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Abstract

For a strictly stationary sequence of random vectors in Rd we study convergence of partial
sums processes to a Lévy stable process in the Skorohod space with J1-topology. We identify
necessary and sufficient conditions for such convergence and provide sufficient conditions
when the stationary sequence is strongly mixing.
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1. Introduction

Let {Zj : j ≥ 1} be a strictly stationary sequence of Rd-valued random vectors defined
on a probability space (Ω,F ,P). If the Zj are i.i.d. then according to Rvačeva [41], there
exist sequences of constants bn > 0 and cn such that

1

bn

n∑
j=1

Zj − cn
d−→ ζα in Rd (1.1)

for some non-degenerate α-stable random vector ζα with α ∈ (0, 2) if and only if Z1 is
regularly varying with index α ∈ (0, 2): there exists a probability measure σ on B(Sd−1), the
Borel σ-algebra of the unit sphere Sd−1 = {x ∈ Rd : |x| = 1}, such that as x→ ∞

P(|Z1| > rx, Z1/|Z1| ∈ A)

P(|Z1| > x)
−→ r−ασ(A) (1.2)

for all r > 0 and A ∈ B(Sd−1) such that σ(∂A) = 0 (the notation ‘
d−→ in X’ refers to weak

convergence of distributions of given random elements with values in the space X and | · |
denotes the Euclidean norm). The sequences cn and bn can be chosen as

cn =
n

bn
E(Z1I(|Z1| ≤ bn)) and nP (|Z1| > bn) → 1. (1.3)
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A result of Ibragimov [20], and its extension to random vectors by Phillip [37], tells us that
if for a strongly mixing sequence the normalized partial sums in (1.1) converge to a non-
degenerate random vector ζ, then necessarily ζ = ζα for some α ∈ (0, 2]; the case of α = 2
refers to a Gaussian distributed random vector.

For the functional generalization of (1.1) define the partial sum processes

Xn(t) =
1

bn

∑
1≤j≤nt

Zj − tcn, t ≥ 0. (1.4)

For each ω, Xn(·) is an element of the Skorohod space D([0,∞),Rd) of all Rd-valued functions
on [0,∞) that have finite left-hand limits and are continuous from the right. In this paper
we study weak convergence of distributions of the partial sum processes in D([0,∞),Rd)
with the Skorohod J1 topology (see Section 2.4). In the i.i.d. case if

Xn
d−→ X in D([0,∞),Rd), (1.5)

then necessarily X is a Lévy α-stable process with α ∈ (0, 2], whose increments are station-
ary, independent, and X(1) has the same distribution as ζα.

In the case of α = 2 in (1.1), a substantial amount of work has been devoted to extend the
central limit theorem and the Donsker’s invariance principle to weakly dependent random
variables; see the recent review by Merlevède, Peligrad, and Utev [31] for sequences of
random variables with finite variances and Bradley [7], Shao [45] for random variables with
infinite variances. In the case α ∈ (0, 2) it was shown by Avram and Taqqu [3] that for some
m-dependent random variables weak–J1 convergence cannot hold despite the fact that (1.1)
holds. However, for ϕ-mixing sequences there is a characterization of convergence in (1.5)
by Samur [42] in terms of convergence in (1.1) and some additional conditions. Both [3]
and [42] use the Skorohod approach [48] in D([0, 1]) via tightness plus convergence of finite
dimensional distributions.

Since the case of α = 2 is to some extent well understood we shall focus on the less
studied case of α < 2. Our method of proof of (1.5) is based on point process techniques
used by Durrett and Resnick [15] for convergence of dependent random variables. For a
comprehensive account on this subject in the independent case, we refer the reader to the
expository article by Resnick [38] and to his recent monograph [40]. We recall relevant
notation and background in Section 2. In Section 3 we study, in a somewhat more general

setting, the problem of convergence Xn
d−→ X in D([0,∞),Rd) with X being a Lévy process

without Gaussian component. Theorem 3.1 gives necessary and sufficient conditions for such
convergence. Roughly speaking these are a convergence of point processes Nn, consisting of
the jump points ofXn, to the corresponding point processN of jumps ofX, which necessarily
is a Poisson point process, and a condition which allows one to neglect accumulation of small
jumps. In the case of a strictly stationary strongly mixing sequence {Zj : j ≥ 1} of random
variables, the class of possible limiting processes forNn were discussed first by Mori [32]. Any
element of this class must be infinitely divisible and invariant under certain transformations.
Then Hsing [18] derived cluster representations of the limiting processes under somewhat
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weaker distributional mixing conditions. Thus we need to impose extra condition to obtain
a Poisson process in the limit. We now describe an application of Theorem 3.1 to a strictly
stationary sequence {Zj : j ≥ 1} under strong mixing conditions.

There exist several coefficients ’measuring’ the dependence between two σ-algebras A
and B ⊂ F , the most usual ones being

α(A,B) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B},

ϕ(A,B) = sup{|P(B|A)− P(B)| : A ∈ A,P(A) > 0, B ∈ B},
and the maximal coefficient of correlations

ρ(A,B) = sup{|Corr(f, g)| : f ∈ L2(A), g ∈ L2(B)
}
;

see the review paper by Bradley [8] as a general reference for mixing conditions.
Given the sequence {Zj : j ≥ 1}, we define Fn

m = σ{Zj : m ≤ j ≤ n} and, for every
n ≥ 1,

φ0(n) = sup
k≥1

α(Fk
1 ,F∞

n+k),

φ1(n) = sup
k≥1

ϕ(Fk
1 ,F∞

n+k),

ρ(n) = sup
k≥1

ρ(Fk
1 ,F∞

n+k).

The sequence {Zj : j ≥ 1} is said to be mixing with rate function φs if φs(n) → 0 as n→ ∞;
the case of s = 0 (s = 1) refers to strongly (uniformly or ϕ-) mixing sequence.

Our main result for strongly mixing sequences is the following functional limit theorem.

Theorem 1.1. Let a strictly stationary sequence {Zj : j ≥ 1} be mixing with rate func-
tion φ0. Assume that Z1 is regularly varying with index α ∈ (0, 2) and that one of the
following conditions is satisfied:

(1) α ∈ (0, 1);

(2) α ∈ [1, 2) and for every δ > 0

lim
ε→0

lim sup
n→∞

P
(
max
1≤k≤n

|
k∑
j=1

(ZjI(|Zj| ≤ εbn)− E(Z1I(|Z1| ≤ εbn))| ≥ δbn
)
= 0. (1.6)

Then Xn
d−→ X in D([0,∞),Rd), where Xn is as in (1.3)–(1.4), and X is a Lévy α-stable

process if and only if the following local dependence condition holds:

LD(φ0) For any ε > 0 there exist sequences of integers rn = rn(ε), ln = ln(ε) → ∞ such
that

rn = o(n), ln = o(rn), nφ0(ln) = o(rn), as n→ ∞, (1.7)

and
lim
n→∞

P( max
2≤j≤rn

|Zj| > εbn
∣∣|Z1| > εbn) = 0. (1.8)
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Note that if φ0(n) → 0 then one can always find sequences rn, ln satisfying (1.7). Thus,
if for any ε > 0

lim
k→∞

lim sup
n→∞

P( max
2≤j≤[n/k]

|Zj| > εbn
∣∣|Z1| > εbn) = 0,

then condition LD(φ0) holds. Therefore, LD(φ0) is implied by (1.9) which is the local
dependence condition D′ of Davis [12], since nP(|Z1| > εbn) → ε−α by (1.2) and (1.3).

