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Difference operators

It is well-known that the functional equation

(1) ∆n+1
h ϕ(x) = 0 ,

where ∆p
h stands for the p−th iterate of the difference operator

∆hϕ(x) := ϕ(x+ h)− ϕ(x),

of polynomial functions characterizes the usual polynomials of at
most n−th degree in the class of continuous functions ϕ : R −→ R.
Continuous solutions ϕ : R −→ R of the functional inequality

(2) ∆n+1
h ϕ(x) ­ 0 ,

where x ∈ R, h ∈ (0,∞), are just Cn−1−functions whose derivatives
ϕ(n−1) are convex (see e.g. M. Kuczma [8, Chapter XV]). Therefore,
the solutions to (2) are used to be called n−convex functions. For
n = 1 inequality (2) states that

ϕ

x + y

2

 ¬ ϕ(x) + ϕ(y)
2

, x, y ∈ R,

which is the functional inequality defining Jensen-convex functions.
Motivated by this fact, in what follows, we shall be using the operator

δnyϕ(x) :=
n+1∑
j=0

(−1)n+1−j
n + 1

j

ϕ
(1− j

n + 1
)x +

j

n + 1
y

 ,
2



instead of ∆n+1
h . We have

δnyϕ(x) = ∆n+1
y−x
n+1
ϕ(x) ;

thus ϕ is n−convex (resp. n−concave ) if and only if

(3) x ¬ y =⇒ δnyϕ(x) ­ 0 ,

(resp.

(3′) x ¬ y =⇒ δnyϕ(x) ¬ 0 ).

It is not hard to check that, for odd n’ s, condition (3) is equivalent to
the following inequality

(4) δnyϕ(x) ­ 0 .

An interesting and exhaustive study of the class of delta-convex
mappings (yielding a generalization of functions which are representa-
ble as a difference of two convex functions) has been given by L. Veselý
and L. Zajiček [14]. Their definition of delta-convexity reads as follows:

Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two real normed linear spaces and let
D be a nonempty open and convex subset of X. A map F : D −→ Y

is termed delta-convex provided that there exists a continuous convex
functional f : D −→ R such that f + y∗ ◦F is continuous and convex
for any member y∗ of the space Y ∗ dual to Y with ‖ y∗ ‖= 1. If this
is the case then F is called to be controlled by f or F is a delta-convex
mapping with a control function f.

It turns out that a continuous function F : D −→ Y is a delta-
convex mapping controlled by a continuous function f : D −→ R if
and only if the functional inequality

(5) ‖ F
x + y

2

− F (x) + F (y)
2

‖ ¬ f (x) + f (y)
2

− f
x + y

2


3



is satisfied for all x, y ∈ D (see Corollary 1.18 in [14]).
In a natural way, this leads to the following

Definition. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two real normed linear
spaces and let n ∈ N. Assume that we are given a proper cone C ⊂ X

and a nonempty open and convex set D ⊂ X. Write x ¬ y whenever
y − x ∈ C. A mapping F : D −→ Y is termed delta-convex of n−th
order if and only if there exists a (control) functional f : D −→ R
such that for all x, y ∈ D one has

(6) x ¬ y =⇒ ‖ δnyF (x)‖ ¬ δnyf (x) .

In the case where n is odd and the order relation ¬ is linear (or,
what amounts the same, C ∪ (−C) = X ) relation (6) is equivalent to

(7) ‖ δnyF (x)‖ ¬ δnyf (x) ,

and the order structure in X is not needed any more; in particular, for
n = 1 inequality (7) reduces to (5). In the case where n is even, the
restriction x ¬ y in (6) turns out to be essential. Indeed, having just
(7) for every x, y ∈ D and for an even n ∈ N we obviously get (4)
(with ϕ = f ) for all x, y ∈ D whence, by interchanging x and y, we
obtain

δnyf (x) ¬ 0 .

Consequently, f and a fortiori F would have to be polynomial mappings
which are defined in much simpler way (see (1)).
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Examples

Now, we are going to present some examples of delta-convex map-
pings of n−th order. We begin with

Proposition 1. In the case where Y = R a function F : D −→ R
is delta-convex of n−th order if and only if F is a difference of
two n−convex functions.

