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Difference operators

It is well-known that the functional equation
(1) Ayto(x) =0,
where A} stands for the p—th iterate of the difference operator

App(z) = p(x+ h) — o(x),
of polynomial functions characterizes the usual polynomials of at

most n—th degree in the class of continuous functions ¢ : R — R.
Continuous solutions ¢ : R — R of the functional inequality

(2) Ay () > 0,
where z € R, h € (0,00), are just C"~!—functions whose derivatives
"1 are convex (see e.g. M. Kuczma [8, Chapter XV]). Therefore,
the solutions to (2)
n = 1 inequality (2) states that

. <x+y> < Plo)+ely)
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which is the functional inequality defining Jensen-convex functions.
Motivated by this fact, in what follows, we shall be using the operator

n+1 +1 ' '
0, () ::JZJO( 1) J(n] )sﬁ((l—nil) +ily)

are used to be called n—conver functions. For

x,y € R,
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instead of AP, We have
Syela) = Aplola) ;

thus ¢ is n—convex (resp. n—concave ) if and only if

(3) <y = dyp(x) >0,
(resp.
(3) v <y = d,p(r) <0 ).

It is not hard to check that, for odd n’s, condition (3) is equivalent to
the following inequality

(4) p(x) > 0.

An interesting and exhaustive study of the class of delta-conver
mappings (yielding a generalization of functions which are representa-
ble as a difference of two convex functions) has been given by L. Vesely
and L. Zajicek [14]. Their definition of delta-convexity reads as follows:

Let (X, - ||) and (Y, ]| - ||) be two real normed linear spaces and let
D be a nonempty open and convex subset of X. Amap F':' D — Y
is termed delta-convex provided that there exists a continuous convex
functional f : D — R such that f +y* o F'is continuous and convex
for any member y* of the space Y* dual to Y with || y* || = 1. If this
is the case then F'is called to be controlled by f or F'is a delta-convex
mapping with a control function f.

[t turns out that a continuous function F' : D — Y is a delta-
convex mapping controlled by a continuous function f : D — R if
and only if the functional inequality

z+y\ Flz)+ Fly) flz)+ fy) T4y
o) 1P (P - SR < AR ()
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is satisfied for all z,y € D (see Corollary 1.18 in [14]).
In a natural way, this leads to the following

Definition. Let (X, || -||) and (Y;]| - ||) be two real normed linear
spaces and let n € N. Assume that we are given a proper cone C' C X
and a nonempty open and convex set D C X. Write < y whenever
y—x € C. Amapping F': D — Y is termed delta-convex of n—th
order if and only if there exists a (control) functional f : D — R
such that for all x,y € D one has

(6) <y = [0, F(x)| < 0,f(x) .

In the case where n is odd and the order relation < is linear (or,
what amounts the same, C'U (—C') = X ) relation (6) is equivalent to

(7) 1o, F(x)|| < oyf(x),

and the order structure in X is not needed any more; in particular, for
n = 1 inequality (7) reduces to (5). In the case where n is even, the
restriction z < y in (6) turns out to be essential. Indeed, having just
(7) for every x,y € D and for an even n € N we obviously get (4)
(with ¢ = f) for all x,y € D whence, by interchanging x and y, we
obtain

o, f(x) <0.

Consequently, f and a fortiori F' would have to be polynomial mappings
which are defined in much simpler way (see (1)).



Examples

Now, we are going to present some examples of delta-convex map-
pings of n—th order. We begin with

Proposition 1. In the case where Y = R a function F': D — R
18 delta-convex of n—th order if and only if F' is a difference of
two n—convexr functions.

Proof. Assume f: D — R to be a control function for F. Then,
for all x,y € D we have

<y = [0, F(z)] <0, f(x) .

Put ¢ == 3(F + f) and ¢y := L(f — F). In view of the linearity
of the operator oy, the latter inequality says that both ¢; and 9 are
solutions to (3) on D, i.e. both are n—convex functions. It remains to
observe that ' = o1 — (9.

