follows that

lim
x→di

|g(x)rλ(x, y)| = 0 for y ∈ E.

By the Lebesgue dominated convergence theorem, li(Rλv) = 0, i = 0, 1, for
all v ∈ L1. Since |v| ∈ L1, the function Rλ|v| is a particular solution of

(λ+ ϕ)Rλ|v| = |v|+ A0(Rλ|v|)
and li(Rλ|v|) = 0 for i = 0, 1. Hence∫ d1

d0

(λ+ ϕ(x))Rλ|v|(x) dx =

∫ d1

d0

|v(x)| dx,

which shows that ‖ϕRλ|v|‖ < ∞ and Rλv ∈ L1
ϕ. Finally, from (4.8) it

follows that
A0(Rλv) = (λ+ ϕ)Rλv − v ∈ L1.

Now let u ∈ D(A) and v := λu − Au. Since u ∈ L1
ϕ and A0u ∈ L1, we

have v ∈ L1 and Rλv ∈ D(A). Hence w := u−Rλv ∈ D(A) and Aw = λw.
The general solution w of this equation is of the form

w(x) = c
e−Qλ(x)

g(x)
, x ∈ E,

where c is a constant. Thus

g(x)(u(x)−Rλv(x)) = ce−Qλ(x) for x ∈ E.
If |Q(d0)| = +∞ and c 6= 0, then ce−Qλ(λ + ϕ)/g is not integrable, which
contradicts u−Rλv ∈ D(A) and gives c = 0. IfQλ(d0) = 0 then 0(u−Rλv) =
c, which also gives c = 0 and shows that u = Rλv. �
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Proof of Theorem 5. Since G(d1) = +∞, the assumptions of Lemma 2 hold
even when ϕ = 0. Thus it is enough to show that (A,D(A)) is the generator
of {S(t)}t≥0. Observe that L1 = Im(λ − A), by Lemma 2. Since (4.8) has
a unique solution u = Rλv, we have Rλ = (λ− A)−1 for λ > 0 and

‖λu− Au‖ = ‖v‖ ≥ λ‖Rλv‖ = λ‖u‖ for u ∈ D(A).

The operator λRλ is a positive contraction. By the Hille-Yosida theorem,
the operator A is a generator of a positive contraction semigroup. Let A be
the generator of the semigroup {S(t)}t≥0. It remains to prove that A = A.

First, we will show that

R(λ,A)v = Rλv for v ∈ Cc(E), v ≥ 0.

Let v ∈ Cc(E), v ≥ 0. We have

R(λ,A)v = lim
t→∞

∫ t

0

e−λsS(s)v ds,

where the integral is an element of L1 such that(∫ t

0

e−λsS(s)v ds

)
(x) =

∫ t

0

e−λsS(s)v(x) ds.

Let x ∈ E and t > 0. Define s∗(x) = sup{s > 0 : π−sx ∈ E} and note
that π−s∗(x)x = d0. Making use of the formula for S(t)v and the fact that
G(π−sx) = G(x)− s when π−sx ∈ E leads to∫ t

0

e−λsS(s)v(x) ds =

∫ t∧s∗(x)

0

eQλ(π−sx)−Qλ(x)v(π−sx)g(π−sx)

g(x)
ds.

By a change of variables, we obtain∣∣∣∣∫ t

0

e−λsS(s)v(x) ds−Rλv(x)

∣∣∣∣ ≤ 1

g(x)
e−Qλ(x)w(t, x),

where

w(t, x) =

{ ∫ π−tx

d0
eQλ(z)v(z) dz, if t < s∗(x);

0, if t ≥ s∗(x).

We have w(t, x) ↓ 0 as t ↑ ∞, thus

lim
t→∞

∥∥∥∥∫ t

0

e−λsS(s)v ds−Rλv

∥∥∥∥ = 0.

Since Cc(E) is a dense subset of L1 and both operators λR(λ,A) and λRλ

are positive contractions, they are identical. This shows that D(A) = D(A)
and (λ−A)u = (λ− A)u for u ∈ D(A), which completes the proof. �

Remark 1. Observe that if G(d0) = −∞ then the domain of A0 is

D(A0) = {u ∈ L1 : gu ∈ AC, A0u ∈ L1}.
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5. Asymptotic properties

In this section we assume that g > 0 and G(d1) = +∞. Let P : L1 → L1

be a stochastic operator and let C be the operator

Cu(x) = − d

dx
(g(x)u(x))− ϕ(x)u(x) + P (ϕu)(x), x ∈ (d0, d1),

defined on D(A) = D(A0) ∩ L1
ϕ with D(A0) as in (4.5). By Section 3, it

follows from Theorems 4 and 5 that there is a positive, strongly continuous,
contraction semigroup {P (t)}t≥0 on L1 whose generator is an extension of
the operator (C,D(A)). In this section we give sufficient conditions for
{P (t)}t≥0 to be a stochastic semigroup and study its asymptotic properties.