Corollary 1.2. Let a strictly stationary sequence {Zj : j ≥ 1} be mixing with rate func-
tion φ0. Assume that Z1 is regularly varying with index α ∈ (0, 2). If for any ε > 0

lim
k→∞

lim sup
n→∞

n

[n/k]∑
j=2

P(|Zj| > εbn, |Z1| > εbn) = 0, (1.9)

then condition LD(φ0) holds.

For uniformly mixing sequences we have the following result.

Corollary 1.3. Let a strictly stationary sequence {Zj : j ≥ 1} be mixing with rate func-
tion φ1. Assume that Z1 is regularly varying. Then condition LD(φ0) is equivalent to

LD(φ1) For any ε > 0 and j ≥ 2

lim
n→∞

P(|Zj| > εbn
∣∣|Z1| > εbn) = 0. (1.10)

With the notation as in Theorem 1.1 we have the following characterization for m-
dependent sequences.

Corollary 1.4. Assume that {Zj : j ≥ 1} is m-dependent. Then Xn
d−→ X in D([0,∞),Rd)

if and only if Z1 is regularly varying and for any ε > 0 and j = 2, . . . ,m condition (1.10) is
satisfied.

The proofs of these results are presented in Section 4. The reader is referred to Theo-
rem 4.1 and Remark 4.3 for necessity of conditions (1.6) and (1.8) without the strong mixing
assumption and to Remark 4.5 for a relation between (1.8) and the extremal index of the
sequence {|Zj| : j ≥ 1}. We show in Lemma 4.8 that condition (2) of Theorem 1.1 holds if∑

j ρ(2
j) < ∞. Thus, Theorem 1.1 complements the results of Bradley [7] and Shao [45].

Theorem 1.1 together with Corollary 1.3 establishes Corollary 5.9 of Kobus [27], which was
proved using the results of Samur [42].

The methods and results of this paper were used in [49] to prove functional limit theorems
for particular examples of stationary sequences arising from dynamical systems such as
continued fractions, Gibbs-Markov maps, and piecewise expanding maps [1, 2, 21, 30, 43, 51].
In that setting condition (1.8) has a nice interpretation in terms of hitting times and it can
be also used without the strong mixing assumption, see [49, Sections 3 and 4].

We should also point out that proving the weak convergence of the partial sums of a
strictly stationary sequence to an infinite variance α-stable random vector in (1.1) might
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require less restrictive assumptions as opposed to the weak convergence in (1.5). The recent
paper [4] contains a detailed study of sufficient conditions for the convergence in (1.1) and
a comparison of various conditions used to prove stable limits under the assumption that
the stationary sequence is jointly regularly varying, which means that all finite dimensional
distributions are regularly varying with index α ∈ (0, 2). Here we comment on the approach
through point processes. A number of authors studied the point processes N ′

n consisting of
the points b−1

n Zj, j = 1, . . . , n, in order to obtain convergence to α-stable random vectors.
The one dimensional case with N ′

n converging to a Poisson process was studied in [12]. A
systematic application of point process techniques for obtaining limit theorems for arrays of
dependent random vectors has been developed in [23, 27]. Their results for strongly mixing
stationary sequences are obtained under stronger assumptions than our condition LD(φ0).
For a jointly regularly varying stationary sequence of dependent random variables sufficient
conditions for convergence in (1.1) can be found in [13] and their multivariate extensions in
[14]; here the limiting process for N ′

n might not be a Poisson process, so that their examples
provide a large class of processes for which the functional limit theorem does not hold in the
J1-topology. It would be interesting to obtain corresponding results in one of the weaker
Skorohod’s topologies M1 or M2 as defined in [47]; see [3] for a result in the M1 topology.
After the submission of this paper, we became aware of [5], where sufficient conditions for

Xn
d−→ X in D([0, 1],R) with the M1 topology were obtained by building upon the approach

and assumptions in [13]; one condition is the same as our condition (2) in Theorem 1.1.

2. Preliminaries

In this section we collect some basic tools and notions to be used throughout this paper.

2.1. Point processes

We begin by introducing some background on point processes. We follow the point
process theory as presented in Kallenberg [24] and Resnick [39]. Let E be a locally compact
Hausdorff topological space with a countable basis for its topology. For our purposes, E is

a subset of either Rd

0 := Rd \ {0} or [0,∞)×Rd

0, where R = R∪{−∞,∞}. The topology on

Rd

0 is chosen so that the Borel σ-algebras B(Rd

0) and B(Rd) coincide on Rd \ {0}. Moreover,

B ⊂ Rd

0 is relatively compact (or bounded) if and only if B ∩Rd is bounded away from zero
in Rd, i.e., 0 /∈ B ∩ Rd.

Let M(E) be the set of all Radon measures on B(E), i.e., nonnegative Borel measures
which are finite on relatively compact subsets of E. The space M(E) is a Polish space when
considered with the topology of vague convergence. Recall that mn converges vaguely to m

mn
v−→ m iff mn(f) → m(f) for all f ∈ C+

K(E),

where m(f) =
∫
E
f(x)m(dx) and C+

K(E) is the space of nonnegative continuous functions on

E with compact support. We have mn
v−→ m if and only if mn(B) → m(B) for all relatively

compact B for which m(∂B) = 0.
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The set Mp(E) of point measures on E is a closed subspace of M(E) consisting of all
integer-valued measures in M(E). Denote by εx the unit measure concentrated at x ∈ E.
Any point measure m ∈Mp(E) is of the form m =

∑
i εxi , where {xi} is at most a countable

collection of points of E. The measure m is called simple if the points {xi} are all distinct.
A point process N on E is an Mp(E)-valued random variable, defined on a probability

space (Ω,F ,P). The measure Q defined by Q(A) = E(N(A)), A ∈ B(E), is called a mean
measure of N . The process N is called simple if almost all its realizations are simple. A point
process N is called a Poisson process with mean measure Q ∈M(E) if N(A1), . . . , N(Al) are
independent random variables for any disjoint sets A1, . . . , Al ∈ B(E) and N(A) is a Poisson
random variable with mean Q(A) for A ∈ B(E) with Q(A) < ∞. The Poisson process is
simple if its mean measure is non-atomic. The Laplace functional of Poisson process N is
of the form

E[e−N(f)] = exp

{
−
∫
E

(1− e−f(x))Q(dx)

}
for nonnegative measurable f . Given a sequence of point processes Nn we have Nn

d−→ N in
Mp(E), by [24, Theorem 4.2], if and only if E[e−Nn(f)] → E[e−N(f)] for all f ∈ C+

K(E).