Proof. Assume f : D −→ R to be a control function for F. Then,
for all x, y ∈ D we have

x ¬ y =⇒ | δnyF (x)| ¬ δnyf (x) .

Put ϕ1 := 1
2(F + f ) and ϕ2 := 1

2(f − F ). In view of the linearity
of the operator δny , the latter inequality says that both ϕ1 and ϕ2 are
solutions to (3) on D, i.e. both are n−convex functions. It remains to
observe that F = ϕ1 − ϕ2.

Conversely, let F = ϕ1 − ϕ2, where ϕ1 and ϕ2 are solutions to (3)
on D. Then, setting f := ϕ1 +ϕ2 we infer that both f −F and F + f

satisfy condition (3) as well, whence, for every x, y ∈ D,

x ¬ y =⇒ | δnyF (x)| ¬ δnyf (x) ,

which completes the proof.
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Proposition 2. Every real Cn+1−function on an open interval
in R is delta-convex of n−th order.

Proof. Let F : (a, b) −→ R be a Cn+1−function. Then ϕ := F (n−1)

is a C2−function; thus, ϕ = ϕ1 − ϕ2, where ϕ1, ϕ2 : (a, b) −→ R are
both convex (see Ch. O. Kiselman [7, Proposition 3.1]). Consequently,
taking any functions ψ1, ψ2 : (a, b) −→ R such that ψ(n−1)

1 = ϕ1 and
ψ

(n−1)
2 = ϕ2 we have F = ψ1−ψ2 +pn−2 where pn−2 is a polynomial of

at most (n−2)−th degree restricted to (a, b). Obviously, the functions
ψ3 := ψ1 + pn−2 and ψ2 are both of class Cn−1 on (a, b) with convex
(n − 1)−derivatives. Hence ψ3 and ψ2 are both n−convex (see e.g.
M. Kuczma [8, Theorem 15.8.4]) and F = ψ3 − ψ2, which was to be
proved.
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Proposition 3 (n−th order delta-convexity of the Nemyc-
kii operator). Let Ω ⊂ Rk be a Lebesgue measurable set of posi-
tive Lebesgue measure `k, 1 ¬ p <∞ , and let ϕ, ψ : Ω×R −→ R
be such that

a) there exist nonnegative constants c1, c2 and functions w1, w2 ∈
L1(Ω) such that

|ϕ(t, ·)| ¬ w1(t) + c1| · |p

and
|ψ(t, ·)| ¬ w2(t) + c2| · |p

for `k−almost all t ∈ Ω ;

b) for `k−almost all t ∈ Ω the function ϕ(t, ·) is delta-convex of
n−th order controlled by ψ(t, ·) ;

c) for every s ∈ R the sections ϕ(·, s) and ψ(·, s) are Lebesgue
measurable .

Then the Nemyckii operator F given by the formula F (x)(t) :=
ϕ(t, x(t)), t ∈ Ω, x ∈ Lp(Ω), acts from Lp(Ω) (equiped with the
cone of all nonnegative functions) into L1(Ω) and is delta-convex
of n−th order with the control functional f : Lp(Ω) −→ R given
by the formula

f (x) :=
∫
Ω
ψ(·, x(·)) d`k , x ∈ Lp(Ω) .
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Proof. First we observe that the Nemyckii operators: F andG(x)(t) :=
ψ(t, x(t)), t ∈ Ω, x ∈ Lp(Ω), act (continuously) from Lp(Ω) into
L1(Ω) (see M. M. Vajnberg [13] and L. Veselý & L. Zajic̆ek [14]). Now,
to check (6), fix arbitrarily x, y ∈ Lp(Ω), x ¬ y , and put

zj :=
1− j

n + 1

x +
j

n + 1
y for j ∈ {0, 1, ..., n + 1}.

