Elimination of Ramification since Abhyankar and Epp

Franz-Viktor Kuhlmann

Krakow, May 2015
A point on an algebraic variety is *smooth* if and only if the Implicit Function Theorem holds at this point.
A point on an algebraic variety is smooth if and only if the Implicit Function Theorem holds at this point.

Given a point on an algebraic variety which is not smooth,
A point on an algebraic variety is smooth if and only if the Implicit Function Theorem holds at this point.

Given a point on an algebraic variety which is not smooth, we would like to find another birationally equivalent variety on which the corresponding point is smooth.
A point on an algebraic variety is smooth if and only if the Implicit Function Theorem holds at this point.

Given a point on an algebraic variety which is not smooth, we would like to find another birationally equivalent variety on which the corresponding point is smooth.

This task is a local version of Resolution of Singularities.
A point on an algebraic variety is smooth if and only if the Implicit Function Theorem holds at this point.

Given a point on an algebraic variety which is not smooth, we would like to find another birationally equivalent variety on which the corresponding point is smooth.

This task is a local version of Resolution of Singularities and is called local uniformization.
Two questions

• Implicit Function Theorem with respect to which topology?
Two questions

• Implicit Function Theorem with respect to which topology?

• What constitutes the correspondence between the given point and the corresponding point on the new variety?
A point on a variety can be understood as a homomorphism of the coordinate ring of the variety.
A point on a variety can be understood as a homomorphism of the coordinate ring of the variety. This can be extended to a place of its quotient field, the function field of the variety,
A point on a variety can be understood as a homomorphism of the coordinate ring of the variety. This can be extended to a place of its quotient field, the function field of the variety, where we allow the values of a place to include ∞.
A point on a variety can be understood as a homomorphism of the coordinate ring of the variety. This can be extended to a place of its quotient field, the function field of the variety, where we allow the values of a place to include ∞.

The place can single out the corresponding point on the new variety,
A point on a variety can be understood as a homomorphism of the coordinate ring of the variety. This can be extended to a place of its quotient field, the function field of the variety, where we allow the values of a place to include ∞.

The place can single out the corresponding point on the new variety, because a birationally equivalent variety has the same function field.
Every place P gives rise to a **valuation** $v = v_P$, and vice versa.
Every place P gives rise to a valuation $v = v_P$, and vice versa. The valuation of a field L, in turn, induces a topology on L.
Every place P gives rise to a **valuation** $v = v_P$, and vice versa.

The valuation of a field L, in turn, induces a topology on L. Further, it associates with L an ordered abelian group vL, the **value group**,
Every place P gives rise to a valuation $v = v_P$, and vice versa.

The valuation of a field L, in turn, induces a topology on L. Further, it associates with L an ordered abelian group vL, the value group, and a field Lv, the residue field.
Every place P gives rise to a valuation $v = v_P$, and vice versa. The valuation of a field L, in turn, induces a topology on L. Further, it associates with L an ordered abelian group vL, the value group, and a field Lv, the residue field.

If $v = v_P$, then $Lv \cup \{\infty\}$ is the image of L under P.
We take a variety defined over an arbitrary field K.

Franz-Viktor Kuhlmann

Elimination of Ramification
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety.
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety. We choose a point on the variety and some place P associated with it.
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety. We choose a point on the variety and some place P associated with it (in general, there are many).
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety. We choose a point on the variety and some place P associated with it (in general, there are many). We consider F together with the valuation $v = v_P$.

Valued function fields
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety. We choose a point on the variety and some place P associated with it (in general, there are many). We consider F together with the valuation $v = v_P$. Further, we choose a transcendence basis T of $F|K$ from the generators of the coordinate ring;
We take a variety defined over an arbitrary field K. We denote by F the function field of our variety. We choose a point on the variety and some place P associated with it (in general, there are many). We consider F together with the valuation $\nu = \nu_P$. Further, we choose a transcendence basis T of $F|K$ from the generators of the coordinate ring; then F is a finite extension of the rational function field $L = K(T)$.

Franz-Viktor Kuhlmann

Elimination of Ramification
Ramification in the valued field extension \((F|K(T), v_P)\) expresses the *failure* of the Implicit Function Theorem at the point that is determined by \(P\).
Ramification in the valued field extension \((F|K(T), v_P)\) expresses the *failure* of the Implicit Function Theorem at the point that is determined by \(P\). We therefore wish to **eliminate ramification**.
Ramification in the valued field extension \((F|K(T), \nu_P)\) expresses the failure of the Implicit Function Theorem at the point that is determined by \(P\). We therefore wish to eliminate ramification by finding a different transcendence basis \(T'\) of \(F|K\) such that the new extension \((F|K(T'), \nu_P)\) has no ramification.
Ramification in the valued field extension $(F|K(T), v_P)$ expresses the failure of the Implicit Function Theorem at the point that is determined by P. We therefore wish to eliminate ramification by finding a different transcendence basis T' of $F|K$ such that the new extension $(F|K(T'), v_P)$ has no ramification.