2.2. Infinitely divisible and stable random vectors

An infinitely divisible Rd-valued random vector ζ is uniquely determined through the
Lévy-Khintchine formula, which states that its characteristic function is of the form

Eei〈u,ζ〉 = exp
(
i〈a, u〉 − 1

2
〈Σu, u〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉I(|x| ≤ 1)

)
Π(dx)

)
,

where a is a d-dimensional vector, Σ is a symmetric nonnegative definite d× d matrix, and
Π is a Lévy measure, i.e., a σ-finite Borel measure on Rd such that Π({0}) = 0 and∫

Rd

(1 ∧ |x|2)Π(dx) <∞.

Here 〈x, u〉 denotes the usual inner product in Rd. We have Π(B) <∞ for any set B ∈ B(Rd)

bounded away from 0. We can extend Π on B(Rd

0) in such a way that Π(Rd \Rd) = 0. The
generating triplet (Σ,Π, a) uniquely determines a given infinitely divisible random vector.

A particular class of infinitely divisible random vectors without Gaussian component,
i.e., with Σ = 0, are stable random vectors. Recall that a vector ζ with values in Rd is said
to be α-stable for some α ∈ (0, 2) if its characteristic function is given by

Eei〈u,ζ〉 =
{

exp(−
∫
Sd−1 |〈u, s〉|α(1− i tan πα

2
sgn〈u, s〉)λ1(ds) + i〈τ, u〉), α 6= 1,

exp(−
∫
Sd−1 |〈u, s〉|(1 + i 2

π
sgn〈u, s〉 log |〈u, s〉|)λ1(ds) + i〈τ, u〉), α = 1,

where τ ∈ Rd and λ1 is a finite nonzero measure on B(Sd−1); see [44, Theorem 14.3]. Its
Lévy measure is of the form

Πα(B) =

∫
Sd−1

∫ ∞

0

1B(rs)r
−α−1drλ(ds), B ∈ B(Rd), (2.1)

where λ is a finite nonzero measure on B(Sd−1) and it is a constant multiple of λ1.
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2.3. Regularly varying vectors
If ζ is α-stable for some α ∈ (0, 2), it is regularly varying with index α as defined in Intro-

duction. The concept of vague convergence in M(Sd−1) allows us to rewrite condition (1.2)
in the form

P(|ζ| > tx, ζ/|ζ| ∈ ·)
P(|ζ| > x)

v−→ t−ασ(·) as x→ ∞. (2.2)

The measure σ is called the spectral measure. See [39, Chapter 5] for background on multi-
variate regular variation.

Alternatively, (2.2) is equivalent to: there exists Q ∈ M(Rd

0) such that Q(Rd \ Rd) = 0
and

P(x−1ζ ∈ ·)
P(|ζ| > x)

v−→ Q in M(Rd

0), as x→ ∞,

and to the sequential definition of regular variation: there exists bn → ∞ such that

nP(b−1
n ζ ∈ ·) v−→ Q, n→ ∞. (2.3)

One can always choose bn such that nP(|ζ| > bn) ∼ 1. The measure Q necessarily has the

property Q(rB) = r−αQ(B), r > 0, for some α > 0 and all b ∈ B(Rd

0), which clarifies the
relation with the index α.

If (2.3) holds with Q = Πα where Πα is as in (2.1), then for the finite measure λ in (2.1)
we have λ = ασ. Note that the property of regular variation does not dependent on a given
norm | · | in Rd, however, the spectral measure and the limit measure Q are different for
distinct norms.

Regular variation of ζ implies that the function x 7→ P(|ζ| > x) is regularly varying:

P(|Z1| > x) = x−αL(x), (2.4)

where L is a slowly varying function, i.e., L(rx)/L(x) → 1 as x → ∞ for every r > 0. In
the special case of d = 1 a random variable ζ is regularly varying with index α ∈ (0, 2) if
and only if (2.4) holds for a slowly varying L and the tails are balanced: there exist p, q ≥ 0
with p+ q = 1 such that

lim
x→∞

P(Z1 > x)

P(|Z1| > x)
= p and lim

x→∞

P(Z1 < −x)
P(|Z1| > x)

= q. (2.5)

From (2.5) and (2.4) it follows that

lim
n→∞

nL(bn)

bαn
= 1

and for r > 0 we have

lim
n→∞

nP(Z1 > bnr) = r−αp and lim
n→∞

nP(Z1 < −bnr) = r−αq.

Hence
nP(b−1

n Z1 ∈ ·) v−→ Πα(·),
where Πα is an absolutely continuous measure on R with density

Πα(dx) =
(
pα1(0,∞)(x) + qα1(−∞,0)(x)

)
|x|−α−1dx.
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2.4. Skorohod J1 topology

Let D([0, T ],Rd) for T > 0 be the space of all Rd-valued functions ψ on [0, T ] that
are right continuous on [0, T ) and and have finite left-hand limits ψ(t−) for all t ∈ (0, T ].
Consider the set ΛT of strictly increasing, continuous mappings λ of [0, T ] onto itself such
that λ(0) = 0 and λ(T ) = T . The Skorohod J1 metric on D([0, T ],Rd) is defined as

dT (ψ1, ψ2) = inf
λ∈ΛT

( sup
0≤s≤T

|ψ1(λ(s))− ψ2(s)| ∨ sup
0≤s≤T

|λ(s)− s|)

for ψ1, ψ2 ∈ D([0, T ],Rd), where a ∨ b = max{a, b}. Then

d∞(ψ1, ψ2) =

∫ ∞

0

e−t(dt(ψ1, ψ2) ∧ 1)dt, ψ1, ψ2 ∈ D([0,∞),Rd),

defines a metric in D([0,∞),Rd) which induces the Skorohod J1-topology. The metric spaces
(D([0, T ],Rd), dT ) and (D([0,∞),Rd), d∞) are separable. For more details see [50] and [22,
Section 6].

We have the following characterization of weak convergence in D([0,∞),Rd). If Xn, X

are stochastic processes with sample paths in D([0,∞),Rd) then Xn
d−→ X in D([0,∞),Rd)

if and only if Xn
d−→ X in D([0, T ],Rd) for all T ∈ TX = {t > 0 : P(X(t) 6= X(t−)) = 0}.

3. Necessary and sufficient conditions for weak convergence in the Skorohod
topology

In this section we study convergence in distributions of partial sum processes to Lévy
processes without Gaussian component in the Skorohod space D([0,∞),Rd) with J1-topology.