Conversely, let F' = 1 — 9, where 1 and @9 are solutions to (3)
on D. Then, setting f := 1+ o we infer that both f — F and F + f
satisfy condition (3) as well, whence, for every x,y € D,

<y = |0, F(r)] <9, f(z),

which completes the proof.



Proposition 2. Fuvery real C""'—function on an open interval
in R is delta-convexr of n—th order.

Proof. Let F : (a,b) — Rbea C"! —function. Then ¢ := F"—1)
is a C?—function; thus, ¢ = 1 — @9, where @1, s : (a,b) — R are
both convex (see Ch. O. Kiselman [7, Proposition 3.1]). Consequently,
taking any functions 1,15 : (a,b) — R such that wi”‘” = 1 and
wén_l) = (py we have F' = 1 — 9+ p,_o where p,_» is a polynomial of
at most (n — 2)—th degree restricted to (a, b). Obviously, the functions
3 1= 11 + pp_2 and 1y are both of class C"~! on (a,b) with convex
(n — 1)—derivatives. Hence 13 and 1 are both n—convex (see e.g.
M. Kuczma [8, Theorem 15.8.4]) and F' = 15 — 1)9, which was to be
proved.



Proposition 3 (n—th order delta-convexity of the Nemyc-
kii operator). Let Q) C R* be a Lebesque measurable set of posi-

tive Lebesque measure U, 1 < p < oo, and let o, : Q) x R — R
be such that

a) there exist nonnegative constants cy,co and functions wy, wy €
LY(Q) such that

p(t, )] < wilt) + el - [P
and

[(t, )] < walt) +cof - P
for £r.—almost all t € ) ;

b) for {y—almost all t € Q the function p(t,-) is delta-convex of
n—th order controlled by ¥(t,-);

c) for every s € R the sections ¢(-,s) and ¥(-,s) are Lebesque
measurable .

Then the Nemyckii operator F given by the formula F(x)(t) =
e(t,x(t)), t € Q, x € LP(Y), acts from LP(2) (equiped with the
cone of all nonnegative functions) into L'(Q) and is delta-conver

of n—th order with the control functional f : LP(Q)) — R given
by the formula

f(x) = fo(a())dly , o€ LP(Q).



Proof. First we observe that the Nemyckii operators: F'and G(x)(t) :

Y(t,x(t)),t € Q, x € LP(Q)), act (continuously) from LP()) into
LY(Q) (see M. M. Vajnberg [13] and L. Vesely & L. Zajicek [14]). Now,
to check (6), fix arbitrarily x,y € LP(Q)), x < y, and put

zj::(l— J ):1;4—njy for j€{0,1,...,n+1}.

n+1 + 1
Then
o, F()l = [, (65 F () (t)] dex(t)
= /Q ji:;( 1)”le J jl)F z] 1 dly(t)
= b S (T et ant
= [ ]800 (ta(t)] den(t) < [ 0 (¢, 2(t)) dey(t)
= b e (" ) ant
— jé;( 1)”“—] (nj 1) /Qw (t, 2i(t)) dly(t)

and the proof is completed.



Proposition 4 (n—th order delta-convexity of the Ham-
merstein operator). Under the assumptions of Proposition 3
of, additionally, K : Rx) — R is a Lebesque measurable function
such that for some ¢ > 0

/R |K(s,t)|dl1(s) < ¢
for £r—almost all t € ), then the Hammerstein operator

H(z) = [, K (. t)plt a(t) dex(t)

is well defined on LP(QQ) and yields a delta-conver mapping with
the control functional g : Lp(Q) — R given by the formula

=c- [y, () dl, , xe LP(Q).

Proof. We argue like in [14, Proposition 6.9]. It is not hard to check
that the linear operator

T(2)(s) = [, K(s,t) 2(t) dty(t), =€ L), s €R,

acts continuously from L'(Q) into L}*(R) and || T|| < ¢. Moreover,
H =ToF , where F'is the Nemyckii operator spoken of in Proposition
3. In view of the (just established) n—th order delta-convexity of F,
for arbitrarily fixed z,y € L(Q2), z < y, we get

| oy H ()l = |16y (T o F)(x)| = | T (6F(x))|
< TNy F)ll < cdy f(x) = d,(cf)@),

which was to be proved.