Define the operator R0 on D(R0) = {v ∈ L1 : R0v ∈ L1} by

R0v(x) =

∫ d1

d0

r0(x, y)v(y) dy, where r0(x, y) = 1(d0,x)(y)
1

g(x)
eQ(y)−Q(x).

In general, R0 may be an unbounded operator. We have

ϕ(x)R0v(x) =

∫ d1

d0

ϕ(x)r0(x, y)v(y) dy

for every v ∈ D(R0). Since Q is nondecreasing,∫ d1

d0

ϕ(x)r0(x, y) dx =

∫ d1

y

ϕ(x)

g(x)
eQ(y)−Q(x)dx = 1− eQ(y)−Q(d1) ≤ 1

for every y ∈ E. Thus the operator ϕR0 can be uniquely extended, with
the same formula, to a positive contraction on L1. Observe that ϕR0 is
stochastic if and only if Q(d1) = +∞.

Define the operator K by

(5.1) Ku = P (ϕR0)u for u ∈ L1.

Since P is a stochastic operator, K is stochastic if and only if Q(d1) = +∞.

Theorem 6. Assume that Q(d1) = +∞.
If the operator K has an invariant density v∗ > 0 a.e. then {P (t)}t≥0

is a stochastic semigroup. Moreover, if {P (t)}t≥0 is partially integral and
R0v∗ ∈ L1 then {P (t)}t≥0 is asymptotically stable with invariant density
u∗ = R0v∗/‖R0v∗‖.

Conversely, if {P (t)}t≥0 has an invariant density u∗ ∈ D(A) then the
density P (ϕu∗)/‖ϕu∗‖ is invariant for the operator K.

Proof. The operator R1 = R(1, A) as defined in (4.7) satisfies (ϕR1)u ≤
(ϕR0)u for every density u, which is due to the fact that ϕ ≥ 0 and r1 ≤ r0.
Since P is a positive operator, we have P (ϕR(1, A))v∗ ≤ v∗ and {P (t)}t≥0 is
a stochastic semigroup, by Theorems 3 and 2. Now let C be the generator
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of {P (t)}t≥0. From (3.1) it follows that R(1, C)u ≥ R1u for every density u.
Since there is a b(u) ∈ E such that R1u(x) > 0 for x ≥ b(u), the stochastic
operator R(1, C)u overlaps supports. Recall that u∗ is a stationary density
for the semigroup {P (t)}t≥0 if and only if u∗ ∈ D(C) and Cu∗ = 0. We
have

v∗ = P (ϕR0)v∗ = ‖R0v∗‖P (ϕu∗).

It is easily seen that u∗ ∈ D(A) and Au∗ = −v∗/‖R0v∗‖. Hence Cu∗ = 0
and Theorem 1 applies.

Finally, suppose that P (t)u∗ = u∗ for all t ≥ 0 with u∗ ∈ D(A). Since
D(A) ⊂ L1

ϕ and Cu∗ = Au∗ + P (ϕu∗), we obtain −Au∗ = P (ϕu∗). Thus
v := P (ϕu∗) ∈ L1 and Kv = P (ϕR0v) = −P (ϕR0Au∗). It is easily seen
that R0Au∗ = −u∗ and we recover the claim. �

Remark 2. Observe that when ϕ(x) ≥ b > 0 for all x, then the operator
R0 is bounded, thus R0 = R(0, A) = −A−1 and R0v∗ is integrable. More-
over, if ϕ is a constant function, ϕ ≡ b, then (C,D(A)) is the generator
of {P (t)}t≥0, by the Phillips perturbation theorem, and K = P (bR(b, A0)).
In that case, the relation between the invariant densities for the operator
K and the semigroup {P (t)}t≥0 are a consequence of the equation Cu∗ = 0
which is now A0u∗ − bu∗ + bPu∗ = 0 (see also [14]).