Let X = {X(t) : t ≥ 0} be an Rd-valued Lévy process, i.e., X(0) = 0 a.s, X has
stationary independent increments and sample paths in D([0,∞),Rd). We assume that X
is such that

E(ei〈u,X(1)〉) = exp
(∫ (

ei〈u,x〉 − 1− i〈u, x〉I(|x| ≤ 1)
)
Π(dx)

)
, (3.1)

where Π is a Lévy measure with Π({x : |x| = 1}) = 0. The jump process ∆X(t) :=

X(t) − X(t−), t > 0, determines a Poisson point process N on [0,∞) × Rd

0, which can be
represented as

N =
∑

{t:∆X(t) 6=0}

ε(t,∆X(t)), (3.2)

and Leb× Π is the mean measure of N ; see [44] for details.
We also consider a family {Xn,j : j, n ≥ 1} of Rd-valued random vectors such that P(0 <

|Xn,j| <∞) = 1. Define the partial sum process

Xn(t) =
∑

1≤j≤nt

Xn,j − tcn, t ≥ 0, n ≥ 1,
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where {cn : n ≥ 1} is a sequence of vectors in Rd. It should be emphasized that we are not
assuming any dependence structure for the random vectors {Xn,j : j, n ≥ 1} in this section.

The following result extends [29, Theorem 2.10.1], [15, Theorem 4.1], [38, Proposition
3.4]. It describes the connection between convergence in the Skorohod space with J1-topology

and convergence of the corresponding point processes of jumps in Mp((0,∞)× Rd

0).

Theorem 3.1. Let X be a Lévy process satisfying (3.1) and let N be the corresponding
Poisson point process as in (3.2). Then

Xn
d−→ X in D([0,∞),Rd) (3.3)

if and only if

Nn :=
∑
j≥1

ε( j
n
,Xn,j)

d−→ N in Mp((0,∞)× Rd

0) (3.4)

and for every δ > 0 and T > 0

lim
ε→0

lim sup
n→∞

P
(
sup

0≤t≤T
|
∑
j≤nt

Xn,jI(|Xn,j| ≤ ε)− t(cn −
∫
{x:ε<|x|≤1}

xΠ(dx))| ≥ δ
)
= 0, (3.5)

where the limit is taken over all ε with Π({x : |x| = ε}) = 0.

We shall prove this result in Section 5 using the continuous mapping theorem and prop-
erties of Lévy processes. In the next section we will use this result to prove limit theorems
for stationary sequences. For completeness we also provide the following sufficient conditions
for convergence of marginal distributions.

Theorem 3.2. Let N ′ be a Poisson point process in Mp(R
d

0) with mean measure Π. If

N ′
n :=

n∑
j=1

εXn,j

d−→ N ′ in Mp(R
d

0) (3.6)

and for any δ > 0

lim
ε→0

lim sup
n→∞

P
(
|

n∑
j=1

Xn,jI(|Xn,j| ≤ ε)− cn +

∫
{x:ε<|x|≤1}

xΠ(dx)| ≥ δ
)
= 0, (3.7)

where the limit is taken over all ε with Π({x : |x| = ε}) = 0, then

Xn(1)
d−→ X(1) in Rd. (3.8)

Remark 3.3. Note that Poisson convergence in (3.6) is not necessary for (3.8). There are
many examples of dependent random variables for which the latter holds, but in (3.6) we
have convergence to a non-Poisson point process [13].

Theorem 3.1 can be used to disprove weak convergence in Skorohod J1-topology. Since
condition (3.4) implies (3.6), the convergence in (3.3) is impossible in the J1-topology for all
examples where N ′ was shown to be non-Poisson. These include moving average processes
[10] for which lack of convergence in the J1-topology was shown in [3] using the finite-
dimensional plus tightness technique.
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We conclude this section with a discussion of some of our conditions. A situation when
condition (3.5) is not needed at all is described in the following.

Corollary 3.4. Let the Lévy measure Π be such that
∫
(1 ∧ |x|)Π(dx) < ∞ and let cn = 0

for all n ≥ 1. Suppose that for any T > 0 we have

lim
ε→0

lim sup
n→∞

∑
j≤nT

E(|Xn,j|I(|Xn,j| ≤ ε)) = 0. (3.9)

Then Nn
d−→ N in Mp((0,∞)× Rd

0) if and only if Xn
d−→ X̃ in D([0,∞),Rd), where

X̃(t) = X(t) + t

∫
xI(|x| ≤ 1)Π(dx), t ≥ 0.

This result is a consequence of Theorem 3.1 and the following maximal inequality from [28,
Theorem 1], the proof of which extends directly to random vectors. Note that if Π = Πα,
where Πα is as in (2.1) with α ∈ (0, 2), then

∫
(1 ∧ |x|)Π(dx) <∞ precisely when α < 1.

Lemma 3.5. If ζi are Rd-valued random variables with E|ζi| < ∞, i = 1, . . . , k, then for
any δ > 0 we have

P(max
1≤j≤k

|ζ1 + . . .+ ζj| ≥ δ) ≤ 1

δ

k∑
i=1

E|ζi|.

Remark 3.6. Condition (3.5) can be equivalently replaced by

lim
ε→0

lim sup
n→∞

P
(
sup

0≤t≤T
|
∑
j≤nt

(Xn,jI(|Xn,j| ≤ ε)− E(Xn,jI(|Xn,j| ≤ ε))| ≥ δ
)
= 0 (3.10)

if for example, for any ε > 0,

lim
n→∞

sup
0≤t≤T

|
∑
j≤nt

E(Xn,jI(|Xn,j| ≤ ε))− t(cn −
∫
{x : ε<|x|≤1}

xΠ(dx))| = 0.

In order to check condition (3.4) we may use Kallenberg’s characterization of convergence
to simple point processes. In particular, the following lemma is a direct consequence of [24,
Theorems 4.7 and 4.8] with later improvements from [25].

Lemma 3.7. Let N be a Poisson point process with mean measure Leb×Π where the Lévy

measure Π is non-atomic and let U be the class of all finite unions of rectangles in Rd

0

bounded away from 0 and with boundary of zero Π measure.

(1) We have

Nn
d−→ N in Mp((0,∞)× Rd

0)

if and only if

Nn((s, t]× ·) d−→ N((s, t]× ·) in Mp(R
d

0) (3.11)
10



for all t > s ≥ 0 and
lim
n→∞

E(e−Nn(B)) = E(e−N(B))

for any set B of the form
⋃k
j=1(sj, tj] × Uj, where 0 ≤ s1 < t1 < . . . < sk < tk, and

Uj ∈ U , j = 1, . . . , k, k ≥ 2.

(2) Let t > s ≥ 0. If ENn((s, t]× ·) v−→ EN((s, t]× ·) in M(Rd

0) and

lim
n→∞

P(Nn((s, t]× U) = 0) = P(N((s, t]× U) = 0)

for every U ∈ U , then (3.11) holds.