This means that we choose a new model for the function field $F|K$.
Ramification in the valued field extension \((F|K(T), \nu_P)\) expresses the failure of the Implicit Function Theorem at the point that is determined by \(P\). We therefore wish to eliminate ramification by finding a different transcendence basis \(T'\) of \(F|K\) such that the new extension \((F|K(T'), \nu_P)\) has no ramification.

This means that we choose a new model for the function field \(F|K\) and thus a new variety.
Ramification in the valued field extension \((F|K(T), v_P)\) expresses the failure of the Implicit Function Theorem at the point that is determined by \(P\). We therefore wish to eliminate ramification by finding a different transcendence basis \(T'\) of \(F|K\) such that the new extension \((F|K(T'), v_P)\) has no ramification.

This means that we choose a new model for the function field \(F|K\) and thus a new variety. But this variety is birationally equivalent to the one we started with.
Naively speaking, an extension \((F|L, v)\) is **ramified** if \(vL \neq vF\).
Naively speaking, an extension \((F|L, v)\) is **ramified** if \(vL \neq vF\). Unfortunately, if \(\text{char }Lv > 0\), then there is more to ramification than just the change of the value group.
Naively speaking, an extension \((F|L, v)\) is **ramified** if \(vL \neq vF\). Unfortunately, if \(\text{char } Lv > 0\), then there is more to ramification than just the change of the value group.

To see in which algebraic extensions of valued fields ramification occurs,
What is ramification?

Naively speaking, an extension \((F|L,\nu)\) is **ramified** if \(\nu L \neq \nu F\). Unfortunately, if \(\text{char } L\nu > 0\), then there is more to ramification than just the change of the value group.

To see in which algebraic extensions of valued fields ramification occurs, and thus the Implicit Function Theorem fails,
Naively speaking, an extension \((F|L, v)\) is \textit{ramified} if \(vL \neq vF\). Unfortunately, if \(\text{char } Lv > 0\), then there is more to ramification than just the change of the value group.

To see in which algebraic extensions of valued fields ramification occurs, and thus the Implicit Function Theorem fails, we take any valued field \((L, v)\) and extend the valuation to the algebraic closure \(L^{\text{ac}}\) of \(L\).
What is ramification?

Naively speaking, an extension \((F|L, v)\) is **ramified** if \(vL \neq vF\). Unfortunately, if \(\text{char } Lv > 0\), then there is more to ramification than just the change of the value group.

To see in which algebraic extensions of valued fields ramification occurs, and thus the Implicit Function Theorem fails, we take any valued field \((L, v)\) and extend the valuation to the algebraic closure \(L^{ac}\) of \(L\).

We set \(p = \text{char } Lv\) if it is positive, and \(p = 1\) otherwise.
Absolute ramification theory

<table>
<thead>
<tr>
<th>Galois group</th>
<th>field</th>
<th>value group</th>
<th>residue field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L^{sep}</td>
<td>$\widetilde{\nu L}$</td>
<td>$(L^\nu)^{\text{ac}}$</td>
</tr>
<tr>
<td>G^r</td>
<td>L^r</td>
<td>$\frac{1}{p^\infty} \nu L$</td>
<td>$(L^\nu)^{\text{sep}}$</td>
</tr>
<tr>
<td>G^i</td>
<td>L^i</td>
<td>νL</td>
<td>$(L^\nu)^{\text{sep}}$</td>
</tr>
<tr>
<td>G^d</td>
<td>L^h</td>
<td>νL</td>
<td>L^ν</td>
</tr>
<tr>
<td>$\text{Gal } L$</td>
<td>L</td>
<td>νL</td>
<td>L^ν</td>
</tr>
</tbody>
</table>