Equivalent conditions

The following result establishes necessary and sufficient conditions
for a given map to be delta-convex of n—th order.

Theorem 1. Under the assumptions of the Definition the follo-
wing conditions are pairwise equivalent:

(i) F' is a delta-convexr mapping controlled by f ;

(ii) for every y* € Y* the function y*o F — ||y*||- f is n—concave;
(iii) for every y* € Y* the function y*o F + ||ly*|| - f is n—convez;
)

(iv) for every y* € Y* |ly*|| = 1, the function y* o F + f s
n— coOnver ;

(v) for every y* € Y* ||ly*|| = 1, the function y* o F — f s
n— concave;

(vi) for every choice of rationals 0 = g < Ay < --- <\, < A\pa1 =
1 and for every pair x,y € D, x <y, one has

I e e e t)
XE((1= X))z + Al
s jg(—l)”“‘jV(Ao, AL A Ayt Ay Anga)
XL = Az +Aw)

where V' stands for the Vandermonde’s determinant of the va-
riables considered.
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If, moreover, the function D > x —— ||F ()| + |f(z)] € R s
upper bounded on a second category Baire subset of D, then each
of these conditions is equivalent to

(vil) for every choice of real numbers 0 = Ag < A\ < -+ < A\, <
Ani1 =1 and for every pair x,y € D, = <y, one has (8).

Proof. (i) implies (ii). Let F': D — Y be an n—th order delta-
convex mapping with a control functional f : D —— R. This means
that relation (6) holds true for all x,y € D. Fix arbitrarily a nontrivial
continuous linear functional y* : ¥ — R. Obviously, it follows from

(6) that

Y' (e n
Tl (6, F(x)) < &) f(x),
whenever xz,y € D,z < y, whence, in view of the linearity of the

operator 57;, we infer that
0, (o F'—|ly*|| f) (z) < O

provided that z,y € D, x < y.

(ii) implies (iii). Replace y* by —y* in (ii).

(iii) implies (iv). Trivial.

(iv) implies (v).  Replace y* by —y* in (iv).

(v) implies (vi). Fix arbitrarily points x,y € D,z < y, rational
numbers 0 = A\g < Ay < -+ < A\, < M1 = 1 and a continuous
real functional y* € Y™ |ly*|| = 1. On account of (v), the function
:=y*oF — f is n—concave , i.e.

o,0(x) <0.
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Since the points
9) zj=rc+Ny—2)=01-N)z+ Ny, j€{0,1,...,n+1},

divide rationally the segment [x,y], in virtue of T. Popoviciu’s result
from [9] (see also: M. Kuczma [8] and R. Ger (3], [4]) we get

n+1

Z (_1)”"‘1_]"/()\0’ )\17 B )\j—17 >\j+17 T )\717 >\n—{—1) QO(I']) <0 )

n+1 .
y* ( _1)n+1_jv()\07 >‘17 B )\j—la )\j—i—la e >\n7 )\TH-I) F(I']))
< (_1)71—!—1—]"/()\0’ )\17 T )\j—la )\j—i-la e )\Th )\n—i-l) f(xj) )

whence, in view of the arbitrarness of y*, we get (vi).