4. Limit theorems for stationary sequences

In this section we study limit theorems for stationary sequences of random vectors in Rd.
Let X be a Lévy α-stable process as in (3.1) with Lévy measure Π = Πα defined by (2.1)

and let N be a Poisson point process on [0,∞)× Rd

0 with mean measure Leb× Π.
We assume throughout this section that {Zj : j ≥ 1} is a strictly stationary sequence of

random vectors in Rd such that Z1 is regularly varying with index α ∈ (0, 2). Then we have

nP(b−1
n Z1 ∈ ·) v−→ Π(·), (4.1)

where the normalizing constants bn are such that

lim
n→∞

nP (|Z1| > bn) = 1.

We define

Xn(t) =
1

bn

(∑
j≤nt

Zj − tnE(Z1I(|Z1| ≤ bn))
)

and Nn =
∑
j≥1

ε
( j
n
,
Zj
bn

)
.

Theorem 4.1. Suppose that Z1 is regularly varying with index α ∈ (0, 2). Then Xn
d−→ X

in D([0,∞),Rd) if and only if Nn
d−→ N in Mp((0,∞)× Rd

0) and (1) or (2) of Theorem 1.1
holds.

Proof. Let Xn,j = Zj/bn, j ≥ 1, and cn = nE(Xn,1I(|Xn,1| ≤ 1)), n ≥ 1. From (4.1) it
follows that, for any ε ∈ (0, 1),

lim
n→∞

nE(Xn,1I(ε < |Xn,1| ≤ 1)) =

∫
{x : ε<|x|≤1}

xΠ(dx),

which together with E(|Xn,1|I(|Xn,1| ≤ ε)) → 0, as n→ ∞, implies that

lim
n→∞

sup
0≤t≤T

∣∣t∫
{x : ε<|x|≤1}

xΠ(dx)− tcn + [nt]E(Xn,1I(|Xn,1| ≤ ε))
∣∣ = 0,

11



for all T > 0 and ε ∈ (0, 1). Now observe that, by stationarity, condition (1.6) holds for
all δ > 0 if and only if condition (3.10) holds for all T > 0 and δ > 0. Consequently, by

Theorem 3.1 and Remark 3.6, we obtain Xn
d−→ X in D([0,∞),Rd) if and only if Nn

d−→ N

in Mp((0,∞)× Rd

0) and condition (1.6) holds for every δ > 0.
It remains to show that if α < 1 then (4.1) implies (1.6). By Lemma 3.5, we have

P
(
max
1≤k≤n

|
k∑
j=1

(ZjI(|Zj| ≤ εbn)− E(Z1I(|Z1| ≤ εbn))| ≥ δbn
)
≤ 2n

δbn
E(|Z1|I(|Z1| ≤ εbn))

for all n ≥ 1, δ, ε > 0. The rest of the argument is standard. From Karamata’s theorem, it
follows that

E(|Z1|I(|Z1| ≤ εbn)) ∼
α

1− α
εbnP(|Z1| ≥ εbn) ∼

α

1− α
(εbn)

1−αL(εbn),

where L is a slowly varying function such that nb−αn L(bn) → 1. Consequently, we obtain

lim sup
n→∞

n

bn
E(|Z1|1{|Z1|≤εbn}) =

α

1− α
ε1−α

for every ε > 0, which completes the proof.

The next result gives necessary conditions for convergence of point processes to the
Poisson process N .

Theorem 4.2. Suppose that Z1 is regularly varying. If Nn
d−→ N in Mp((0,∞) × Rd

0) then
for any t, ε > 0 we have

lim
n→∞

P( max
1≤j≤nt

|Zj| ≤ εbn) = e−tΠ({x : |x|>ε})

and
lim
n→∞

P( max
2≤j≤nt

|Zj| > εbn
∣∣|Z1| > εbn) = 1− e−tΠ({x : |x|>ε}). (4.2)

The first statement is a consequence of the assumption and the identity

P(Nn((0, t]× {x : |x| > ε}) = 0) = P( max
1≤j≤nt

|Zj| ≤ εbn).

Condition (4.2) follows from the next lemma.

Remark 4.3. Observe that the convergence in (4.2) is locally uniform with respect to t.
Hence, condition (1.8) holds for every ε > 0 and all sequences rn such that rn = o(n).

Lemma 4.4. Let {ξj : j ≥ 1} be a strictly stationary sequence of random variables. Suppose
that λ > 0, θ > 0, and un, n ≥ 1, are such that

lim
n→∞

nP(ξ1 > un) = λ and lim
n→∞

P( max
1≤j≤nt

ξj ≤ un) = e−θλt (4.3)

for all t > 0. Then

lim
n→∞

P( max
2≤j≤nt

ξj > un
∣∣ξ1 > un) = 1− θe−θλt, t > 0. (4.4)

12



Proof. Define for n ≥ 1, t ≥ 0

Fn(t) = P( max
2≤j≤nt

ξj > un)

and
Gn(t) = P( max

2≤j≤nt
ξj > un

∣∣ξ1 > un),

where we set Fn(t) = Gn(t) = 0 for 0 ≤ t < 2/n. Both functions are nondecreasing and
piecewise constant. We first show that

1−Gn(t) =
Fn(t+

1
n
)− Fn(t)

P(ξ1 > un)
, t ≥ 0, n ≥ 1. (4.5)

Observe that equality (4.5) holds for t ∈ [0, 2/n). Let k ≥ 2 and t ∈ [k/n, (k + 1)/n). We
have

1−Gn(t) = P(max
2≤j≤k

ξj ≤ un
∣∣ξ1 > un),

which leads to

1−Gn(t) =
P(max2≤j≤k ξj ≤ un)− P(max1≤j≤k ξj ≤ un)

P(ξ1 > un)
,

and, by stationarity, concludes the proof of (4.5).
To complete the proof it suffices to show that

n(Fn(t+
1

n
)− Fn(t)) → θλe−θλt.

We proceed similarly to [17, pp. 2047-2048]. Define piecewise linear functions F̃n by F̃n(t) =

Fn(t) for t = k/n and F̃n linear on [k/n, (k + 1)/n], k ≥ 0. Then the right-hand derivative

F̃ ′
n(t+) at every point t is given by

F̃ ′
n(t+) = n(Fn(t+

1

n
)− Fn(t)).

Note that Fn(t) → 1− e−θλt, as n→ ∞, for all t ≥ 0, and, by (4.5), we have

sup
t≥0

|F̃n(t)− Fn(t)| ≤ P(ξ1 > un) → 0.

Since the functions F̃n are concave, we obtain F̃ ′
n(t+) → θλe−θλt for all t.

Remark 4.5. Note that the constant θ in (4.3) might be referred to as the extremal index
of the sequence {ξj : j ≥ 1}; see e.g. [29, 34] and [16, Chapter 8.1] for the definition and
properties. In particular, if the ξj are i.i.d. then θ = 1. Dependent random variables have
the extremal index equal to 1 when they satisfy the extreme mixing conditions D(un) and
D′(un). This will be also the case for the sequence {|Zj| : j ≥ 1} in Theorem 4.1.
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We now provide sufficient conditions for convergence to Poisson processes for strongly
mixing sequences. The mixing condition D∗ of Davis and Resnick [11, p. 47] is implied
by strong mixing. Hence, from [11, Theorem 2.1] it follows that if the local dependence

condition (1.9) of Davis [12], then Nn
d−→ N in Mp((0,∞) × Rd

0). Although condition (1.9)
is sufficient for Poisson convergence, it is not necessary. We now prove that our condition
LD(φ0) from Theorem 1.1, which is necessary, is also sufficient.

