c-Removable sets: Old and new results

Martin Rmoutil (joint with Dušan Pokorný)

Brenna 27/09/2018 Letnia (?) Szkoła Instytutu Matematyki Uniwersytetu Śląskiego w Katowicach

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and locally convex on $\mathbb{R}^n \setminus F$. Then f is convex.

F did not spoil the convexity of f! We say F is <mark>c-removabl</mark>e.

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and locally convex on $\mathbb{R}^n \setminus F$ Then f is convex.

F did not spoil the convexity of f! We say F is c-removable.

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex.

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and

 $f: \mathbb{R}^n \to \mathbb{R}$ be continuous and locally convex on $\mathbb{R}^n \setminus F$. Then f is convex.

F did not spoil the convexity of f! We say F is <mark>c-removabl</mark>e.

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def.}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex.

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and

$$f: \mathbb{R}^n \to \mathbb{R}$$
 be continuous and locally convex on $\mathbb{R}^n \setminus F$.

Then f is convex.

F did not spoil the convexity of *f* ! We say *F* is *c*-removable.

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def.}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex.

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and

$$f: \mathbb{R}^n \to \mathbb{R}$$
 be continuous and locally convex on $\mathbb{R}^n \setminus F$.

Then f is convex.

F did not spoil the convexity of f! We say F is c-removable.

Setting: $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ continuous. **Question:** What closed sets in \mathbb{R}^n are negligible in terms of convexity of f? ("Removable for convexity".)

Definition (J. Tabor & J. Tabor (2009))

They call $A \subset \mathbb{R}^n$ intervally thin (IT) if it is "essentially transparent" (in all directions). (Fig. 1—blackboard)

Recall: A function f is locally convex on an open set $U \subseteq \mathbb{R}^n$ $\stackrel{\text{def.}}{\longleftrightarrow}$ each point of U has a convex nbhd in U where f is convex.

Theorem (J. Tabor & J. Tabor; slightly simplified)

Let $F \subseteq \mathbb{R}^n$ be closed IT, and

$$f: \mathbb{R}^n \to \mathbb{R}$$
 be continuous and locally convex on $\mathbb{R}^n \setminus F$.

Then f is convex.

F did not spoil the convexity of f! We say F is c-removable.

```
A closed set F \subseteq \mathbb{R}^n is c-removable \stackrel{\text{def.}}{\longleftrightarrow} every f cts. on \mathbb{R}^d and loc. convex on \mathbb{R}^d \setminus F is convex.
```

Recall: **Definition (J.T. & J.T.):** IT means "essentially transparent". **Theorem (J.T. & J.T.):** IT \implies *c*-removable.

Answer (2013; D.P. & M.R.)

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

Recall: **Definition (J.T. & J.T.):** IT means "essentially transparent". **Theorem (J.T. & J.T.):** IT \implies *c*-removable.

Problem (2009; J.T. & J.T.)

Answer (2013; D.P. & M.R.)

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

Recall:

Definition (J.T. & J.T.): IT means "essentially transparent". **Theorem (J.T. & J.T.):** IT \implies *c*-removable.

Answer (2013; D.P. & M.R.)

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

Recall:

Definition (J.T. & J.T.): IT means "essentially transparent". **Theorem (J.T. & J.T.):** IT \implies *c*-removable.

Problem (2009; J.T. & J.T.)

$$\stackrel{?}{\longleftrightarrow}$$

Answer (2013; D.P. & M.R.)

- (i) $\mathcal{H}^{n-1}(A) = 0 \Longrightarrow A$ is IT ($\Longrightarrow c$ -removable).
- U ⊂ ℝⁿ open and connected, A ⊂ U closed IT ⇒ U \ A connected.
- iii) Closed IT sets form an ideal of sets.

Theorem (2013; D.P. & M.R.)

Let $K \subseteq \mathbb{R}^n$ be compact and IT in *n* LI directions. Assume that for a dense set of line segments $L \subseteq \mathbb{R}^n$, the intersection $K \cap L$ is at most countable. Then K is c-removable.

Corollary

- (i) $\mathcal{H}^{n-1}(A) = 0 \Longrightarrow A$ is IT ($\Longrightarrow c$ -removable).
- (ii) $U \subset \mathbb{R}^n$ open and connected, $A \subset U$ closed IT $\Longrightarrow U \setminus A$ connected.
 - iii) Closed IT sets form an ideal of sets.

Theorem (2013; D.P. & M.R.)

Let $K \subseteq \mathbb{R}^n$ be compact and IT in *n* LI directions. Assume that for a dense set of line segments $L \subseteq \mathbb{R}^n$, the intersection $K \cap L$ is at most countable. Then K is c-removable.

Corollary

- (i) $\mathcal{H}^{n-1}(A) = 0 \Longrightarrow A$ is IT ($\Longrightarrow c$ -removable).
- (ii) $U \subset \mathbb{R}^n$ open and connected, $A \subset U$ closed IT $\Longrightarrow U \setminus A$ connected.
- (iii) Closed IT sets form an ideal of sets.

