Jerzy Mioduszewski
Everywhere oscillating functions

This article is divided into two parts. In the first one a well known lemma
is stated and proved. In the second one an application is given to obtaining
functions from the title of the article.

1. The two climbers.
The lemma in its original form concerns two continuous functions from the closed
interval onto itself having no interval of constancy. Let f and ¢ be such two
functions transforming onto itself the unit interval [0, 1]. Consider for convenience
only the case when these functions transform 0 into 0 and 1 into 1. In 1952 T.
Homma ! proved that there exist functions a and b satisfying the mentioned above
conditions at ends and such that

(1) f(a(t)) = g(b(t)) for each t.

This lemma can be stated in the following anecdotical form.

There are two climbers starting from the places on the level 0 and climbing,
one along the slope f(z) and the second along the slope g(y) to the top on the
level 1 - see the fig. 1. Can they choose their paths in such a way that at each
time ¢ they would be on the same level?

Fig. 1. The two climbers

The assumption that there are no intervals of constancy cannot be removed,
what can be seen when the function f is constant on an interval and the function
g has on this interval infinitely many proper minima and maxima oscillating

IT. Homma, A theorem on continuous functions, Kodai Mathematical Seminar Reports 1
(1952), 13 - 16.



around the value of constancy of f. This cannot be happen if the functions are
piecewise linear.

The lemma is helpful in solving many interesting topological problems - let us
mention K. Zarankiewicz * with his proof of a theorem of Dyson asserting that a
continuous function defined on the sphere assumes the same value at the vertices
of a square inscribed into a great circle 2.

The essence of the lemma - together with possible applications - lies in its
discrete arithmetical version which will be stated and proved below. This version
has obvious translation to the case of functions which are piecewise linear.

2. Arithmetically continuous functions.
We shall consider functions A between initial segments k& = [1,...,k] and | =
[1,...,1] of the set of natural numbers * which are continuous in the following
meaning:

(2) if |r—s|<1, then [h(r)—h(s)|<1.

Call such functions arithmetically continuous. Arithmetically continuous func-
tions transform neighbour numbers into neighbour ones; equality A(r) = h(s) is
not excluded if r and s differ by 1. For convenience - and what suffices for the pur-
poses of this article - we shall consider only the case of functions which transform
1 into 1 and % into [.

3. Uniformization Lemma.
Let f:n — m and g : n — m be arithmetically continuous functions satisfying
the described above conditions at ends. There exist an initial segment p and
arithmetically continuous functions a : p — n and b : p — n satisfying the
mentioned additional conditions such that

(3) f(a(t)) = g(b(t) for all t from the segment p.

Proof. Letus consider the lattice n x n consisting of (ordered) pairs (z,y)
of natural numbers x and y. We can imagine the lattice as a chessboard n x n;
see the fig. 2. Label the fields (z,y) black, if f(z) = g(y). Label the remaining
fields white. According to the asumptions concerning the values of f and ¢ at

K. Zarankiewicz, Un théoréme sur luniformisation des fonctions continues et son appli-
cation a la démonstration du théoréme de F. J. Dyson sur les transformations de la surface
sphérique, Bull. Acad. Polon. Sci. 3 (1954), 117 - 120.

3According to the knowledge of the author, the theorem on climbers was discovered by
Zarankiewicz independently of other authors on the way of the proof of Dyson’s theorem.

4The same symbol is used for the initial segment of the set of natural numbers and for the
number of elements in it.



ends, the fields (1,1) and (n,n) are black. The difference f(z) — g(y) is positive
or zero for the pairs (z,y) with y = 0 and for the pairs (z,y) with z = n, i. e.
for the fields lying on bottom side and on the right side of the board. From the
same reasons, this difference is negative or zero on the left and on the top sides.

]
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Fig. 2. The Chessboard Theorem

Consider the rock situated on a white field on the bottom or right sides of
the board. Such a field exists and the difference f(z) — g(y) for it is negative.
There is no path for the rock through white fields to a place situated on the top
or on the left side of the board. In fact, at each step the coordinates change at
most by 1, moreover - as it is the rock step - only one coordinate changes. So,
the difference between values of f and g change - see (2) - at most by 1. Because
at the end of the path - which lies on the top or on the left side of the board -
the difference should be negative, the rock must be pass by the place where this
difference is zero, thus it must be at this moment on the black place.