(vi) implies (i). An elementary calculation shows that the number
1 1 —1 541
= ey V(0 )
n+1 n+1l n+1 n+1

("7

is positive and does not depend upon j € {0,1,...,n + 1}. Therefore,

having arbitrarily fixed z,y € D,z < y, and putting \; := 45,7 €
{0,1,....,n+ 1}, in (vi), we get

n+1 . n—+1 ] ]
—1)" g, F(l— )
[pES} a( ) ) (1— e+ 2y |

<”“<—1>"+”an("+.1)f(<1— et L),

which gives (i).
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To prove the last part of the theorem assume (i) and take an arbitrary
functional y* € Y* ||y*|| = 1. By means of (iv), the function ¢ :=
y*o F'+ f is n—convex. Since

[p(@) < [ F@)ll +1f(2)], zeD,

we infer that both f and ¢ are n—convex functions bounded on a
second category Baire subset of D and hence continuous (see R. Ger
5]). Consequently, F'is weakly continuous. Since (i) implies (vi), we
have (8) for every choice of rational numbers 0 = A\g < A\ < +-- <
An < App1 =1 and for every pair x,y € D, x < y. Thus

n+1 .
(10) | ZO(_1>TH_1_]V()\07 )\17 Ty >‘j—17 )‘j—i-la U >\n7 )\TH-l) (y* o F)('Z?) |
j:
n+1 )
< ZO(_I)H+1_jV(>\07 )\17 Ty )\j—la )\j—i-l? e >\n7 )\n—l—l) f(xj) )
j:

where the 2’ s are defined by (9). In view of the continuity of f, y*oF
and V' inequality (10) holds true for all real numbers 0 = Ay < Ay <
o < Ay < Apg1 = 1, and condition (vii) is proved. Since the converse
implication is trivial, the proof has been completed.
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Stability results

The following result was obtained in [5]: under some mild regularity
condition upon the control function f, for every solution F' of inequality
(5) there exists an affine mapping A (i.e. a polynomial function of the
first order) and a point x, such that || Fl(z) — A(x)|| < f(z) — f(z,)
for all 2" s from the domain of F. In what follows we are going to extend
this result to the case of polynomial mappings of higher orders.

Theorem 2. Let (X, ||-||) and (Y, ||-]|) be two real normed linear
spaces and let n be a fized odd positive integer. Assume that we
are given a nonempty open and convex set D C X. If F':' D — Y
and f: D — R are two C""'—mappings such that inequality

(7) 1o, F(z)l| < oy f(x)

holds true for all x,y € D, then for every x, € D there exist
C*°—polynomial functions (Q : D — Y and q : D — R of at
most n—th order such that F(x,) = Q(x,), f(x,) =q(x,), and

| F(x) — Q) < f(z) —q(z)
for all x € D.
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Proof. Let us recall first, that for every p—additive and symmetric
mapping
M : XP — Y its diagonalization m : X — Y given by the formula
m(x) = M(x,x,....x), x € X,
—_——

p times

(a monomial function of p—th order) has the following property (see
e.g. L. Székelyhidi [7] or L. M. Kuczma [8]): for all z,h € X one has

k!l m(h) for k=p
k _
Ahm(w)_{o for k >p .

In what follows, D¥g(z) will stand for the k—th Fréchet differen-
tial of a map g¢; plainly, D*g(x) is a k—additive (actually, k—Ilinear)
and symmetric mapping. The monomial generated by D*g(z) will be
denoted by d*g(x).

Fix arbitrarily an x, € D. For each y* € Y* | y*|| = 1, the

C" ! —function ¢ = y* o F — f is (unconditionally) n—concave,
whence for any x,y € D, we get
n n n & 1
0> d,p(r) = Ay%lgp(:c) - Ay%l (kz k'dkgo(wo)(a: — X,)
n n =0 .
1 n+1
+ Md QY (SUO + 9<$ — CUO)> (CU — SUO))
1 n+1 ( gn+1
-y 1)!Am (d" o (20 + 0(x — 2)) (2 — )
= d"" o (2, + Oz — x, (y_x)
o (oo + 8 — ) (L2

with some 6 € (0, 1). In particular, taking here y := z, we infer that
A" (2, +0(x — ) (z —25) <O.
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Consequently, for every x € D we have

v (F(2) = (&) = ola) = 3 —d"plw,)(@ — 2,)

=0 k!