Theorem (2013; D.P. & M.R.)

Let $K \subseteq \mathbb{R}^n$ be compact and IT in *n* LI directions. Assume that for a dense set of line segments $L \subseteq \mathbb{R}^n$, the intersection $K \cap L$ is at most countable. Then K is c-removable.

Corollary

- (i) $\mathcal{H}^{n-1}(A) = 0 \Longrightarrow A$ is IT ($\Longrightarrow c$ -removable).
- (ii) $U \subset \mathbb{R}^n$ open and connected, $A \subset U$ closed IT $\Longrightarrow U \setminus A$ connected.
- (iii) Closed IT sets form an ideal of sets.

Theorem (2013; D.P. & M.R.)

Let $K \subseteq \mathbb{R}^n$ be compact and IT in *n* LI directions. Assume that for a dense set of line segments $L \subseteq \mathbb{R}^n$, the intersection $K \cap L$ is at most countable. Then K is c-removable.

Corollary

- (i) $\mathcal{H}^{n-1}(A) = 0 \Longrightarrow A$ is IT ($\Longrightarrow c$ -removable).
- (ii) $U \subset \mathbb{R}^n$ open and connected, $A \subset U$ closed IT $\Longrightarrow U \setminus A$ connected.
- (iii) Closed IT sets form an ideal of sets.

Theorem (2013; D.P. & M.R.)

Let $K \subseteq \mathbb{R}^n$ be compact and IT in *n* LI directions. Assume that for a dense set of line segments $L \subseteq \mathbb{R}^n$, the intersection $K \cap L$ is at most countable. Then K is c-removable.

Corollary

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

Examples (summary):

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).

(vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

A closed set $F \subseteq \mathbb{R}^n$ is *c*-removable $\stackrel{\text{def.}}{\iff}$ every f cts. on \mathbb{R}^d and loc. convex on $\mathbb{R}^d \setminus F$ is convex.

- (i) A line segment in \mathbb{R}^2 is not *c*-removable. Nakreslit! (Fig. 3)
- (ii) A DC-curve in \mathbb{R}^2 is not *c*-r. $(f: \mathbb{R} \to \mathbb{R} \text{ DC} \Leftrightarrow f \text{ AC} \text{ and } f' \text{ BV}.)$
- (iii) Closed IT sets are *c*-removable. $((J.T.)^2)$
- (iv) The Holey Devil's Staircase in \mathbb{R}^2 is *c*-removable (but not IT). [DP & MR, 2013]
- (v) The Cantor's dust (C^2 where C is the classical Cantor Ternary Set)?? We don't know (and are quite sad about it).
- (vi) $\exists K \subset \mathbb{R}$ compact, 0-dim s.t. $K^2 \in \mathbb{R}^2$ is not *c*-removable. [DP & MR, 2013]

Let $M \subset \mathbb{R}^n$ be a set which does not contain any continuum of topological dimension (n-1). Then M is *c*-removable.

Theorem (Pokorný, 2012)

There is a 0-dim compact set in \mathbb{R}^2 which is not c-removable.

Corollary

Pasqualini made a mistake. (Or we did.)

Note that the last statement also follows from the fact that Pasqualini's proof contains a mistake which cannot be repaired. In addition, it is a consequence of example (vi) $(\exists K \subseteq \mathbb{R} \text{ 0-dim cpt: } K^2 \text{ non-}c\text{-removable}$

Let $M \subset \mathbb{R}^n$ be a set which does not contain any continuum of topological dimension (n-1). Then M is *c*-removable.

Theorem (Pokorný, 2012)

There is a 0-dim compact set in \mathbb{R}^2 which is not c-removable.

Corollary

Pasqualini made a mistake. (Or we did.)

Note that the last statement also follows from the fact that Pasqualini's proof contains a mistake which cannot be repaired. In addition, it is a consequence of example (vi) $(\exists K \subseteq \mathbb{R} \text{ 0-dim cpt: } K^2 \text{ non-}c\text{-removable}$

Let $M \subset \mathbb{R}^n$ be a set which does not contain any continuum of topological dimension (n-1). Then M is *c*-removable.

Theorem (Pokorný, 2012)

There is a 0-dim compact set in \mathbb{R}^2 which is not c-removable.

Corollary

Pasqualini made a mistake. (Or we did.)

Note that the last statement also follows from the fact that Pasqualini's proof contains a mistake which cannot be repaired. In addition, it is a consequence of example (vi) $(\exists K \subseteq \mathbb{R} \text{ 0-dim cpt: } K^2 \text{ non-}c\text{-removable})$

Let $M \subset \mathbb{R}^n$ be a set which does not contain any continuum of topological dimension (n-1). Then M is *c*-removable.

Theorem (Pokorný, 2012)

There is a 0-dim compact set in \mathbb{R}^2 which is not c-removable.

Corollary

Pasqualini made a mistake. (Or we did.)