The non-existence of a path for the rock through white fields from the bottom-
right sides to the top-left ones implies the existence - accoording the known Chess
Board Theorem - a path for king trough the black fields from (0,0) to (n,n).

Let (a(t),b(t)) be an arithmetically continuous pametrization of this path.
The existence of such parametrization follows from the fact that if the king
changes the field for an adjacent one, the values of a and those of b, change
at most by 1. We may assume that the king starts at (1) = (1) = 1 and that
he finishes the path at the end p of the segment with a(p) = n and b(p) = n.
So, we obtain a pair of arithmetically continuous functions a and b satisfying
the mentioned above conditions at ends, for which (1) holds, i. e. there is
f(a(t)) = g(b(t)) for all numbers ¢ in the segment p.

Clearly, we have m < n < p in the above theorem.

4. Remarks. Our proof depends on the Chessboard Theorem which
was told as well known. There are many sources of this theorem. The author
knows it from Hugo Steinhaus’ Mathematical Snapshot, where it was mentioned
without proof and was thought there as a tool in the proof of the Brouwer’s Fixed
Point Theorem for the plane square. According oral informations of Professor
Steinhaus the theorem was discovered in thirties by Wodzimierz Stoek. A proof



of this theorem can be found in the book of Shashkin (1989) °. Another proof
was given by W. Suréwka (1993) ©.

Note, that the chessboard in this theorem is not necessarily square.

Another story about the Chessboard Theorem is given by Steven Gail (1979) 7,
who attributed this theorem to Danish physics and mathematicians from the
period of the Il World War, who prefered the hexagonal chessboard instead of
usual one.

5 A generalization.

The uniformization theorem easily generalizes to arbitrary finite collections of
arithmetically continuous functions.

Let S be a finite collection of arithmetically continuous functions from a
segment n onto a segment m satisfying mentioned before additional conditions
concerning the values at ends. Clearly, m < n. Under these assumptions there
exist a number p and a collection of arithmetically continuous functions a; : p —
n, such that the values f(a;(¢)) for any given number ¢ from the segment p are
the same for all f from .

To prove this, it suffices uniformize firstly arbitrary two function from S, and
then uniformize the result with arbitrary third function from S, and continue this
procedure step by step. After finite numbers of steps we get the desired result.

Example 1. Let S be the set of all arithmetically continuous functions
(additional conditions as above) from the segment n onto the segment m. Each
function h : p — n, obtained as a result fa; of uniformization of all functions f
from S call a majorant of arithmetically continuous functions for the pair (m,n)
of segments. Obviously, if & is a majorant, then each composition ha, where a
belongs to the class of arithmetical functions considered here, is still a majorant.

4

Example 2. Consider the set of arithmetically continuous functions
of a segment n onto the segment m (the same as in the preceeding example)
consisting of functions f; ; defined for each pair

(4) (3,7), where [i—j|>4,

of numbers from the segment m as follows. The function f;; runs from the
value 1 at 1 monotonically till to a place where it assumes the value 7, and then
monotonically to the value m at n from the place where it assumes the value

5Ju. A. Shashkin, Nepodvishnyje toczki, Popularnyje lekcji po matematikie, vyp. 60, Nauka,
Moskwa 1989.

SW. Suréwka, A discrete form of Jordan curve theorem, Annales Mathematicae Silesianae 7
(1993), 57 - 61.

"Steven Gale, The Game of Hex and the Brouwer Fized Point Theorem, The American
Mathematical Monthly 86 (1979), 818 - 827.



J, having on the segment between mentioned above places an oscillation of the
shape of letter NV as on fig. 3, the amplitude of which is |¢ — j|.

L

Fig. 3. An N-function

Call these functions N-functions. The number of N-functions is equal to the
number of pairs (7, 7) on the segment m which satisfy the condition (4). Call each
function g obtained as a result fa; of uniformization of all N-functions from n
onto m an N-majorant attributed to the pair (m,n) of segments.

The role of the number 4 (other possible are 5, 6 etc.) in the condition (4)
will be clear from applications.

6. Majorants as everywhere oscillating functions.
If b : p — m is a majorant of the set S of all arithmetically continuous functions
for the pair (m,n) of segments then if f : n — m is an arbitrary function
belonging to S, then there exists an arithmetically continuous function a : p — n
such that A = fa. In other words, the pair of functions A and f can be completed
to a commutative diagram
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In fact, the function ay from the section completes the diagram.

