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History of signal representations

Fourier Transform (localization), 1D and 2D signals
[Fourier, 1822]
Wavelet Transform, basis (localization, scale), 1D and 2D
signals [Haar, 1910]
Curvelet Transform and others, frames (localization, scale,
orientation), only 2D signals [Candes, Donoho, 1999]
Wedgelet<Smoothlet> Transform, dictionaries (localization,
scale, orientation, <smoothness>), only 2D signals
[Donoho, 1999]
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Shannon-Nyquist sampling theorem

The theorem fixes the limit for convertion of analog to
digital signal when one wants to reconstruct the exact
signal ;
Theorem : Suppose the highest frequency component (in
hertz) for a given analog signal is fmax . Then the sampling
rate must be at least 2fmax in order to reconstruct the
signal without loss.
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Sensing sparse signals

Let
y = Ax ,

where x ∈ Rn is an original signal, A is an m × n matrix
and y ∈ Rm. We assume m is much smaller than n. The
matrix A is called the sensing matrix.
Vector x of length n is k -sparse if only k elements are
non-zero (k = ||x ||0), k < n.
Vector x is compressible if only a small number of
elements are significantly non-zero.
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Classical viewpoint

Full signal acquisition, then its compression - large fraction
of coefficients is discarded :
measure all coefficients (pixels), transform them to obtain
the sparse signal, keep k largest coefficients ;
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Fundamental questions

Why go to so much effort to acquire all the data when most
of what we get will be thrown away? [Donoho]
Fundamental question : Can we directly acquire just the
useful part of the signal?
Answer : Yes, we can achive this by random sensing
mechanism.

7 / 24



Preliminaries
Compressed sensing at glance

The proposed algorithm
Conclusions

History
Basic definitions
Motivation

Compressed sensing viewpoint

Simultaneous signal acquisition and compression -
achived by random sensing mechanism :
take m random measurements yi = 〈x ,ai〉, reconstruct the
signal by linear programming.
Important ! : The sparsity of a signal can be exploited to
recover it from far fewer samples than required by the
Shannon-Nyquist sampling theorem.
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Computational problems

There are two main problems in compressed sensing
which have to be addressed :

- How can we construct a proper sensing matrix?
- How can we recover the original signal?

In this work we address the first problem and show the
method of sensing matrix generation. Even though the
matrix is generated in deterministic way, it has properties
typical for random matrices.
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Compressed sensing problem

We deal with the undetermined problem y = Ax .
To have a unique solution we need to add a prior : the
solution has to be sparse.
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Spark of the matrix

The spark of matrix A is the smallest number of linearly
dependent columns.
Spark is used for definition of the existence of the sparsest
solution of the minimization problem

min ||x ||0 subject to y = Ax .

Theorem : If ||x ||0 = k then if k < 1/2 spark{A} the
solution is unique.
However, the computation of spark{A} is the NP-hard
problem.
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Coherence of the matrix

The coherence of matrix A is defined as

µ(A) = max
1≤i<j≤n

|〈ai ,aj〉|
||ai ||2||aj ||2

,

where ai and aj are two columns of A. This is the degree of
linear dependence of columns (e.g. for an orthogonal
matrix coherence equals to 0).
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Coherence versus spark

By definition :

spark{A} = 1 +
1

µ(A)

We are looking for matrices with the smallest cohenence
possible in order to make the matrix A as close as possible
to the unitary matrix.
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Fundamental properties

To recover the original signal some properties must be met.
Null Space Property is a necessary condition, which
guarantees that the algorithm can recover the k -sparse
signal.
NSP does not consider the noisy situation. If the signal is
contaminated, we should consider stronger conditions.
Restricted Isometry Property guarantees that the algorithm
can recover the k -sparse signal even in the noisy situation.
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Restricted Isometry Property

Definition : A matrix A satisfies the RIP of order k if there
exists δk ∈ (0,1) such that

(1− δk )||x ||22 ≤ ||Ax ||22 ≤ (1 + δk )||x ||22

holds for all k -sparse vectors x , where δk is called
k -restricted isometry constant.
The RIP condition provides the basic condition for the
compressed sensing theory. It characterizes matrices
which are nearly orthonormal, at least when operating on
sparse vectors.
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Recovery algorithms

There are many recovery algorithms. They differ in speed
of computation and recovered signal quality.
There is no the best algorithm. Depending on applications
one has to choose the appropriate one.
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Looking for good matrices

Compressed sensing matrices are usually generated in
random way due to their good compression properties.
They must have random properties.
The generated matrix has to satisfy RIP. So, in order to get
a good sensing matrice one may need to perform many
random processes what takes too long time.
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Why not to generate a deterministic matrix?

In the literature a few algorithms of deterministic
generation of pseudorandom matrices were presented.
In this work the deterministic generation of compressed
sensing matrix is presented.
As the experiments show, such obtained matrix has better
properties than the random ones.
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Sensing matrix details

We are interested in generating sensing matrices with
small coherence. The smaller the better.
We generate matrix A of size m × n (with {1, -1} elements)
such that µ(A) = 1/3,

m = 3 · 2s, n = 2 · 3s+1 − 3,

where s is the number of steps in our algorithm.
For example : number of steps = 5, n = 1455, m = 96.
We can remove some columns of A and receive matrix A′.
From the definition of µ we then have µ(A′) ≤ 1/3.
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Matrix generation algorithm

Input : number of steps
Initialize : A = [[−1,1,1], [1,−1,1], [1,1,−1]],
Step : A = [[m0], [m1], ..., [m3k+2]], where [m0], ..., [m3k+2] are
columns of A ; k ∈ N
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Algorithm

nextA := [ ] ; the empty matrix
for i = 0 to k do {

from the three columns [m3i ], [m3i+1], [m3i+2] create
nine new columns of nextA as follows :
[m3i ,m3i ], [m3i+1,m3i+1], [m3i+2,m3i+2],
[m3i ,m3i+1], [m3i+1,m3i+2], [m3i+2,m3i ],
[m3i ,m3i+2], [m3i+1,m3i ], [m3i+2,m3i+1]; }

A := nextA;
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Experimental results

size of the proposed 20 random matrices
matrix matrix minimum average maximum

48× 483 0.33 0.58 0.64 0.70
96× 1455 0.33 0.46 0.50 0.54

192× 4371 0.33 0.36 0.39 0.45
Table : Coherence values of the proposed matrix versus
random matrices.
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Conclusions

For sparse images it is possible to recover them from far
fewer samples than it is required by the Shannon-Nyquist
sampling theorem.
The sensing matrices must have random properties but
can be generated in deterministic way. Such a way is faster
and determined.
The presented results are in the first stage. The image
compression implementation is in progress...
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