General sufficient conditions for existence of invariant densities for sto-
chastic operators have been summarized by [12, Section 5] and [20]. We now
discuss when a stochastic semigroup {P (t)}t≥0 is partially integral. Let P
be the transition operator corresponding to a stochastic kernel J . If there
is a Borel measurable function p : E × E → [0,∞) such that∫

E

∫
E

p(x, y)ϕ(y)dydx > 0 and J (x,B) ≥
∫

B

p(y, x)dy, B ∈ B(E),

then {P (t)}t≥0 is partially integral [17, 19]. Now, if P is the Frobenius-
Perron operator corresponding to a nonsingular transformation σ : E → E
then J (x,B) = 1B(σ(x)), x ∈ E, B ∈ B(E), and we have the following
result.
Proposition 1 ([17, 19]). Let σ : E → E be continuously differentiable with
σ′(x) 6= 0 for almost every x ∈ E and P be the Frobenius-Perron operator
corresponding to σ. Assume that the semigroup {P (t)}t≥0 is stochastic. If
there is x̄ ∈ E such that ϕ is continuous at x̄, ϕ(x̄) > 0, and g(σ(x̄)) 6=
σ′(x̄)g(x̄) then {P (t)}t≥0 is partially integral.

6. Specific examples

As mentioned in the introduction, we were originally motivated by the
work of Lasota et al. [13] who, in turn, were trying to understand the ex-
perimentally observed asymptotic properties of cell property densities in
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cellular populations in a growth phase. This led, naturally, to a consider-
ation of dynamics such that g > 0 for x ∈ (d0, d1) as we have considered
in Sections 4 and 5, and there are a number of concrete situations in this
category to which we can apply our results. This section illustrates some of
these. Several of the examples are drawn from the field of cell cycle kinetics,
while others illustrate the necessity of certain assumptions.

Suppose first that the reset function is given by σ(x) = x− ρ(x), where ρ
is a continuously differentiable function with ρ′(x) < 1. Then the transition
operator P is of the form Pu(x) = λ′(x)u(λ(x))1E(λ(x)), where λ(x) =
σ−1(x) is the inverse of σ, and we have the evolution equation

∂u(t, x)

∂t
= −∂(g(x)u(t, x))

∂x
− ϕ(x)u(t, x) + u(t, λ(x))ϕ(λ(x))λ′(x)1E(λ(x)).

If Q(d1) = ∞ then the stochastic operator K as defined in (5.1) is of the
form

(6.1) Ku(x) = λ′(x)
ϕ(λ(x))

g(λ(x))
1(d0,d1)(λ(x))

∫ λ(x)

d0

eQ(y)−Q(λ(x))u(y) dy,

which is the transition operator corresponding to (1.4), where T (a, τ) =
σ(Q−1(Q(a) + τ)).

Example 1. Lasota and Mackey [11] considered a very general cell cycle
model for the evolution of the distribution of ‘mitogen’ at cell birth in which
g was a C1 function on [0, 2l), such that g(x) > 0 for x > 0 and G(2l) = ∞,
where l is finite or not. Further ϕ was a continuous function on [0, 2l) such
that ϕ(0) = 0

lim inf
x→2l

ϕ(x) > 0 when l <∞ and lim inf
x→∞

q(x) > 0,

where q(x) = ϕ(x)/g(x). In their model λ(x) = 2x. They were able to
show that successive generations had densities evolving under the action of
a stochastic operator

Ku(x) = 2q(2x)

∫ 2x

0

exp

[
−

∫ 2x

y

q(z)dz

]
u(y) dy for 0 < x < l

and that K is asymptotically stable.

Example 2. Building on this model Mackey et al. [16] took g(x) = x(2 −
x)/b and ϕ(x) = S(x − 1)1(1,2)(x) with b, S > 0 and x ∈ (0, 2) to fit a
number of in vitro cell cycle data sets. With these choices for g and ϕ it is
straightforward to show that the unique stationary density of mitogen is

v∗(x) = Sb · 2Sb(x− 1
2
) [x(1− x)](Sb/2)−1 for x ∈ (1

2
, 1).
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Assume that E = (d0,∞) and Q(∞) = ∞. We can rewrite the operator
K given by (6.1) in the form

(6.2) Ku(x) =

∫ λ(x)

d0

− ∂

∂x

(
eQ(y)−Q(λ(x))

)
u(y) dy.

Asymptotic properties of this operator have been well studied [8, 13, 3, 18].

Proposition 2 ([8]). Assume that ϕ(x) > 0 for x > d0 and Q(d0) = 0. If

(6.3) lim inf
x→∞

(
Q(λ(x))−Q(x)

)
> 1

then K as defined in (6.2) has a strictly positive invariant density and if
Q(λ(x))−Q(x) ≤ 1 for all x > d0 it has no invariant density.

Remark 3. The assumption Q(d0) = 0 can not be omitted in Proposition 2,
as the following example shows.

Let E = (0,∞), λ(x) = 2x, and Q(x) = b log x. The operator K is now

Ku(x) =
b

2bxb+1

∫ 2x

0

ybu(y) dy.