1 n+1
T Pt —))(z—z)
< £ dpla) o )
n 1 I k
=" (kzokldF N )> k;zokld F@o)(@ = o)

Thus, setting

1
Qx) = kzok'dk (zo)(z —x,) and q(z) = kZOk,d’“f(xo)(x—azo)

for x € X, we get two C"*°—polynomial functions such that F(x,) =

Qzo), f(xo) = qlz,), and
y* (F(z) - Qz)) < f(z) —q(2)
for all z € D and all y* € Y* with || y*|| = 1. This implies that

I F(z) = Q)| < flz) - g(z)

for all x € D, which was to be proved.
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Corollary 1. Under the assumptions of Theorem 2, with D being
a ball B(x,,€) centered at x, and having radius € > 0, if we have
ID™ ) <e  for 2 € Blaye),

then
c

for all x € B(x,,¢) .

‘n—l—l

Iz = ol

Proof. As a matter of fact, we have proved that

P~ QI < ™S o Ola = 2) o~ 2
whence
H F(l') - Q(-f)H < (n n 1)' H Dn+1f (-To 4 (9(56 . xo)) H H - — CUon-l

for all z € B(x,,¢).

Corollary 2 (on supporting polynomial functionals). Let (X, || - ||)
a real normed linear space and let n be a fized odd positive integer.
Assume that we are given a nonempty open and convexr set D C X
and a C""'—functional f : D — R such that inequality

o, f(z) >0

holds true for all x,y € D. Then, for every x, € D, there exists
a C*—polynomial functional q : D — R of at most n—th order
such that f(x,) = q(x,) and



for all x € D.
Proof. Take F':=0 in Theorem 2.

Remark. To avoid a reduction to polynomial functions in the case of
even n's, the n—convexity is defined by (3). However, in such a case,
for even n’s, even the Corollary is no longer valid. To see this, consider

the cubic function on R:  f(z) = 2°, x € R. We have §; f(z) =
%(y — )3 >0 whenever x < y, 7,y € R, but, obviously, there exists

no quadratic polynomial supporting f.
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T-orthogonality

The so called Suzuki’s property of isosceles trapezoids (see F. Suzuki
[11]) on the real plane 7 reduced to the case of an (anticlockwise orien-
ted) rectangle ABC'D C 7 states that for any point S € 7 the distan-
ces between S and the vertices of the rectangle satisfy the relationship:
AS? — BS? = DS? — CS?. This observation expressed in terms of
vectors from a given real normed linear space (X, || - ||), dim X > 2,
has led C. Alsina, P. Cruells and M. S. Tomés [1] to the following very
interesting orthogonality relation 17 C X x X: we say that two vectors
z,y € X are T—orthogonal and write z 1.7 y if and only if for every
vector z € X one has

lz =2l + Iz = ylI* = [I2lI* + ]2 — (= + y)|I”.

[t turns out that, among others, any two
'T'—orthogonal vectors x,y € X are also

e orthogonal in the classical sense: (x|y) = 0 provided that the
norm || - || comes from an inner product (-|-)

e orthogonal in the sense of Pythagoras:
lz +ylI* = ll=]* + |yl

e orthogonal in the sense of James:
[z +yll = llz =yl

e orthogonal in the sense of Birkhoft:
|2+ Ayll > flzf|, A e R.
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If so, one might conjecture that T'—orthogonality must simply co-
incide with the classical orthogonality coming from an inner product
structure. That is really the case in two-dimensional spaces; however,
such a conjecture fails to be true in normed linear spaces of higher
dimensions. Is there any deeper explanation of that phenomenon?

To proceed, observe first that the T'—orthogonality relation may
equivalently be expressed in terms of difference operators.
Indeed, setting

App =00, for hkeX
and writing our equation (with fixed z,y € X) in an equivalent form
Iz + 2 +ylI* = Iz + 2 = |2+ ylI* + [|]2]* = 0,
valid for every z € X, we see that
r 1Ty if and only if Al ]*=0.