Then

‖ δnyF (x)‖ =
∫
Ω

∣∣∣∣ (δnyF (x)
)

(t)
∣∣∣∣ d`k(t)

=
∫
Ω

∣∣∣∣∣∣∣
n+1∑
j=0

(−1)n+1−j
n + 1

j

F (zj)(t)
∣∣∣∣∣∣∣ d`k(t)

=
∫
Ω

∣∣∣∣∣∣∣
n+1∑
j=0

(−1)n+1−j
n + 1

j

ϕ (t, zj(t))
∣∣∣∣∣∣∣ d`k(t)

=
∫
Ω

∣∣∣∣ δny(t)ϕ (t, x(t))
∣∣∣∣ d`k(t) ¬ ∫

Ω
δny(t)ψ (t, x(t)) d`k(t)

=
∫
Ω

n+1∑
j=0

(−1)n+1−j
n + 1

j

ψ (t, zj(t)) d`k(t)

=
n+1∑
j=0

(−1)n+1−j
n + 1

j

 ∫
Ω
ψ (t, zj(t)) d`k(t)

=
n+1∑
j=0

(−1)n+1−j
n + 1

j

f (zj) = δnyf (x) ,

and the proof is completed.
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Proposition 4 (n−th order delta-convexity of the Ham-
merstein operator). Under the assumptions of Proposition 3
if, additionally, K : R×Ω −→ R is a Lebesgue measurable function
such that for some c ­ 0∫

R |K(s, t)|d`1(s) ¬ c

for `k−almost all t ∈ Ω , then the Hammerstein operator

H(x) :=
∫
Ω
K(·, t)ϕ(t, x(t)) d`k(t)

is well defined on Lp(Ω) and yields a delta-convex mapping with
the control functional g : Lp(Ω) −→ R given by the formula

g(x) := c ·
∫
Ω
ψ(·, x(·)) d`k , x ∈ Lp(Ω) .

Proof. We argue like in [14, Proposition 6.9]. It is not hard to check
that the linear operator

T (z)(s) :=
∫
Ω
K(s, t) z(t) d`k(t) , z ∈ L1(Ω), s ∈ R ,

acts continuously from L1(Ω) into L1(R) and ‖T‖ ¬ c . Moreover,
H = T ◦F , where F is the Nemyckii operator spoken of in Proposition
3. In view of the (just established) n−th order delta-convexity of F,
for arbitrarily fixed x, y ∈ Lp(Ω), x ¬ y , we get

‖ δnyH(x)‖ = ‖ δny (T ◦ F ) (x)‖ = ‖T
(
δnyF (x)

)
‖

¬ ‖T‖ ‖ δnyF (x)‖ ¬ c δnyf (x) = δny (c f )(x) ,

which was to be proved.
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Equivalent conditions

The following result establishes necessary and sufficient conditions
for a given map to be delta-convex of n−th order.

Theorem 1. Under the assumptions of the Definition the follo-
wing conditions are pairwise equivalent:

(i) F is a delta-convex mapping controlled by f ;

(ii) for every y∗ ∈ Y ∗ the function y∗ ◦F −‖y∗‖ ·f is n−concave;

(iii) for every y∗ ∈ Y ∗ the function y∗ ◦ F + ‖y∗‖ · f is n−convex;

(iv) for every y∗ ∈ Y ∗, ‖y∗‖ = 1, the function y∗ ◦ F + f is
n−convex ;

(v) for every y∗ ∈ Y ∗, ‖y∗‖ = 1, the function y∗ ◦ F − f is
n−concave;

(vi) for every choice of rationals 0 = λ0 < λ1 < · · · < λn < λn+1 =
1 and for every pair x, y ∈ D, x ¬ y, one has

(8) ‖
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1)

×F ((1− λj)x + λjy)‖

¬
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1)

×f ((1− λj)x + λjy) ,

where V stands for the Vandermonde’s determinant of the va-
riables considered.
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If, moreover, the function D 3 x 7−→ ‖F (x)‖ + |f (x)| ∈ R is
upper bounded on a second category Baire subset of D, then each
of these conditions is equivalent to

(vii) for every choice of real numbers 0 = λ0 < λ1 < · · · < λn <

λn+1 = 1 and for every pair x, y ∈ D, x ¬ y, one has (8) .