If we take u(x) = 1/x then Ku(x) = u(x) for all b > 0. This shows that
K has a subinvariant function which is strictly positive and not integrable.
Since K overlaps supports, it has no invariant density [18, Remark 6] for
any b > 0, but condition (6.3) holds whenever b log 2 > 1.

Example 3. Consider the following functions

g(x) = k, k > 0, ϕ(x) = pxα, p > 0, α > −1, λ(x) = 2x, x > 0.

We have G(x) = kx and Q(x) = bxα+1/(α + 1), where b = p/k. The
operator K has a strictly positive invariant density, by Proposition 2. Thus
the semigroup {P (t)}t≥0 is stochastic, by Theorem 6, and it is partially
integral, by Proposition 1, since g(x/2) 6= g(x)/2 for all x. The domain of
the operator A is

D(A) = {u ∈ L1[0,∞) : u(0) = 0, u ∈ AC, u′ ∈ L1,

∫ ∞

0

xα|u(x)|dx <∞}.

The stationary density u∗ ∈ D(A) for the semigroup {P (t)}t≥0 is a solution
of the equation

u′(x) = −bxαu(x) + 2b(2x)αu(2x), x > 0,

and is given by

u∗(x) =
∞∑

n=0

cne
−Q(2nx), where cn =

2α+1

1− 2n(α+1)
cn−1, n ≥ 1,

and c0 is a normalizing constant. The stationary density v∗ for the operator
K is given by v∗(x) = cxαu∗(2x), where c is a normalizing constant.



DYNAMICS AND DENSITY EVOLUTION IN GROWTH PROCESSES 15

We continue with the above example, but now we take α = −1 and show
that for certain values of the parameter b the semigroup is stochastic and
for others it is not. Observe that we have Q(x) = b log x, thus the operator
K is the operator from Remark 3 and it is not asymptotically stable.

Example 4. Let the functions g and λ be as in Example 3. Let Q(x) =
b log x, where b = p/k. We have

P (ϕR1)u(x) =
be−2kx

2bxb+1

∫ 2x

0

ekyybu(y)dy.

If we take u(x) = xβ−1e−kx then u ∈ L1 for β > 0 and

P (ϕR1)u(x) =
b2β

b+ β
u(x)e−kx.

Assume that b log 2 < 1. Since we can find β > 0 such that b2β ≤ b+β, the
operator P (ϕR1) has a subinvariant strictly positive density, which shows
that the semigroup {P (t)}t≥0 is stochastic, by Theorem 3.

Assume now that b log 2 > 1 and take k = 1. If we go back to (1.4) then

an =
1

2
an−1e

τn/b and E(aγ
n) =

E(aγ
0)

2nγ

( b

b− γ

)n

.

We can find γ < 1 such that b2−γ < b − γ. Since tn = an − a0 +
∑n

i=1 ai,
this shows that supn E(tγn) < ∞, so that the process is defined only up to a
finite random time and {P (t)}t≥0 can not be stochastic.

Example 5. Tyson and Hannsgen [24] in their cell cycle model consider a
special case of the model of [11] in which they let E = (σ,∞), where σ < 1
and consider the following functions

g(x) = kx, ϕ(x) =

{
0, x < 1
p, x ≥ 1

, σ(x) = σx.

They show that the unique steady state v∗ is given by

v∗(x) =
r − 1

σ

(x
σ

)−r

,

where the exponent r > 1 must satisfy

b− (r − 1) = bσr−1 and b ln
1

σ
> 1, where b =

p

k
.

In this example we have g(σx) = σg(x) for all x and the semigroup {P (t)}t≥0

is not partially integral. Although it has a unique strictly positive stationary
density, it is not asymptotically stable due to a possible synchronization [5].
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We conclude this section with an example when the reset function σ
depends additionally on an external variable. Let E = (0,∞), Θ = (0, 1),
ν be a measure on Θ with a density h, and the reset function σ be of the
form σ(x, θ) = x− θx. Then the transition operator P has the kernel p

p(x, y) = 1(0,x)(y)ψ
(x
y

)1

y
, where ψ(θ) = h(1− θ),

and the evolution equation is
∂u(t, x)

∂t
= −∂g(x)u(t, x)

∂x
− ϕ(x)u(t, x) +

∫ ∞

x

ψ
(x
y

)ϕ(y)

y
u(t, y)dy.

The operator K has the kernel

(6.4) k(x, y) =

∫ ∞

max{x,y}
ψ

(x
z

) ϕ(z)

zg(z)
eQ(y)−Q(z)dz, x, y ∈ (0,∞).