- L^{ac}: purely inseparable
- L^{sep}: separable-algebraic closure
- L^r: absolute ramification field
- L^i: absolute inertia field
- L^h: absolute decomposition field (henselization)
- Galois, defectless
- $\text{division by } p$
- $\text{division prime to } p$
- Galois
where

\[\text{Gal } L = \text{Aut } L^{\text{ac}}|L \text{ is the absolute Galois group of } L, \]
where

$$\text{Gal } L = \text{Aut } L^{ac}|L$$ is the absolute Galois group of L,

$$\tilde{v}L = vL^{ac}$$ is the divisible hull of vL,
where

\[\text{Gal } L = \text{Aut } L^{\text{ac}}|L \text{ is the absolute Galois group of } L, \]

\[\tilde{\nu}L = \nu L^{\text{ac}} \text{ is the divisible hull of } \nu L, \]

\[\frac{1}{p^\infty} \nu L \text{ denotes the } p'\text{-divisible hull of } \nu L, \]
where

$\text{Gal } L = \text{Aut } L^{\text{ac}}|L$ is the absolute Galois group of L,

$\tilde{v}L = vL^{\text{ac}}$ is the divisible hull of vL,

$\frac{1}{p^\infty} vL$ denotes the p'-divisible hull of vL,

Char denotes the character group

$\text{Hom} \left(vL^r / vL^i , (L^i v)^\times \right)$.
For a valued function field \((F|K,v)\), elimination of ramification means to find a transcendence basis \(T\).
For a valued function field \((F|K, v)\), elimination of ramification means to find a transcendence basis \(T\) such that

\[F \subset K(T)^i. \]
From L^i to L' is the area of **tame ramification**,

Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields. It also refers to the case where neither value group nor residue fields change, but there is a unique extension of the valuation; in this case we have nontrivial defect.

Note that $L_r = L_{ac}$ if $p = 1$, that is, if $\text{char } L_v = 0$. In this case, all ramification is tame.
From L^i to L^r is the area of tame ramification, and from L^r to L^{ac} is the area of wild ramification.
From L^i to L' is the area of tame ramification, and from L' to L^{ac} is the area of wild ramification. Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields.
From L^i to L' is the area of \textit{tame ramification}, and from L' to L^{ac} is the area of \textit{wild ramification}.

Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields. It also refers to the case where neither value group nor residue fields change, but there is a unique extension of the valuation;
From L^i to L' is the area of **tame ramification**, and from L' to L^{ac} is the area of **wild ramification**. Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields. It also refers to the case where neither value group nor residue fields change, but there is a unique extension of the valuation; in this case we have nontrivial **defect**.
From L^i to L' is the area of tame ramification, and from L' to L^{ac} is the area of wild ramification.

Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields. It also refers to the case where neither value group nor residue fields change, but there is a unique extension of the valuation; in this case we have nontrivial defect.

Note that $L' = L^{ac}$ if $p = 1$, that is, if char $Lv = 0$.
Tame and wild ramification

From L^i to L^r is the area of **tame ramification**, and from L^r to L^{ac} is the area of **wild ramification**. Wild ramification does not necessarily mean that the value groups change. It can also mean that we have a purely inseparable extension of the residue fields. It also refers to the case where neither value group nor residue fields change, but there is a unique extension of the valuation; in this case we have nontrivial **defect**.

Note that $L^r = L^{\text{ac}}$ if $p = 1$, that is, if char $Lv = 0$. In this case, all ramification is tame.
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization.
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization. He used this result to prove resolution of singularities for surfaces in characteristic 0.
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization. He used this result to prove resolution of singularities for surfaces in characteristic 0. For this, he had “only” to eliminate tame ramification.

In positive characteristic, one also has to eliminate wild ramification (explicitly or implicitly). This explains why the case of positive characteristic is so much harder. Indeed, neither local uniformization nor resolution of singularities has been proved in positive characteristic for dimensions > 3.
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization. He used this result to prove resolution of singularities for surfaces in characteristic 0. For this, he had “only” to eliminate tame ramification.

In positive characteristic, one also has to eliminate wild ramification (explicitly or implicitly).
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization. He used this result to prove resolution of singularities for surfaces in characteristic 0. For this, he had “only” to eliminate tame ramification.

In positive characteristic, one also has to eliminate wild ramification (explicitly or implicitly). This explains why the case of positive characteristic is so much harder.
In 1940, O. Zariski proved that every place on every function field over a ground field of characteristic 0 admits local uniformization. He used this result to prove resolution of singularities for surfaces in characteristic 0. For this, he had “only” to eliminate tame ramification.