Proof. (i) implies (ii). Let F : D −→ Y be an n−th order delta-
convex mapping with a control functional f : D −→ R. This means
that relation (6) holds true for all x, y ∈ D. Fix arbitrarily a nontrivial
continuous linear functional y∗ : Y −→ R. Obviously, it follows from
(6) that

y∗

‖y∗‖
(
δnyF (x)

)
¬ δnyf (x) ,

whenever x, y ∈ D, x ¬ y, whence, in view of the linearity of the
operator δny , we infer that

δny (y∗ ◦ F − ‖y∗‖ f ) (x) ¬ 0

provided that x, y ∈ D, x ¬ y.

(ii) implies (iii). Replace y∗ by −y∗ in (ii).
(iii) implies (iv). Trivial.
(iv) implies (v). Replace y∗ by −y∗ in (iv).
(v) implies (vi). Fix arbitrarily points x, y ∈ D, x ¬ y, rational

numbers 0 = λ0 < λ1 < · · · < λn < λn+1 = 1 and a continuous
real functional y∗ ∈ Y ∗, ‖y∗‖ = 1 . On account of (v), the function
ϕ := y∗ ◦ F − f is n−concave , i.e.

δnyϕ(x) ¬ 0 .
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Since the points

(9) xj := x + λj(y − x) = (1− λj)x + λjy , j ∈ {0, 1, ..., n + 1} ,

divide rationally the segment [x, y], in virtue of T. Popoviciu’s result
from [9] (see also: M. Kuczma [8] and R. Ger [3], [4]) we get

n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1)ϕ(xj) ¬ 0 ,

i.e.

y∗
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1)F (xj)


¬
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1) f (xj) ,

whence, in view of the arbitrarness of y∗, we get (vi).
(vi) implies (i). An elementary calculation shows that the number

αn :=
1(n+1
j

) V
0,

1
n + 1

, ...,
j − 1
n + 1

,
j + 1
n + 1

, ...,
n

n + 1
, 1


is positive and does not depend upon j ∈ {0, 1, ..., n + 1}. Therefore,
having arbitrarily fixed x, y ∈ D, x ¬ y, and putting λj := j

n+1 , j ∈
{0, 1, ..., n + 1}, in (vi), we get

‖
n+1∑
j=0

(−1)n+1−jαn

n + 1
j

F
(1− j

n + 1
)x +

j

n + 1
y

 ‖
¬

n+1∑
j=0

(−1)n+1−jαn

n + 1
j

f
(1− j

n + 1
)x +

j

n + 1
y

 ,
which gives (i).
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To prove the last part of the theorem assume (i) and take an arbitrary
functional y∗ ∈ Y ∗, ‖y∗‖ = 1 . By means of (iv), the function ϕ :=
y∗ ◦ F + f is n−convex. Since

|ϕ(x)| ¬ ‖F (x)‖ + | f (x)| , x ∈ D ,

we infer that both f and ϕ are n−convex functions bounded on a
second category Baire subset of D and hence continuous (see R. Ger
[5]). Consequently, F is weakly continuous. Since (i) implies (vi), we
have (8) for every choice of rational numbers 0 = λ0 < λ1 < · · · <
λn < λn+1 = 1 and for every pair x, y ∈ D, x ¬ y . Thus

(10) |
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1) (y∗ ◦ F )(xj) |

¬
n+1∑
j=0

(−1)n+1−jV (λ0, λ1, · · · , λj−1, λj+1, · · ·λn, λn+1) f (xj) ,

where the x′j s are defined by (9). In view of the continuity of f, y∗◦F
and V inequality (10) holds true for all real numbers 0 = λ0 < λ1 <

· · · < λn < λn+1 = 1 , and condition (vii) is proved. Since the converse
implication is trivial, the proof has been completed.
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Stability results

The following result was obtained in [5]: under some mild regularity
condition upon the control function f, for every solution F of inequality
(5) there exists an affine mapping A (i.e. a polynomial function of the
first order) and a point xo such that ‖F (x)− A(x)‖ ¬ f (x)− f (xo)
for all x′ s from the domain of F. In what follows we are going to extend
this result to the case of polynomial mappings of higher orders.