Theorem 4.6. Suppose that the sequence {Zj : j ≥ 1} is strongly mixing and Z1 is regularly

varying. If condition LD(φ0) holds then Nn
d−→ N in Mp((0,∞)× Rd

0).

Proof. By part (1) of Lemma 3.7, we have Nn
d−→ N if and only if for any t > s ≥ 0

condition (3.11) holds, since {Zj : j ≥ 1} is strongly mixing. For any f ∈ C+
K(R

d

0) and
t > s ≥ 0 we have, by stationarity,∣∣E(e−Pns<j≤nt f(b

−1
n Zj))− E(e−

P
0<j≤n(t−s) f(b

−1
n Zj))

∣∣ ≤ E(1− e−f(b
−1
n Z1)),

which converges to 0 as n→ ∞, since f(b−1
n Z1) → 0 a.s. Consequently, we have Nn

d−→ N if
and only if for any t > 0

Nn((0, t]× ·) d−→ N((0, t]× ·) in Mp(R
d

0).

Let t > 0. From (4.1) it follows that E(Nn((0, t]× ·)) v−→ E(N((0, t]× ·)). Hence, it suffices
to show, by part (2) of Lemma 3.7, that

lim
n→∞

P(Nn((0, t]× U) = 0) = e−tΠ(U) (4.6)

for every finite union U of rectangles with Π(U) <∞ and Π(∂U) = 0.
Let ε > 0 be such that U ⊂ {x : |x| > ε}. Take rn, ln as in (1.7) and (1.8). Since

ln = o(rn) we may assume that ln < rn. Let the integers kn, sn be given by the Euclidean
division of [nt] by rn, [nt] = knrn + sn and 0 ≤ sn < rn. We will prove the following two
statements

|P(Nn((0, t]× U) = 0)−
(
1− P(

rn−ln⋃
j=1

{Zj ∈ bnU})
)kn| → 0 (4.7)

and
P(
⋃rn−ln
j=1 {Zj ∈ bnU})
rnP(Z1 ∈ bnU)

→ 1. (4.8)

Since knrnP(A1) → tΠ(U), conditions (4.7) and (4.8) imply (4.6).
To prove (4.7) we use the standard big-little block technique. Write Aj = {Zj ∈ bnU},

j ≥ 1, and observe that

|P(
[nt]⋂
j=1

Acj)− P(
knrn⋂
j=1

Acj)| ≤ rnP(A1).

14



Let us divide the integers 1, . . . , knrn, into blocks of the form

Ij = {(j − 1)rn + 1, . . . , jrn − ln}, I∗j = {(j − 1)rn − ln + 1, . . . , jrn}, j = 1, . . . , kn.

We have

|P(
knrn⋂
j=1

Acj)− P(
kn⋂
j=1

⋂
i∈Ij

Aci)| ≤ P(
kn⋃
j=1

⋃
i∈I∗j

Aci) ≤ knlnP(A1)

and, by strong mixing,

|P(
kn⋂
j=1

⋂
i∈Ij

Aci)− P(
⋂
i∈I1

Aci)
kn| ≤ (kn − 1)φ0(ln).

Summarizing

|P(
[nt]⋂
j=1

Acj)− P(
⋂
j∈I1

Acj)
kn| ≤ (rn + knln)P(A1) + (kn − 1)φ0(ln)

and, by the choice of the sequences, the right-hand side in the last inequality goes to 0 as
n→ ∞, which completes the proof of (4.7). Now observe that

|P(
rn⋃
j=1

Aj)− P(
rn−ln⋃
j=1

Aj)| ≤ 2lnP(A1).

Hence, it remains to show that
P(
⋃rn
j=1Aj)

rnP(A1)
→ 1.

Since Aj = {Zj ∈ bnU} ⊂ {|Zj| > εbn}, we have

P(
rn⋃
j=2

Aj
∣∣A1) ≤ P( max

2≤j≤rn
|Zj| > εbn

∣∣|Z1| > εbn)
P(|Z1| > εbn)

P(Z1 ∈ bnU)
,

which shows that the left-hand side in the last inequality goes to 0 as n→ ∞. Consequently,

P(
rn⋃
j=3

Aj
∣∣A1) → 0 and P(A2

∣∣A1) → 0. (4.9)

We have

P(
rn⋃
j=1

Aj) =
rn−2∑
j=1

P(Aj ∩ Acj+1 ∩
rn⋂

i=j+2

Aci) + P(Arn−1 ∩ Acrn) + P(Arn)
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and thus, by stationarity,

|rnP(A1 ∩ Ac2)− P(
rn⋃
j=1

Aj)| ≤
rn−2∑
j=1

P(Aj ∩ Acj+1 ∩
rn⋃

i=j+2

Ai) + P(A1 ∩ A2)

≤ rnP(A1 ∩
rn⋃
i=3

Ai) + P(A1 ∩ A2),

since P(A1 ∩ Ac2) = P(Aj ∩ Acj+1) and P(Aj ∩ Acj+1 ∩
⋃rn
i=j+2Ai) = P(A1 ∩ Ac2 ∩

⋃rn+1−j
i=3 Ai)

for each j = 1, . . . , rn − 2, which completes the proof by (4.9).

Theorem 1.1 is a direct consequence of Theorems 4.1, 4.2, and 4.6. For the proof of
Corollary 1.3 we need the following result of Novak [33, Corollary 2.2].

Lemma 4.7. Let {ξj : j ≥ 1} be a strictly stationary and uniformly mixing sequence of
random variables. If the sequence un is such that

0 < lim inf
n→∞

nP(ξ1 > un) ≤ lim sup
n→∞

nP(ξ1 > un) <∞

and, for every j ≥ 2,
lim
n→∞

P(ξj > un
∣∣ξ1 > un) = 0,

then
P( max

1≤j≤n
ξj ≤ un)− exp(−nP(ξ1 > un)) → 0.

Proof of Corollary 1.3. Let ε > 0 and t > 0. Define un = εb[n/t], n ≥ 1. Set λ = Π({x : |x| >
ε}) and observe that nP(|Z1| > εbn) → λ and nP(|Z1| > un) → λt, as n→ ∞. From (1.10)
it follows that the sequences un and {|Zj| : j ≥ 1} satisfy all assumptions of Lemma 4.7.
Hence,

lim
n→∞

P( max
1≤j≤n

|Zj| ≤ un) = e−λt,

and, consequently,
lim
n→∞

P( max
1≤j≤nt

|Zj| ≤ εbn) = e−λt.