In positive characteristic, one also has to eliminate wild ramification (explicitly or implicitly). This explains why the case of positive characteristic is so much harder. Indeed, neither local uniformization nor resolution of singularities has been proved in positive characteristic for dimensions > 3.
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places,
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places, the Abhyankar places [Knaf-K 2006].
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places, the Abhyankar places [Knaf-K 2006]. If one allows an extension of the function field (alteration), then one has de Jongh’s Resolution by Alteration,
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places, the Abhyankar places [Knaf-K 2006]. If one allows an extension of the function field (alteration), then one has de Jongh’s Resolution by Alteration, a more precise local version [Knaf-K 2009],
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places, the Abhyankar places [Knaf-K 2006]. If one allows an extension of the function field (alteration), then one has de Jongh’s Resolution by Alteration, a more precise local version [Knaf-K 2009], and Temkin’s Inseparable Local Uniformization.
Resolution of singularities has been proved up to dimension 3, for all but finitely many characteristics by Abhyankar. Recently, Cossart and Piltant have removed the restrictions on the characteristics.

Local uniformization has only been proved for all dimensions for certain well-behaved places, the Abhyankar places [Knaf-K 2006]. If one allows an extension of the function field (alteration), then one has de Jongh’s Resolution by Alteration, a more precise local version [Knaf-K 2009], and Temkin’s Inseparable Local Uniformization.

While all of these results explicitly or implicitly are instances of elimination of ramification, it has not been achieved in general.
A basic result for the elimination of tame ramification is Abhyankar’s Lemma.
A basic result for the elimination of tame ramification is Abhyankar’s Lemma. Here is a version a little more general than the original:
A basic result for the elimination of tame ramification is Abhyankar’s Lemma. Here is a version a little more general than the original:

Theorem

Assume that \((L, v)\) and \((F, v)\) are two extensions of \((L_0, v)\), both contained in a common extension \((M, v)\).

If \(v_L \subseteq v_F\) and \((L | L_0, v)\) has only tame ramification (i.e., \(L \subseteq L_r_0\)), then \(v(L, F) = v_F\).
A basic result for the elimination of tame ramification is Abhyankar’s Lemma. Here is a version a little more general than the original:

Theorem

Assume that \((L, \nu)\) and \((F, \nu)\) are two extensions of \((L_0, \nu)\), both contained in a common extension \((M, \nu)\).
A basic result for the elimination of tame ramification is Abhyankar’s Lemma. Here is a version a little more general than the original:

Theorem

Assume that (L, v) and (F, v) are two extensions of (L_0, v), both contained in a common extension (M, v). If $vL \subseteq vF$ and $(L|L_0, v)$ has only tame ramification (i.e., $L \subseteq L_0^r$),
A basic result for the elimination of tame ramification is Abhyankar’s Lemma. Here is a version a little more general than the original:

Theorem

Assume that \((L, v)\) and \((F, v)\) are two extensions of \((L_0, v)\), both contained in a common extension \((M, v)\). If \(vL \subseteq vF\) and \((L|L_0, v)\) has only tame ramification (i.e., \(L \subseteq L_0^t\)), then \(v(L.F) = vF\).
Epp’s Theorem

Theorem

Assume that $v_{L_0} = v_K$. If $\text{char}(K) > 0$, then assume in addition that the largest perfect subfield of L_v is K_v. Then there is a finite extension R' of R such that S/R' is weakly unramified over R', i.e., their quotient fields L' and K' have the same value group.
In 1973, Helmut Epp published a paper entitled *Elimination of wild ramification* in *Inventiones* 19. His theorems deal with elimination of wild ramification in extensions of discrete valuation rings (DVRs). One version reads as follows.
In 1973, Helmut Epp published a paper entitled *Elimination of wild ramification* in Inventiones 19. His theorems deal with elimination of wild ramification in extensions of discrete valuation rings (DVRs). One version reads as follows.

Take complete DVRs \(R \subset S_0 \subset S \) with \(S|S_0 \) finite. Denote by \(K, L_0, L \) the quotient fields of \(R, S_0, S \), respectively.
Epp’s Theorem

In 1973, Helmut Epp published a paper entitled *Elimination of wild ramification* in *Inventiones* 19. His theorems deal with elimination of wild ramification in extensions of discrete valuation rings (DVRs). One version reads as follows.

Take complete DVRs $R \subset S_0 \subset S$ with $S|S_0$ finite. Denote by K, L_0, L the quotient fields of R, S_0, S, respectively.

Theorem

*Assume that $vL_0 = vK$.***
In 1973, Helmut Epp published a paper entitled *Elimination of wild ramification* in *Inventiones* 19. His theorems deal with elimination of wild ramification in extensions of discrete valuation rings (DVRs). One version reads as follows.

Take complete DVRs $R \subset S_0 \subset S$ with $S|S_0$ finite. Denote by K, L_0, L the quotient fields of R, S_0, S, respectively.