Theorem 2. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two real normed linear
spaces and let n be a fixed odd positive integer. Assume that we
are given a nonempty open and convex set D ⊂ X. If F : D −→ Y

and f : D −→ R are two Cn+1−mappings such that inequality

(7) ‖ δnyF (x)‖ ¬ δnyf (x) ,

holds true for all x, y ∈ D, then for every xo ∈ D there exist
C∞−polynomial functions Q : D −→ Y and q : D −→ R of at
most n−th order such that F (xo) = Q(xo), f (xo) = q(xo), and

‖F (x)−Q(x)‖ ¬ f (x)− q(x)

for all x ∈ D.
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Proof. Let us recall first, that for every p−additive and symmetric
mapping
M : Xp −→ Y its diagonalization m : X −→ Y given by the formula

m(x) := M(x, x, ..., x︸ ︷︷ ︸
p times

), x ∈ X,

(a monomial function of p−th order) has the following property (see
e.g. L. Székelyhidi [7] or L. M. Kuczma [8]): for all x, h ∈ X one has

∆k
hm(x) =

 k! m(h) for k = p

0 for k > p .

In what follows, Dkg(x) will stand for the k−th Fréchet differen-
tial of a map g; plainly, Dkg(x) is a k−additive (actually, k−linear)
and symmetric mapping. The monomial generated by Dkg(x) will be
denoted by dkg(x).

Fix arbitrarily an xo ∈ D. For each y∗ ∈ Y ∗, ‖ y∗‖ = 1, the
Cn+1−function ϕ := y∗ ◦ F − f is (unconditionally) n−concave,
whence for any x, y ∈ D, we get

0 ­ δnyϕ(x) = ∆n+1
y−x
n+1
ϕ(x) = ∆n+1

y−x
n+1

 n∑
k=0

1
k!
dkϕ(xo)(x− xo)

+
1

(n + 1)!
dn+1ϕ (xo + θ(x− xo)) (x− xo)


=

1
(n + 1)!

∆n+1
y−x
n+1

(
dn+1ϕ (xo + θ(x− xo)) (x− xo)

)

= dn+1ϕ (xo + θ(x− xo))
y − x
n + 1

 ,
with some θ ∈ (0, 1). In particular, taking here y := xo we infer that

dn+1ϕ (xo + θ(x− xo)) (x− xo) ¬ 0 .
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Consequently, for every x ∈ D we have

y∗ (F (x))− f (x) = ϕ(x) =
n∑
k=0

1
k!
dkϕ(xo)(x− xo)

+
1

(n + 1)!
dn+1ϕ (xo + θ(x− xo)) (x− xo)

¬
n∑
k=0

1
k!
dkϕ(xo)(x− xo)

= y∗
 n∑
k=0

1
k!
dkF (xo)(x− xo)

− n∑
k=0

1
k!
dkf (xo)(x− xo) .

Thus, setting

Q(x) :=
n∑
k=0

1
k!
dkF (xo)(x− xo) and q(x) :=

n∑
k=0

1
k!
dkf (xo)(x− xo)

for x ∈ X, we get two C∞−polynomial functions such that F (xo) =
Q(xo), f (xo) = q(xo), and

y∗ (F (x)−Q(x)) ¬ f (x)− q(x)

for all x ∈ D and all y∗ ∈ Y ∗ with ‖ y∗‖ = 1. This implies that

‖F (x)−Q(x)‖ ¬ f (x)− q(x)

for all x ∈ D, which was to be proved.
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Corollary 1. Under the assumptions of Theorem 2, with D being
a ball B(xo, ε) centered at xo and having radius ε > 0, if we have

‖Dn+1f (z)‖ ¬ c for z ∈ B(xo, ε) ,

then
‖F (x)−Q(x)‖ ¬ c

(n + 1)!
‖x− xo‖n+1

for all x ∈ B(xo, ε) .

Proof. As a matter of fact, we have proved that

‖F (x)−Q(x)‖ ¬ c

(n + 1)!
dn+1f (xo + θ(x− xo)) (x− xo)

whence

‖F (x)−Q(x)‖ ¬ c

(n + 1)!
‖Dn+1f (xo + θ(x− xo)) ‖ ‖x− xo‖n+1

for all x ∈ B(xo, ε) .