Example 6. Suppose that ϕ(x)/g(x) = bxα for all x > 0, where b > 0,
α > −1. We have Q(x) = bxα+1/(α + 1). We provide the form of the
invariant density for K when ψ(z) = βzβ−1 for z ∈ [0, 1] and β > 0. It is
easily seen that the invariant density for the operator K is of the form

v∗(x) =
bγ

(α+ 1)1+γΓ(γ)
xβ−1e−Q(x), γ =

β

α+ 1
.

We have
R0v∗(x) =

xv∗(x)

βg(x)
.

If R0v∗ ∈ L1 then {P (t)} is an asymptotically stable stochastic semigroup
by Theorem 6. For example when α = 0 then v∗ is the gamma distribution,
while if α = β = 1 then

v∗(x) =

√
b

2
√

2π
e−bx2/2.

7. Decay instead of growth

We assumed in Sections 4 and 5 that g(x) > 0 for x ∈ (d0, d1), and
illustrated the applicability of our results to concrete situations in Section
6. In this section we discuss a situation when instead of growth there is
degradation, so now we suppose that g(x) < 0 for x ∈ (d0, d1). Results
analogous to those of Sections 4 and 5 with similar proofs are valid in this
case, and we illustrate the applicability of these to models for the stochastic
regulation of gene expression.

Let the functions G, Q be defined as in (4.1). Observe that now G is
decreasing and Q is nonincreasing. If G(d0) = +∞ then πt(E) ⊆ E for all
t ≥ 0 and t 7→ πtx is decreasing. Let {P0(t)}t≥0 and {S(t)}t≥0 be as in (4.2)



DYNAMICS AND DENSITY EVOLUTION IN GROWTH PROCESSES 17

and (4.3). Thus, if g < 0 and G(d0) = +∞ the conclusions of Theorem 4
remains valid. The analogue of Theorem 5 with the same method of proof
reads as follows.

Theorem 7. If g < 0 and G(d0) = +∞ then the operator A0 defined on
the domain

(7.1) D(A0) = {u ∈ L1 : gu ∈ AC, A0u ∈ L1, lim
x↑d1

g(x)u(x) = 0}

is the generator of the semigroup {P0(t)}t≥0 and the operator A defined on
D(A) = D(A0) ∩ L1

ϕ is the generator of {S(t)}t≥0.
Moreover, the resolvent of the operator A is of the form

R(λ,A)v(x) =

∫ d1

x

1

|g(x)|
eQλ(y)−Qλ(x)v(y) dy, v ∈ L1.

The operator R0 is now defined with the help of the function

r0(x, y) = 1(x,d1)(y)
1

|g(x)|
eQ(y)−Q(x)

and the assertions of Theorem 6 remain valid under the assumption that
g < 0 and G(d0) = Q(d0) = +∞.

In particular, if the operator P has kernel p then the operator K has the
kernel k

k(x, y) =

∫ y

d0

p(x, z)
ϕ(z)

|g(z)|
eQ(y)−Q(z) dz

and is stochastic if and only if Q(d0) = ∞.
Let E = Θ = (0,∞) and σ(x, θ) = x + θ. Then the operator P is the

convolution operator with the measure ν, i.e. if ζ1 has density u and θ1 has
distribution ν then Pu is the density of ζ1+η1. Assume that ν has a density
h. Then

p(x, y) = 1(0,x)(y)h(x− y),

so that our evolution equation is
∂u(t, x)

∂t
= −∂g(x)u(t, x)

∂x
− ϕ(x)u(t, x) +

∫ x

0

h(x− y)ϕ(y)u(t, y)dy.

Example 7. Friedman et al. [6] have considered stochastic aspects of gene
expression following from bursts of protein production, and their formu-
lations are special cases of our results. Identifying their w and c with
w(x−y)dy = h(x−y)dy−δx(dy) and ϕ(x) = k1c(x) and taking g(x) = −γx
then our equation becomes identical, in a steady state situation to their
Equation 6

−∂γxu∗(x)
∂x

=

∫ x

0

ϕ(y)u∗(y)w(x− y)dy.
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Then, following [6], let h(y) = 1
b
e−y/b be the exponential distribution and

let, in their first model, ϕ(x) = k1. Then the equation, as they have shown,
has as a solution the density of the gamma distribution. In considering the
second model of [6] that treated transcription factor regulation of its own
transcription, we are let to consider the following function

ϕ(x) = k1
1

1 + xα
+ k1ε.

As they have shown the corresponding density is given by

u∗(x) = cxa(1+ε)−1e−x/b

[
1

1 + xα

]a/α

,

where c is a normalizing factor.
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