Note that the last statement also follows from the fact that Pasqualini's proof contains a mistake which cannot be repaired. In addition, it is a consequence of example (vi) $(\exists K \subseteq \mathbb{R} \text{ 0-dim cpt: } K^2 \text{ non-}c\text{-removable}).$

Is there a Lebesgue null 0-dim compact set $K \subseteq \mathbb{R}^2$ which is NOT *c*-removable? (All the examples above have positive measure.)

Problem 2

Is there a nontrivial example of a *c*-removable continuum in \mathbb{R}^2 ?

We now basically know the answers.

Problem 2a

Is it the Koch Snowflake?

Is there a Lebesgue null 0-dim compact set $K \subseteq \mathbb{R}^2$ which is NOT *c*-removable? (All the examples above have positive measure.)

Problem 2

Is there a nontrivial example of a *c*-removable continuum in \mathbb{R}^2 ?

We now basically know the answers.

Problem 2a

Is it the Koch Snowflake?

Is there a Lebesgue null 0-dim compact set $K \subseteq \mathbb{R}^2$ which is NOT *c*-removable? (All the examples above have positive measure.)

Problem 2

Is there a nontrivial example of a *c*-removable continuum in \mathbb{R}^2 ?

We now basically know the answers.

Problem 2a

Is it the Koch Snowflake?

Is there a Lebesgue null 0-dim compact set $K \subseteq \mathbb{R}^2$ which is NOT *c*-removable? (All the examples above have positive measure.)

Problem 2

Is there a nontrivial example of a *c*-removable continuum in \mathbb{R}^2 ?

We now basically know the answers.

Problem 2a

Is it the Koch Snowflake?

Definition: DC function $\equiv f_1 - f_2$ with f_1, f_2 convex functions.

Theorem (DP & MR, 2018)

Let $f: \mathbb{R}^{n-1} \to \mathbb{R}$ be Lipschitz. Then the graph of f in \mathbb{R}^n is c-removable $\iff f|_V$ is DC for no open $V \subseteq \mathbb{R}^{n-1}$.

Corollary

The graph of any Lipschitz nowhere DC function is a nontrivial example of non c-removable continuum (with the correct dimensions).

Definition: DC function $\equiv f_1 - f_2$ with f_1, f_2 convex functions.

Theorem (DP & MR, 2018)

Let $f : \mathbb{R}^{n-1} \to \mathbb{R}$ be Lipschitz. Then the graph of f in \mathbb{R}^n is c-removable $\iff f|_V$ is DC for no open $V \subseteq \mathbb{R}^{n-1}$.

Corollary

The graph of any Lipschitz nowhere DC function is a nontrivial example of non c-removable continuum (with the correct dimensions).

Definition: DC function $\equiv f_1 - f_2$ with f_1, f_2 convex functions.

Theorem (DP & MR, 2018)

Let $f : \mathbb{R}^{n-1} \to \mathbb{R}$ be Lipschitz. Then the graph of f in \mathbb{R}^n is c-removable $\iff f|_V$ is DC for no open $V \subseteq \mathbb{R}^{n-1}$.

Corollary

The graph of any Lipschitz nowhere DC function is a nontrivial example of non c-removable continuum (with the correct dimensions).

Definition: DC function $\equiv f_1 - f_2$ with f_1, f_2 convex functions.

Theorem (DP & MR, 2018)

Let $f : \mathbb{R}^{n-1} \to \mathbb{R}$ be Lipschitz. Then the graph of f in \mathbb{R}^n is c-removable $\iff f|_V$ is DC for no open $V \subseteq \mathbb{R}^{n-1}$.

Corollary

The graph of any Lipschitz nowhere DC function is a nontrivial example of non c-removable continuum (with the correct dimensions).

Theorem

- Take a non-convex function f : ℝ² → ℝ which is loc. convex on ℝ² \ K (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem

- Take a non-convex function f : ℝ² → ℝ which is loc. convex on ℝ² \ K (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem

- Take a non-convex function f : ℝ² → ℝ which is loc. convex on ℝ² \ K (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem

- Take a non-convex function $f : \mathbb{R}^2 \to \mathbb{R}$ which is loc. convex on $\mathbb{R}^2 \setminus K$ (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem

- Take a non-convex function f : ℝ² → ℝ which is loc. convex on ℝ² \ K (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem

- Take a non-convex function f : ℝ² → ℝ which is loc. convex on ℝ² \ K (for a contradiction).
- Observe that this function has to be convex on all lines in the directions of interval thinness of *K*.
- WLOG f is separately convex and is not convex on the line L given by y = x. Assume also that L happens to have countable intersection with K.
- Lemma: A separately convex function cannot have a concave angle.
- L ∩ K is a countable compact set, so it is scattered. Deduce that f is convex on L.

Theorem (DP & MR, 2018)

Let $f: \mathbb{R}^{n-1} \to \mathbb{R}$ be Lipschitz. Then the graph of f in \mathbb{R}^n is c-removable $\iff f|_V$ is DC for no open $V \subseteq \mathbb{R}^{n-1}$.

Dziękuję za uwagę. Thank you for your attention. Děkuji za pozornost.