Corollary 2 (on supporting polynomial functionals). Let (X, ‖ · ‖)
a real normed linear space and let n be a fixed odd positive integer.
Assume that we are given a nonempty open and convex set D ⊂ X

and a Cn+1−functional f : D −→ R such that inequality

δnyf (x) ­ 0

holds true for all x, y ∈ D. Then, for every xo ∈ D, there exists
a C∞−polynomial functional q : D −→ R of at most n−th order
such that f (xo) = q(xo) and

f (x) ­ q(x)
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for all x ∈ D.

Proof. Take F := 0 in Theorem 2.

Remark. To avoid a reduction to polynomial functions in the case of
even n′ s, the n−convexity is defined by (3). However, in such a case,
for even n′ s, even the Corollary is no longer valid. To see this, consider
the cubic function on R: f (x) = x3, x ∈ R. We have δ2

yf (x) =
2
9(y− x)3 ­ 0 whenever x ¬ y, x, y ∈ R, but, obviously, there exists
no quadratic polynomial supporting f.
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T -orthogonality

The so called Suzuki’s property of isosceles trapezoids (see F. Suzuki
[11]) on the real plane π reduced to the case of an (anticlockwise orien-
ted) rectangle ABCD ⊂ π states that for any point S ∈ π the distan-
ces between S and the vertices of the rectangle satisfy the relationship:
AS2 − BS2 = DS2 − CS2. This observation expressed in terms of
vectors from a given real normed linear space (X, ‖ · ‖), dimX ­ 2,
has led C. Alsina, P. Cruells and M. S. Tomás [1] to the following very
interesting orthogonality relation ⊥T⊂ X×X : we say that two vectors
x, y ∈ X are T−orthogonal and write x ⊥T y if and only if for every
vector z ∈ X one has

‖z − x‖2 + ‖z − y‖2 = ‖z‖2 + ‖z − (x + y)‖2.

It turns out that, among others, any two
T−orthogonal vectors x, y ∈ X are also

• orthogonal in the classical sense: (x|y) = 0 provided that the
norm ‖ · ‖ comes from an inner product (·|·)

• orthogonal in the sense of Pythagoras:
‖x + y‖2 = ‖x‖2 + ‖y‖2

• orthogonal in the sense of James:
‖x + y‖ = ‖x− y‖

• orthogonal in the sense of Birkhoff:
‖x + λy‖ ­ ‖x‖ , λ ∈ R.
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If so, one might conjecture that T−orthogonality must simply co-
incide with the classical orthogonality coming from an inner product
structure. That is really the case in two-dimensional spaces; however,
such a conjecture fails to be true in normed linear spaces of higher
dimensions. Is there any deeper explanation of that phenomenon?

To proceed, observe first that the T−orthogonality relation may
equivalently be expressed in terms of difference operators.

Indeed, setting

∆h,k := ∆h ◦∆k for h, k ∈ X

and writing our equation (with fixed x, y ∈ X) in an equivalent form

‖z + x + y‖2 − ‖z + x‖2 − ‖z + y‖2 + ‖z‖2 = 0 ,

valid for every z ∈ X , we see that

x ⊥T y if and only if ∆x,y‖ · ‖2 = 0 .

This gives rise to study a more general orthogonality relation deter-
mined by a fixed real functional ϕ defined on an Abelian group (G,+).
Namely, we shall say that two elements x, y from G are ϕ−orthogonal
and write x ⊥ϕ y if and only if for every element z ∈ G one has

∆x,yϕ(z) = 0 .

In the case where (G,+) stands for the additive group of a normed
linear space (X, ‖·‖) and ϕ := ‖·‖2, the ϕ−orthogonality just defined
coincides with T−orthogonality introduced and examined by C. Alsina,
P. Cruells and M. S. Tomás [1]. In some cases we will admit another
Abelian group (H,+) in place of the additive group of all real numbers
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as the target space of the map ϕ in question, preserving the name
ϕ−orthogonality for the corresponding orthogonality relation.