Theorem

*Assume that $vL_0 = vK$. If $\text{char } K v > 0$, then assume in addition that the largest perfect subfield of $L v$ is $K v$.***
In 1973, Helmut Epp published a paper entitled *Elimination of wild ramification* in Inventiones 19. His theorems deal with elimination of wild ramification in extensions of discrete valuation rings (DVRs). One version reads as follows.

Take complete DVRs \(R \subset S_0 \subset S \) with \(S|S_0 \) finite. Denote by \(K, L_0, L \) the quotient fields of \(R, S_0, S \), respectively.

Theorem

Assume that \(vL_0 = vK \). If \(\text{char } Kv > 0 \), then assume in addition that the largest perfect subfield of \(L_0 \) is \(Kv \). Then there is a finite extension \(R' \) of \(R \) such that \(S.R' \) is *weakly unramified* over \(R' \), i.e., their quotient fields \(L' \) and \(K' \) have the same value group.
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal } L$ is a p-group.
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} \ L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p.

If $\text{char} \ L = p$, then these are Artin-Schreier extensions: $L \mid L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$. If $d \in L_0$, then $L = L_0(z - d)$ and $(z - d)^p - (z - d) = z^p - z - d^p + d$. That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d.

This fact has been used by several authors, including Abhyankar, Epp and myself, to find normal forms for such Artin-Schreier extensions that fit our purposes.
It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char} L = p$, then these are Artin-Schreier extensions:
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal } L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char } L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$.

That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d. This fact has been used by several authors, including Abhyankar, Epp and myself, to find normal forms for such Artin-Schreier extensions that fit our purposes.
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char} L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$.

If $d \in L_0$, then $L = L_0(z - d)$ and

$$(z - d)^p - (z - d) = z^p - z - d^p + d.$$
It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} \ L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char} \ L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$.

If $d \in L_0$, then $L = L_0(z - d)$ and

$$(z - d)^p - (z - d) = z^p - z - d^p + d.$$

That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d.
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal } L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char } L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$.

If $d \in L_0$, then $L = L_0(z - d)$ and

$$(z - d)^p - (z - d) = z^p - z - d^p + d.$$

That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d. This fact has been used by several authors,
It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} \ L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char} \ L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$. If $d \in L_0$, then $L = L_0(z - d)$ and

$$(z - d)^p - (z - d) = z^p - z - d^p + d.$$

That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d. This fact has been used by several authors, including Abhyankar, Epp and myself,
Elements of the proof

It is important to note that the subgroup G^r of the absolute Galois group $\text{Gal} \ L$ is a p-group. This means that every finite separable extension of L^r is a tower of Galois extensions of degree p. If $\text{char} \ L = p$, then these are Artin-Schreier extensions: $L|L_0$ is an Artin-Schreier extension if $L = L_0(z)$ with $z^p - z \in L_0$.

If $d \in L_0$, then $L = L_0(z - d)$ and

$$(z - d)^p - (z - d) = z^p - z - d^p + d.$$

That allows us to replace any summand in $z^p - z$ that is of the form d^p by its p-th root d. This fact has been used by several authors, including Abhyankar, Epp and myself, to find normal forms for such Artin-Schreier extensions that fit our purposes.
Elements of the proof

Let us discuss the case of \(\text{char } L = p \),

\[
\begin{align*}
\frac{z}{p} - \frac{z}{p} &= a_n \pi^n + a_{n-1} \pi^{n-1} + \ldots
\end{align*}
\]

with \(n \in \mathbb{Z} \) and \(a_i \in L_0 \).
Let us discuss the case of char \(L = p \), and let us assume that we have reduced the proof to the case where \(L|L_0 \) is an Artin-Schreier extension.
Let us discuss the case of char \(L = p \), and let us assume that we have reduced the proof to the case where \(L|L_0 \) is an Artin-Schreier extension. By the assumptions of the theorem, we can write

\[
R = (Kv)[[\pi]] \quad \text{and} \quad S_0 = (L_0v)[[\pi]].
\]
Let us discuss the case of char $L = p$, and let us assume that we have reduced the proof to the case where $L|L_0$ is an Artin-Schreier extension. By the assumptions of the theorem, we can write

$$R = (Kv)[[\pi]] \quad \text{and} \quad S_0 = (L_0v)[[\pi]].$$

So we have that

$$z^p - z = a_n \pi^n + a_{n-1} \pi^{n-1} + \ldots$$

with $n \in \mathbb{Z}$ and $a_i \in L_0v$.
Elements of the proof

Let us discuss the case of char $L = p$, and let us assume that we have reduced the proof to the case where $L|L_0$ is an Artin-Schreier extension. By the assumptions of the theorem, we can write

$$R = (Kv)[[\pi]] \text{ and } S_0 = (L_0v)[[\pi]].$$

So we have that

$$z^p - z = a_n \pi^n + a_{n-1} \pi^{n-1} + \ldots$$

with $n \in \mathbb{Z}$ and $a_i \in L_0v$. If $n \geq 0$, then it is easy to show that $L \subset L_0^i$ and there is no wild ramification.
Let us discuss the case of \(\text{char } L = p \), and let us assume that we have reduced the proof to the case where \(L|L_0 \) is an Artin-Schreier extension. By the assumptions of the theorem, we can write

\[
R = (Kv)[[\pi]] \text{ and } S_0 = (L_0v)[[\pi]].
\]

