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What are groups?



What are groups?
Definition

Let G be a set and · : G × G → G be a binary operation.
Then (G , ·) is a group if and only if

I ∀a, b, c ∈ G : (a · b) · c = a · (b · c),
I ∃e ∈ G ∀a ∈ G : a · e = a, and
I ∀a ∈ G ∃a∗ ∈ G : a · a∗ = e.



Let’s go back in time.
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Évariste Galois (1811 - 1832)

He was interested in permuting the roots
of polynomials

and in sets of such permu-
tations.

Felix Klein(1849 -1925)

He studied symmetries of geometries or ge-
ometrical objects.
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Évariste Galois (1811 - 1832)
He was interested in permuting the
roots of polynomials and in sets of
such permutations.

Felix Klein(1849 -1925)
He studied symmetries of geome-
tries or geometrical objects.

Origin:
https://de.wikipedia.
org/wiki/Felix_Klein

Let M be a set and G be the set of all bijective mappings from M
to M.
Then G forms together with the composition a group .

Nowadays: permutational group theory or geometrical group theory.
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Carl Friedrich Gauß (1777 - 1855)

He investigated special sets of numbers

.

Walther von Dyck (1856 -1934)

He was a student of Felix Klein.

He studied
sets and the way multiplaction is possible.

Foto: Deutsches Museum
Nowadays: arithmetical or combinatorial group theory.
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Both concepts lead to the same mathematical object.

In the rest of the talk, we say that G is a group and denote by 1
the neutral element and by g−1 the inverse element of g , for every
g ∈ G .
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Even more abstract....

Definition

Let G be a group and U be a subset of G . Then U is called a
subgroup of G if and only if

I U 6= ∅ and
I ∀a, b ∈ U : a · b−1 ∈ U.

We denote by L(G ) the set of all subgroups of G .

Task: Understand G via L(G )!
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Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123)

Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123)

Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23)

(13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123)

Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Example S3.

Geometric interpretation

12

3

(23) (13)

(12)

(123) Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉〈(123)〉

S3

Arithmetic interpretation
· id (12) (13) (23) (123) (132)
id id (12) (13) (23) (123) (132)
(12) (12) id (123) (132) (13) (23)
(13) (13) (132) id (123) (23) (12)
(23) (23) (123) (132) id (12) (13)
(123) (123) (23) (12) (13) (132) id
(132) (132) (13) (23) (12) id (123)



Subgroup structure

{id}

〈(12)〉
〈(13)〉

〈(23)〉

〈(123)〉

S3

Let G be a group. Then

I L(G ) forms together with
⊆ an ordered set.

I ∀A,B ∈ L(G ) :
A ∩ B ∈ L(G )

infimum.

I ∀A,B ∈ L(G ) :
〈A,B〉 ∈ L(G )

supremum.

Altogether L(G ) is a lattice.

The picture is called the Hasse Diagram.
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groups G such that L(G ) has that property.
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We say that G is L-free if and only if L(G ) does not contain a
sublattice isomorphic to L.
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Let L be definied via

Then a finite group is L-free if and only if it is cyclic.
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Babyexample

Let G be a finite group and L be defined via

Then G is L-free if and only if G is cyclic from prime power order.

Proof

Let G be L-free and choose x ∈ G of maximal order. Let further
y ∈ G . If y /∈ 〈x〉, then {〈x〉 ∩ 〈y〉, 〈x〉, 〈y〉, 〈x , y〉} ∼= L is a
contradiction. Hence we have y ∈ 〈x〉. This implies that G = 〈x〉 is
cyclic. Furthermore if y , z ∈ G \ {1} have coprime order, then
{{1}, 〈z〉, 〈y〉, 〈z〉, 〈y〉} ∼= L is a contradiction.
Altogether G is cyclic from prime power order.

On the other hand if G is cyclic from prime power order. Then
L(G ) is isomorphic to the lattice of natural divisors of |G |. Hence
L(G ) is a chain. So G is L-free.
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