From Lemma 4.4 it follows that

lim
n→∞

P( max
2≤j≤nt

|Zj| > εbn
∣∣|Z1| > εbn) = 1− e−λt,

which implies condition (1.8), by Remark 4.3, and concludes the proof.

Lemma 4.8. Suppose that the maximal correlation coefficient ρ(n) = ρ(F1
1 ,F∞

n+1) of the
sequence {Zj : j ≥ 1} satisfies

∑
j ρ(2

j) <∞. If Z1 is regularly varying with index α ∈ [1, 2)
then condition (1.6) holds for all δ > 0.
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Proof. First observe that it suffices to show that for every δ > 0 there exists a constant
C > 0 such that for any ε > 0 and n ≥ 1

P
(
max
1≤k≤n

|
k∑
j=1

(ZjI(|Zj| ≤ εbn)− E(Z1I(|Z1| ≤ εbn))| ≥ δbn
)
≤ Cn

b2n
E(|Z1|2I(|Z1| ≤ εbn)),

since |Z1| is regularly varying with index α < 2 and nb−2
n E(|Z1|2I(|Z1| ≤ εbn)) → α

2−αε
2−α,

by Karamta’s theorem. When d = 1 then this type of bound follows from the L2-maximal
inequality from [46]. We now outline how to get a similar bound in the multivariate case.

Write Zj(a) = ZjI(|Zj| ≤ a) − E(ZjI(|Zj| ≤ a)) for a > 0, j ≥ 1. For every a and
j the random vector Zj(a) has zero mean and is bounded. The proof of the L2-maximal
inequality for stationary sequences of random variables as given in [36, pp. 544-555] still
works for random vectors and we can deduce the following

E( max
1≤k≤n

|Sk|2) ≤ 2n
(
2‖Z1(a)‖2 + 4

[log2 n]∑
j=0

2−j/2‖E(S2j |Z1(a))‖2
)2

,

where Sk =
∑k+1

j=2 Zj(a) for k ≥ 1 and ‖Y ‖2 =
√

E〈Y, Y 〉. By Chebyshev’s inequality, it
remains to show that there exists a constant C1 such that for any a > 0

∞∑
j=0

2−j/2‖E(S2j |Z1(a))‖2 ≤ C1‖Z1(a)‖2,

since ‖Z1(a)‖22 ≤ 2E(|Z1|2I(|Z1| ≤ a)). We have

‖E(S2n|Z1(a))‖2 ≤ ‖E(Sn|Z1(a))‖2 + ‖E(S2n − Sn|Z1(a))‖2, n ≥ 1

and, by using [9, Theorem 4.2],

‖E(S2n − Sn|Z1(a))‖22 = E〈S2n − Sn,E(S2n − Sn|Z1(a))〉
≤ ρ(n)‖S2n − Sn‖2‖E(S2n − Sn|Z1(a))‖2,

which implies
‖E(S2n − Sn|Z1(a))‖2 ≤ ρ(n)‖S2n − Sn‖2 = ρ(n)‖Sn‖2.

The proof of [35, Lemma 3.4] extends directly to random vectors. Thus, there exits a
constant C2 such that for every a > 0 and n ≥ 1 we have

‖Sn‖2 ≤ C2

√
n‖Z1(a)‖2,

which gives, as in [36, Lemma 1], the following estimate

∞∑
j=0

2−j/2‖E(S2j |Z1(a))‖2 ≤ 4C2‖Z1(a)‖2
∞∑
j=0

ρ(2j),

and completes the proof.
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Remark 4.9. Note that since the sequence ρ(n), n ≥ 1, is nonincreasing we have

∞∑
j=0

ρ(2j) <∞ if and only if
∞∑
n=1

ρ(n)

n
<∞.

Corollary 1.4 follows from Theorems 1.1, 3.1, Lemma 4.8, and [19, Theorem 1] or [27,
Theorem 1.1].

5. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Since the Lévy process has no fixed points of discontinuity, it follows

that Xn
d−→ X in D([0,∞),Rd) if and only if Xn

d−→ X in D([0, T ],Rd) for any T > 0.
First assume that (3.4) and (3.5) hold. For the proof of (3.3) we adapt the arguments

of [15, Section 4] (see also [40, Section 7.2]). Let us define

X(1)
ε (t) =

∫
[0,t]×{x:|x|>ε}

xN(ds, dx)

for ε > 0 and for every ε ∈ [0, 1)

X(2)
ε (t) =

∫
[0,t]×{x:ε<|x|≤1}

x
(
N(ds, dx)− dsΠ(dx)

)
, t ≥ 0.

By the Lévy-Itô integral representation, we can rewrite X almost surely as

X(t) = X
(1)
1 (t) + lim

ε↓0
X(2)
ε (t). (5.1)

The terms in (5.1) are independent and the convergence in the last term is a.s. and uniform
in t on any bounded interval. Hence, we obtain

X
(1)
1 +X(2)

ε
d−→ X in D([0,∞),Rd), as ε→ 0. (5.2)

From (3.4) and the continuous mapping theorem it follows that

X(1)
n,ε

d−→ X(1)
ε in D([0,∞),Rd), as n→ ∞,

for all ε ∈ (0, 1) such that Π({x : |x| = ε}) = 0, where

X(1)
n,ε(t) :=

∑
j≤nt

Xn,jI(|Xn,j| > ε), t ≥ 0,

since the mapping R0,ε : Mp((0,∞)× Rd

0) → D([0,∞),Rd) defined by

R0,ε(m)(t) =

∫
[0,t]×{x:|x|>ε}

xm(ds, dx), m ∈Mp((0,∞)× Rd

0),
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is a.s. continuous with respect to the distribution of the Poisson point process N for all such
ε ∈ (0, 1) (see e.g. [38, p.84] or [40, Section 7.2]). Hence, for

Xn,ε(t) = X(1)
n,ε(t)− t

∫
{x:ε<|x|≤1}

xΠ(dx), t ≥ 0,

we obtain Xn,ε
d−→ X

(1)
1 + X

(2)
ε in D([0,∞),Rd). The function ε 7→ Π({x : |x| > ε}) is

monotonic. Therefore, we may chose a sequence εk ∈ (0, 1) such that Π({x : |x| = εk}) = 0
and εk ↓ 0 From (5.2) and the converging together theorem [6, Theorem 4.2], it suffices to
show that, for any δ > 0,

lim
k→∞

lim sup
n→∞

P
(
dT (Xn, Xn,εk) ≥ δ

)
= 0.

This is a consequence of (3.5), since

Xn(t)−Xn,ε(t) =
∑
j≤nt

Xn,jI(|Xn,j| ≤ ε)− tcn + t

∫
{x:ε<|x|≤1}

xΠ(dx)

and the Skorohod metric dT on D([0, T ],Rd) is bounded above by the uniform metric on
D([0, T ],Rd).

Now assume that (3.3) holds. To prove (3.4) it suffices to show that for every f ∈
C+
K([0,∞)× Rd

0) we have
E(e−Nn(f)) → E(e−N(f)).