So we have that

\[
z^p - z = a_n \pi^n + a_{n-1} \pi^{n-1} + \ldots
\]

with \(n \in \mathbb{Z} \) and \(a_i \in L_0v \). If \(n \geq 0 \), then it is easy to show that \(L \subset L_0^i \) and there is no wild ramification. So let us assume that \(n < 0 \).
Elements of the proof

If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R.

We will be left with summands $a_i \pi^i$ where $a_i \not\in K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0 \nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0 \nu$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'. After doing this for all negative i, Epp states that in the above form for $z^p - z$ we have that a_n has no p-th root in $L_0 \nu$.

From this one easily deduces that for the new extension $L' | K'$ we have that $[L' \nu : K' \nu] = p$ and $vL' = vK'$, so S. R' is weakly unramified over R'.

Franz-Viktor Kuhlmann

Elimination of Ramification
If $a_i \in K_v$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted).
Elements of the proof

If $a_i \in K_v$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \not\in K_v$ if i is negative.
If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0\nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0\nu$.
If \(a_i \in K_v \), then we can get rid of the term \(a_i \pi^i \) by putting some \(y \) with \(y^p - y = a_i \pi^i \) in the extension \(R' \) of \(R \) (this may change the value group, but that is accepted). We will be left with summands \(a_i \pi^i \) where \(a_i \notin K_v \) if \(i \) is negative.

By our assumption on \(L_v \), for every \(a_i \in L_0 v \setminus K_v \), there is a maximal \(k \) such that its \(p^k \)-th root is still in \(L_0 v \).

The idea of Epp is now to replace \(a_i \pi^i \) by its \(p^k \)-th root \(a_i^{1/p^k} \pi^{i/p^k} \).
Elements of the proof

If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0\nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0\nu$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'.
If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0\nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0\nu$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'.

After doing this for all negative i, Epp states that in the above form for $z^p - z$ we have that a_n has no p-th root in $L_0\nu$.
Elements of the proof

If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0\nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0\nu$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'.

After doing this for all negative i, Epp states that in the above form for $z^p - z$ we have that a_n has no p-th root in $L_0\nu$. From this one easily deduces that for the new extension $L'|K'$ we have that $[L'|\nu : K'|\nu] = p$.
Elements of the proof

If $a_i \in K_v$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K_v$ if i is negative.

By our assumption on L_v, for every $a_i \in L_0 v \setminus K_v$, there is a maximal k such that its p^k-th root is still in $L_0 v$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'.

After doing this for all negative i, Epp states that in the above form for $z^p - z$ we have that a_n has no p-th root in $L_0 v$. From this one easily deduces that for the new extension $L' | K'$ we have that $[L' v : K' v] = p$ and $vL' = vK'$,
Elements of the proof

If $a_i \in K\nu$, then we can get rid of the term $a_i \pi^i$ by putting some y with $y^p - y = a_i \pi^i$ in the extension R' of R (this may change the value group, but that is accepted). We will be left with summands $a_i \pi^i$ where $a_i \notin K\nu$ if i is negative.

By our assumption on $L\nu$, for every $a_i \in L_0\nu \setminus K\nu$, there is a maximal k such that its p^k-th root is still in $L_0\nu$.

The idea of Epp is now to replace $a_i \pi^i$ by its p^k-th root $a_i^{1/p^k} \pi^{i/p^k}$, putting π^{i/p^k} into R'.

After doing this for all negative i, Epp states that in the above form for $z^p - z$ we have that a_n has no p-th root in $L_0\nu$. From this one easily deduces that for the new extension $L'|K'$ we have that $[L'|\nu : K'|\nu] = p$ and $\nu L' = \nu K'$, so $S.R'$ is weakly unramified over R'.
The problem is that the numbers k can be different for two different indices i.