In 1985 J. Rätz [10], slightly modifying an idea of S. Gudder & D.
Strawther [6], introduced the notion of an orthogonality space in an
axiomatic way.

Let X be a real linear space of dimension greater or equal 2 and let
⊥⊂ X ×X be a binary relation with the following properties:

(a) x ⊥ 0 and 0 ⊥ x for every x ∈ X ;

(b) if x, y ∈ X \ {0} and x ⊥ y then x and y are linearly
independent;

(c) if x, y ∈ X and x ⊥ y then αx ⊥ βy for all α, β ∈ R;

(d) if P is a 2-dimensional subspace of X, x ∈ P and λ ∈ (0,∞),
then there exists a y ∈ P such that x ⊥ y and x + y ⊥ λx− y.

Then the pair (X,⊥) is termed an orthogonality space. While the first
three axioms seem to be unquestionable (observe the lack of symmetry)
the last axiom (d) is rather strong. Nevertheless, beside the usual or-
thogonality in inner product spaces, Birkhoff orthogonality stands for
an interesting example to produce an orthogonality space in the sense
of Rätz. Even slightly exotic orthogonality relation: 0 6= x ⊥ y 6= 0 if
and only if x and y are linearly independent also satisfies this axiomatic
system proving that the axioms are not too restrictive.

In what follows we shall answer a natural question to determine
functions ϕ on a given real linear space X such that the pair (X,⊥ϕ)
happens to be a Rätz orthogonality space.
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Theorem 3. Let X be a real linear space with dimX ­ 2 and let
ϕ : X −→ R be a functional enjoying the property

sup {|ϕ(x) + ϕ(−x)| : x ∈ S } <∞ ,

for every segment S ⊂ X. Then the pair
(X,⊥ϕ) is an orthogonality space if and only if there exists an
inner product (·|·) : X ×X −→ R such that

⊥ϕ= {(x, y) ∈ X ×X : (x|y) = 0} .

Another characterization of inner product space (complementary to
this theorem) involving the notion of ϕ−orthogonality may be obta-
ined by the requirement that ⊥ϕ admits diagonals, i.e. for every two
nonzero vectors x, y there exists an α ∈ R such that

x + αy ⊥ϕ x− αy.

In the case of T−orthogonality that requirement reduces it to the usual
orthogonality in inner product spaces. What about ϕ−orthogonality ?

Theorem 4. Let X be a real linear topological space with dimX ­
2 and let ϕ : X −→ R be a nonzero continuous and even functional
with the property:

there exists an x0 ∈ X\{0} such that ϕ(λx0) = λ2ϕ(x0) for all λ ∈ (0,∞) .

Then the corresponding ϕ−orthogonality admits diagonals if and
only if there exists an inner product (·|·) : X ×X −→ R such that

⊥ϕ= {(x, y) ∈ X ×X : (x|y) = 0} .
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Another interesting orthogonality relation has been introduced re-
cently by C. Alsina, J. Sikorska and M. S. Tomás in [2]. Two vectors
x and y in a real normed linear space with dim X ­ 2 are said to be
w-orthogonal if and only if∥∥∥∥‖x‖y + ‖y‖x

∥∥∥∥ =
√

2 ‖x‖ · ‖y‖,

or, alternatively, ∥∥∥∥∥∥∥
x

‖x‖
+

y

‖y‖

∥∥∥∥∥∥∥
2

= 2 ,

for nonzero vectors x and y. This gives rise to study another more
general orthogonality relation determined by a fixed real functional
ϕ defined on a normed real linear space X, ϕ(x) > 0 for x ∈ X \
{0}, ϕ(0) = 0, . Namely, we shall say that nonzero vectors x, y ∈ X
are ϕ-orthogonal if and only if

ϕ(
x√
ϕ(x)

+
y√
ϕ(y)

) = 2 .

This leads to interesting conditional functional equations; for instance,
the equation

ϕ(x + y) = ϕ(x) + ϕ(y) =⇒ ϕ(
x√
ϕ(x)

+
y√
ϕ(y)

) = 2,

expresses the fact that the generalized Pythagorean orthogonality im-
plies the orthogonality just introduced.
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