Let U(X) = {r > 0 : P(|∆X(t)| = r for some t > 0) > 0}. The set U(X) is at most
countable [22, Lemma VI.3.12]. Let ε 6∈ U(X) and ET,ε = [0, T ] × {x : |x| > ε} for T > 0.
Define the mapping R1,ε : D([0,∞),Rd) →Mp(ET,ε) by

R1,εψ =
∑

{t≤T :|∆ψ(t)|>ε}

ε(t,∆ψ(t)).

Since for every ψ ∈ D([0,∞),Rd) the set {t ≤ T : |∆ψ(t)| > ε} is finite, the mapping R1,ε

is well defined. Moreover, R1,ε is continuous at all ψ such that ε 6∈ {r > 0 : |∆ψ(t)| =
r for some t > 0} (see e.g. [22, Section 6.2]). Hence, the mapping R1,ε is almost surely
continuous with respect to the distribution of X. From the continuous mapping theorem it
follows that

R1,εXn
d−→ R1,εX in Mp(ET,ε).

Thus
E(e−R1,εXn(f)) → E(e−R1,εX(f)) for all f ∈ C+

K(ET,ε).

Observe that we have ∆Xn(t) 6= 0 if and only if t = j/n for some j. Since for every

f ∈ C+
K([0,∞) × Rd

0) we can find T > 0 and ε > 0 such that the support of f is contained
in ET,ε, we obtain

E(e−Nn(f)) = E(e−R1,εXn(f)) → E(e−R1,εX(f)) = E(e−N(f)),
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by the definition of Nn in (3.4) and that of N in (3.2), which completes the proof of (3.4).
To prove (3.5), we first show that

Xn −
∑
s≤·

∆Xn(s)I(|∆Xn(s)| > ε)
d−→ X −

∑
s≤·

∆X(s)I(|∆X(s)| > ε) in D([0,∞),Rd)

for all ε > 0 such that Π({x : |x| = ε}) = 0. Define the mapping R2,ε : D([0,∞),Rd) →
D([0,∞),Rd) by

R2,εψ(t) = ψ(t)−
∑
s≤t

∆ψ(s)I(|∆ψ(s)| > ε), t ≥ 0.

By [22, Proposition VI.2.7], R2,ε is continuous at ψ if ε 6∈ {r : |∆ψ(t)| = r for some t > 0}.
Observe that {ε > 0: Π({x : |x| = ε}) = 0} ⊆ R+ \ U(X), thus the claim follows from the
continuous mapping theorem. For ε < 1 and ψ ∈ D([0,∞),Rd) define

Rεψ(t) := R2,εψ(t) + t

∫
{x : ε<|x|≤1}

xΠ(dx).

We have

RεXn(t) =
∑
j≤nt

Xn,jI(|Xn,j| ≤ ε)− t(cn −
∫
{x : ε<|x|≤1}

xΠ(dx))

and
RεX(t) = X(t)−X

(1)
1 (t)−X(2)

ε (t), t ≥ 0.

The set Fδ = {ψ ∈ D([0,∞),Rd) : sup0≤t≤T |ψ(t)| ≥ δ} is closed in D([0,∞),Rd). Since

RεXn
d−→ RεX, we obtain

lim sup
n→∞

P(RεXn ∈ Fδ) ≤ P(RεX ∈ Fδ),

by Portmanteau’s theorem. From (5.1) it follows that

lim
ε→0

P(RεX ∈ Fδ) = 0

which completes the proof of (3.5).

Proof of Theorem 3.2. Let ε ∈ (0, 1) be such that Π({x : |x| = ε}) = 0 and let fε(x) =
xI(|x| > ε). Since Π(1∧|fε|) <∞, the random vector N ′(fε) has the characteristic function
of the form (see e.g. [26, Lemma 12.2])

E(ei〈u,N ′(fε)〉) = exp(

∫
(ei〈u,x〉 − 1)I(|x| > ε)Π(dx)).

From (3.6) and the continuous mapping theorem it follows that

N ′
n(fε)

d−→ N ′(fε) in Rd.
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With the notation as in the proof of Theorem 3.1, observe that X
(1)
1 +X

(2)
ε is a Lévy process

such that

E(ei〈u,X
(1)
1 (1)+X

(2)
ε (1)〉) = exp

(∫ (
ei〈u,x〉 − 1− i〈u, x〉I(ε < |x| ≤ 1)

)
Π(dx)

)
and, by (5.2),

X
(1)
1 (1) +X(2)

ε (1)
d−→ X(1) in Rd.

Since N ′(fε)−
∫
{x:ε<|x|≤1} xΠ(dx) has the same distribution as X

(1)
1 (1) +X

(2)
ε (1), the result

follows from (3.7) and [6, Theorem 4.2].
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[16] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events, Applications of Mathematics
(New York), vol. 33, Springer-Verlag, Berlin, 1997.

[17] N. Haydn, Y. Lacroix, S. Vaienti, Hitting and return times in ergodic dynamical systems, Ann. Probab.
33 (2005) 2043–2050.

[18] T. Hsing, On the characterization of certain point processes, Stochastic Process. Appl. 26 (1987) 297–
316.

[19] W. N. Hudson, H. G. Tucker, J. A. Veeh, Limit distributions of sums of m-dependent Bernoulli random
variables, Probab. Theory Related Fields 82 (1989) 9–17.

[20] I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Verojatnost. i Primenen. 7 (1962)
361–392.

[21] M. Iosifescu, C. Kraaikamp, Metrical theory of continued fractions, Mathematics and its Applications,
vol. 547, Kluwer Academic Publishers, Dordrecht, 2002.

[22] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, 2nd ed., Springer-Verlag,
Berlin, 2003.

[23] A. Jakubowski, M. Kobus, α-stable limit theorems for sums of dependent random vectors, J. Multi-
variate Anal. 29 (1989) 219–251.

[24] O. Kallenberg, Random measures, Akademie-Verlag, Berlin, 1975.
[25] O. Kallenberg, Improved criteria for distributional convergence of point processes, Stochastic Process.

Appl. 64 (1996) 93–102.
[26] O. Kallenberg, Foundations of modern probability, Probability and its Applications (New York), 2nd

ed., Springer-Verlag, New York, 2002.
[27] M. Kobus, Generalized Poisson distributions as limits of sums for arrays of dependent random vectors,

J. Multivariate Anal. 52 (1995) 199–244.
[28] E. G. Kounias, T.-S. Weng, An inequality and almost sure convergence, Ann. Math. Statist. 40 (1969)

1091–1093.
[29] M. R. Leadbetter, H. Rootzén, Extremal theory for stochastic processes, Ann. Probab. 16 (1988) 431–

478.
[30] I. Melbourne, M. Nicol, A vector-valued almost sure invariance principle for hyperbolic dynamical

systems, Ann. Probab. 37 (2009) 478–505.
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