The result of Epp's replacement procedure is

$$(a^{1/p} - p + a^{-1})^{\pi - 1} = (t + t^p - t)\pi - 1 = t^p\pi - 1.$$

This gap went undetected for almost 30 years.
The gap in Epp’s proof

The problem is that the numbers \(k \) can be different for two different indices \(i \). It can then happen that the new summands that replace the old ones have the same power of \(\pi \).
The gap in Epp’s proof

The problem is that the numbers k can be different for two different indices i. It can then happen that the new summands that replace the old ones have the same power of π. But then their coefficients can combine uncontrolledly, so in particular the new a_n can again be a p-th power.
The gap in Epp’s proof

The problem is that the numbers k can be different for two different indices i. It can then happen that the new summands that replace the old ones have the same power of π. But then their coefficients can combine uncontrolledly, so in particular the new a_n can again be a p-th power. Let us give an example.
The problem is that the numbers k can be different for two different indices i. It can then happen that the new summands that replace the old ones have the same power of π. But then their coefficients can combine uncontrolledly, so in particular the new a_n can again be a p-th power. Let us give an example.

Take $L_0v = Kv(t)$ where t is transcendental over Kv. Take $a_{-p} = t^p$ and $a_{-1} = t^p - t$. Further, let

$$z^p - z = a_{-p} \pi^{-p} + a_{-1} \pi^{-1}.$$
The problem is that the numbers k can be different for two different indices i. It can then happen that the new summands that replace the old ones have the same power of π. But then their coefficients can combine uncontrolledly, so in particular the new a_n can again be a p-th power. Let us give an example.

Take $L_0 \nu = K\nu(t)$ where t is transcendental over $K\nu$. Take $a_{-p} = t^p$ and $a_{-1} = t^p - t$. Further, let

$$z^p - z = a_{-p} \pi^{-p} + a_{-1} \pi^{-1}.$$

The result of Epp’s replacement procedure is

$$(a_{-p}^{1/p} + a_{-1}) \pi^{-1} = (t + t^p - t) \pi^{-1} = t^p \pi^{-1}.$$
The gap in Epp’s proof

The problem is that the numbers k can be different for two different indices i. It can then happen that the new summands that replace the old ones have the same power of π. But then their coefficients can combine uncontrolledly, so in particular the new a_n can again be a p-th power. Let us give an example.

Take $L_0v = Kv(t)$ where t is transcendental over Kv. Take $a_{-p} = t^p$ and $a_{-1} = t^p - t$. Further, let

$$z^p - z = a_{-p} \pi^{-p} + a_{-1} \pi^{-1}.$$

The result of Epp’s replacement procedure is

$$(a_{-p}^{1/p} + a_{-1}) \pi^{-1} = (t + t^p - t) \pi^{-1} = t^p \pi^{-1}.$$

This gap went undetected for almost 30 years.
While working on my PhD thesis using similar ideas of looking for normal forms of extensions,
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap.
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap. In 2003 I published a correction in Inventiones.
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap. In 2003 I published a correction in Inventiones. It is based on the observation that whenever such combinations of coefficients happen,
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap. In 2003 I published a correction in Inventiones. It is based on the observation that whenever such combinations of coefficients happen, the number of summands of negative value
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap. In 2003 I published a correction in Inventiones. It is based on the observation that whenever such combinations of coefficients happen, the number of summands of negative value (i.e., where π has a negative rational exponent) decreases.
While working on my PhD thesis using similar ideas of looking for normal forms of extensions, I noticed the gap. In 2003 I published a correction in Inventiones. It is based on the observation that whenever such combinations of coefficients happen, the number of summands of negative value (i.e., where π has a negative rational exponent) decreases.

So one only needs to repeat Epp’s replacement procedure a finite number of times until the unwanted combinations stop to happen.
These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification,
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.
These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f,
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

\[z^p - z = \sum f_i(c)(x - c)^i \]

where the right hand side is a Taylor expansion of a polynomial \(f \), with \(f_i \) being the formal derivatives.
These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f, with f_i being the formal derivatives (that make the expansion also work in positive characteristic).
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f, with f_i being the formal derivatives (that make the expansion also work in positive characteristic). Here, the constant c will be changed during the process.
These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f, with f_i being the formal derivatives (that make the expansion also work in positive characteristic). Here, the constant c will be changed during the process. The transcendental element x now plays the role of π.
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f, with f_i being the formal derivatives (that make the expansion also work in positive characteristic). Here, the constant c will be changed during the process. The transcendental element x now plays the role of π, but without being a local parameter.
These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

\[z^p - z = \sum f_i(c)(x - c)^i \]

where the right hand side is a Taylor expansion of a polynomial \(f \), with \(f_i \) being the formal derivatives (that make the expansion also work in positive characteristic). Here, the constant \(c \) will be changed during the process. The transcendental element \(x \) now plays the role of \(\pi \), but without being a local parameter. Again, one wants to replace \(p \)-th powers by their roots,
Higher elimination of ramification

These unwanted combinations of coefficients come back to haunt us when we try to prove higher forms of elimination of ramification, as needed for some of the partial results I listed earlier.