This gives rise to study a more general orthogonality relation deter-
mined by a fixed real functional ¢ defined on an Abelian group (G, +).
Namely, we shall say that two elements x, y from G are p—orthogonal
and write x L,y if and only if for every element 2 € G one has

Ay yp(z) =0.

In the case where (G, +) stands for the additive group of a normed
linear space (X, || -]|) and ¢ := || - ||?, the ¢o—orthogonality just defined
coincides with T'—orthogonality introduced and examined by C. Alsina,
P. Cruells and M. S. Tomas [1]. In some cases we will admit another
Abelian group (H, +) in place of the additive group of all real numbers
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as the target space of the map ¢ in question, preserving the name
w—orthogonality for the corresponding orthogonality relation.

In 1985 J. Rétz [10], slightly modifying an idea of S. Gudder & D.
Strawther [6], introduced the notion of an orthogonality space in an
axiomatic way.

Let X be a real linear space of dimension greater or equal 2 and let
1 C X x X be a binary relation with the following properties:

() z L0 and 0 L x forevery x € X ;

(b)if z,y € X\ {0} and x L y then z and y are linearly
independent;;

(c)if z,y€e X and x Ly then ax L By forall o, F € R;

(d) if P is a 2-dimensional subspace of X, z € P and A € (0, 00),
then there exists a y € P such that x L y and z+y L Az —y.

Then the pair (X, L) istermed an orthogonality space. While the first
three axioms seem to be unquestionable (observe the lack of symmetry)
the last axiom (d) is rather strong. Nevertheless, beside the usual or-
thogonality in inner product spaces, Birkhoff orthogonality stands for
an interesting example to produce an orthogonality space in the sense
of Ratz. Even slightly exotic orthogonality relation: 0 # x 1L y # 0 if
and only if x and y are linearly independent also satisfies this axiomatic
system proving that the axioms are not too restrictive.

In what follows we shall answer a natural question to determine
functions ¢ on a given real linear space X such that the pair (X, L)
happens to be a Ratz orthogonality space.
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Theorem 3. Let X be a real linear space with dim X > 2 and let
v : X — R be a functional enjoying the property
sup {|¢(z) + ()| - z € 5} < 00,

for every segment S C X. Then the pair
(X, Ly) s an orthogonality space if and only if there exists an
inner product (+|-) : X x X — R such that

lo=A(z,y) e X x X : (x|y) =0}.

Another characterization of inner product space (complementary to
this theorem) involving the notion of ¢—orthogonality may be obta-
ined by the requirement that L, admits diagonals, i.e. for every two
nonzero vectors x, y there exists an a € R such that

r+ay L, r— ay.

In the case of T'—orthogonality that requirement reduces it to the usual
orthogonality in inner product spaces. What about (o—orthogonality 7

Theorem 4. Let X be a real linear topological space with dim X >
2 and let o : X — R be a nonzero continuous and even functional
with the property:

there exists an xg € X\{0} such that (Azg) = A\*p(x) for all A € (0,

Then the corresponding p—orthogonality admits diagonals if and
only if there exists an inner product (-]-) : X x X — R such that

Lo=A{(z,y) € X x X : (z]y) =0}.
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Another interesting orthogonality relation has been introduced re-
cently by C. Alsina, J. Sikorska and M. S. Tomés in [2]. Two vectors
x and y in a real normed linear space with dim X > 2 are said to be
w-orthogonal if and only if

Mllly + llylle] = V2]l - Iyl

or, alternatively,
x Y ’

_|_
]yl

for nonzero vectors x and y. This gives rise to study another more

:27

general orthogonality relation determined by a fixed real functional
¢ defined on a normed real linear space X, p(x) > 0 for z € X \
{0}, ¢(0) = 0, . Namely, we shall say that nonzero vectors z,y € X
are -orthogonal if and only if

x Y
=2
@ T o)

This leads to interesting conditional functional equations; for instance,

the equation

oz +y) = p(x) + ply) = p(—— + ——) =2,
o) ey

expresses the fact that the generalized Pythagorean orthogonality im-
plies the orthogonality just introduced.
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