The functions g which are N-majorants - see the Example 2 - have the same
property but only with respect to N-functions. Call N-like the run of an arith-
metically continuous function r from a subsegment U of the set of natural numbers
onto a subsegment V' if the domain U can be divided into three adjacent segments
S', 5" and S™ such that r|S” transforms S” onto the initial subsegment of V from
which its end element is removed, r|S” transforms S” onto the subsegment of S
from which both its end elements are removed, and r|S” transforms S” onto the
subsegment of V' from which the first element is removed - see fig. 5; call N-like
also the runs in opposite direction, i. e. from the end to the first elements of V.



Fig. 4. An N-like oscillation

The N-functions f;; have N-like runs on the preimages of segments (i, 7).
The run remains still N-like if we reparametrize the domain by an arbitrary
arithmetically continuous function .

Let g : p =+ m be an arithmetically continuous function. Call g everywhere
oscillating if for each subsegment (7, 7) of n such that |i — j| > 4 it has an N-like
run on each maximal subsegment contained in the preimage of (7,7) which is
transformed onto (¢, 7) under g.

The property of being everywhere oscillating may be expressed colloquially as
follows: if the value on the level [ is reached by the function, then before reaching
the level [ + k, where k > 4, the function should run down to the level [ + 1, see
fig. 5.
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Fig. 5. An example of everywhere oscillating function for m = 5. If we repeat
the run of this function from the opposite side - from the level 6 to the level
2 - and complete the run by putting into the middle segment the evereywhere
oscillatin run for m = 4, we get evereywhere oscillating function for m = 6.

7. Theorem. The N-majorants are everywhere oscillating.

Proof Leth:p— m bean N-majorant. Let (7,7) be a subsegment of
the segment m with |z — j| > 4. Let U be a maximal subsegment of p contained
in the preimage 2~'((i, 7)) of the segment (7, ). The function A assumes at ends
of U values i and j. For convenience, we assume that i < 7, that a < b are the
ends of U and that A(a) =4 and h(b) = 7.

Let f;; be an N-function associated with the subsegment (7, j) of m. Repre-
sent the majorant / - according to the property (2) of majorants - as a composition
fija, where a is a function from p onto n.



To get the preimage h~'((4, 7)) of (i, j) under h, look firstly for the preimage
of (z,7) under the N- function f;; . This preimage is equal to the subsegment
U of n outside of which the function f;; assumes values greater than j or less
than 7 - see the description of N-functions in section 4 . In order to get maximal
subsegments of p which are is transformed under A onto (i, 7), we should take
maximal subsegments V' of p which are transformed onto U under the function
a. The run of the function & on such subsegments V is N-like, since A restricted
to V is formed from a# N-like run by a reparametrization of its domain V.

8 Further remarks.
Everywhere oscillating functions - called very crooked - served as a tool in the
description of hereditarily indecomposable continua. They were independently
discovered by E. E. Moise and R. H. Bing in 1948, and appeared implicitly in
paper by B. Knaster, 1922, where the first hereditarily indecomposable continuum
was constructed.

Bing’s construction of everywhere oscillating functions ® was illustrated on fig.
6. The everywhere oscillating functions constructed by this rule have minimal
domain n for a given range m. Denote the number of elemnts in its domain by
d,. We have d3 = 3, dy = 6 and the recurrent formula d,,;; = 2d,, + dp_;. We
get the exponential growth with the ratio 1 4 /2 for the sequence d,,, and the
exact formula for d,, can be found °.

Let m be given. According to the rule presented in this article '°, in order
to get everywhere oscillating function with the range m, it suffices to take n
three times greater than m. We will have then in the set of all functions from
n to m all the N-functions for the range m, thus the majorant for the set of
all arithmetically continuous functions from n to m is everywhere oscillating, by
Theorem from the preceding section. For the obtained on this way function the
equation h = fa from section 6 has a solution a for all arithmetically functions
from n to m. Everywhere oscillating functions have - in general - this property
only with respect to N-functions. There arises the question how large are the
domains p of majorants A for the set of functions from n to m when m and n are
arbitrarily given.

8R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948),
729 - 742.

9See A. 1. Markushewitch, Vosvratnyje posledovatelnosti, Popularnyje lekcji po matematikie,
vyp. 1, Moskva - Leningrad 1951.

0In fact, from the author’s paper A functional conception of snake-like continua, Fund.

Math. 51 (1962), 179 - 189.