Now one typically deals with equations of the form

$$z^p - z = \sum f_i(c)(x - c)^i$$

where the right hand side is a Taylor expansion of a polynomial f, with f_i being the formal derivatives (that make the expansion also work in positive characteristic). Here, the constant c will be changed during the process. The transcendental element x now plays the role of π, but without being a local parameter. Again, one wants to replace p-th powers by their roots, but things become much more complicated.
My own gap

While effectively filling Epp’s gap,
My own gap

While effectively filling Epp’s gap, even at a higher level,
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis.
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the **equal characteristic case** where both L and Lv have the same positive characteristic.

But if char $L = 0$ while char $Lv = p > 0$, then the situation changes.
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic. But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions,
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$.

Franz-Viktor Kuhlmann

Elimination of Ramification
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler,
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius.
My own gap

While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and L_v have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } L_v = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius. Now, but only under certain conditions,
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the **equal characteristic case** where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius. Now, but only under certain conditions, one can replace d^p by $-pd$, ...
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic. But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius. Now, but only under certain conditions, one can replace d^p by $-pd$, modulo terms of higher value,
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius. Now, but only under certain conditions, one can replace d^p by $-pd$, modulo terms of higher value, and the dynamics of the values under the valuation becomes very different.
While effectively filling Epp’s gap, even at a higher level, I produced my own gap in another proof in my thesis. So far, we have only considered the equal characteristic case where both L and Lv have the same positive characteristic.

But if $\text{char } L = 0$ while $\text{char } Lv = p > 0$, then the situation changes. Galois extensions of degree p are now Kummer extensions, generated by roots of polynomials of the form $X^p - a$. While this appears to be even simpler, we are now lacking the additivity of the Frobenius. Now, but only under certain conditions, one can replace d^p by $-pd$, modulo terms of higher value, and the dynamics of the values under the valuation becomes very different. So it happened that I jumped to conclusions in the proof of what I call the Henselian Rationality Theorem in mixed characteristic.
Yuri Ershov noticed the gap.
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in Doklady Mathematics 78,
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in *Doklady Mathematics 78*, he set out to fill the gap.
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in *Doklady Mathematics* 78, he set out to fill the gap. Unfortunately, his article is hard to read because apparently it has been garbled by the translator.
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in *Doklady Mathematics* 78, he set out to fill the gap. Unfortunately, his article is hard to read because apparently it has been garbled by the translator. More seriously, it contains two new gaps.
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in Doklady Mathematics 78, he set out to fill the gap. Unfortunately, his article is hard to read because apparently it has been garbled by the translator.

More seriously, it contains two new gaps. One of them, surprisingly, is the same as Epp’s gap, just at a higher level:
Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in Doklady Mathematics 78, he set out to fill the gap. Unfortunately, his article is hard to read because apparently it has been garbled by the translator.

More seriously, it contains two new gaps. One of them, surprisingly, is the the same as Epp’s gap, just at a higher level: overlooking the unwanted combinations of coefficients.
Ershov’s contribution

Yuri Ershov noticed the gap. In 2008, in an article called *On Henselian Rationality of Extensions* in Doklady Mathematics 78, he set out to fill the gap. Unfortunately, his article is hard to read because apparently it has been garbled by the translator.

More seriously, it contains two new gaps. One of them, surprisingly, is the the same as Epp’s gap, just at a higher level: overlooking the unwanted combinations of coefficients.
A history of gaps

So the history of elimination of ramification
So the history of elimination of ramification is at the same time a history of gaps.
So the history of elimination of ramification is at the same time a history of gaps. But Ershov’s article also contains some nice ideas.
So the history of elimination of ramification is at the same time a history of gaps. But Ershov’s article also contains some nice ideas. Using them, I am hopeful that I have now filled my own gap.
So the history of elimination of ramification is at the same time a history of gaps. But Ershov’s article also contains some nice ideas. Using them, I am hopeful that I have now filled my own gap and this history of gaps has come to an end.
A history of gaps

So the history of elimination of ramification is at the same time a history of gaps. But Ershov’s article also contains some nice ideas. Using them, I am hopeful that I have now filled my own gap and this history of gaps has come to an end (for now).

Preprints and further information

The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html