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Discussion of the scientific and the results achieved on the basis of the
above-mentioned works

Motivation and description of the field

Henri Lebesgue in his work [Leb] from 1904 posed the following problem: is there a non-negative
function defined on all subsets of the interval [0, 1], m : P([0, 1])→ [0, 1], which is

(1) translationally invariant, i.e.

(∀X, Y ∈P([0, 1]))(∀t ∈ R) (Y = (X + t) mod 1 −→ m(X) = m(Y )),

(2) σ-additive, i.e. if F ∈ [P([0, 1])]ω is a countable family of pairwise disjoint sets, then m(
⋃
F) =∑

A∈F m(A),
(3) m([0, 1]) = 1?

Here P(X) denotes the power set of the set X and [X]<κ = {A ∈P(X) : |A| < κ}. The definitions
of [X]κ, [X]≤κ are analogous.

In 1905, Giuseppe Vitali showed in [Vitali] that such a function on P([0, 1]) does not exist. For
this purpose, using the axiom of choice, Vitali built nonmeasurable a selector for the family of all
equivalence classes with respect to the congruence: a ∼ b←→ a− b ∈ Q.

Stefan Banach and Kazimierz Kuratowski [BaKu], assuming the continuum hypothesis CH, gave
a negative answer to the analogous problem posed by Lebesgue, where condition (1) was replaced by
the condition that m vanishes on all singletons.

Let X be an infinite set, then the function m : P(X)→ [0, 1] is a non-trivial κ-additive measure
if:

(1) (∀x ∈ X) m({x}) = 0,
(2) (∀F ∈ [P(X)]<κ(∀A,B ∈ F)((A 6= B −→ A ∩B = ∅) −→ (m(

⋃
F) =

∑
A∈F m(A))),

(3) m(X) = 1.
Measure m we call σ-additive if it is ω1-additive.

Let κ be cardinal number such that |X| = κ. If there is nontrivial κ-additive measure on the
set X, which fulfils the above conditions, then the cardinal number κ we call a real measurable
cardinal. A real measurable cardinal is weakly inaccessible, i.e. it is an uncountable limit cardinal,
which is regular. An uncountable cardinal number κ is a measurable cardinal if there is a κ-complete
nonprincipial ultrafilter U on κ. Each such ultrafilter generates a two-valued κ-additive measure on
κ defined as follows:

(∀A ∈P(κ)) m(A) =

{
1 A ∈ U
0 A /∈ U

.

A measurable cardinal κ is strongly inaccessible i.e. it is a regular, uncountable limit cardinal such
that, for each cardinal number λ < κ, 2λ < κ. The concept of a measurable cardinal number was
introduced by Stanisław Ulam see, [Ulam]. In the same article, the author proved the following
theorem, which opened a very important branch of set theory, namely the theory of large cardinals.

Theorem 1 (Ulam, 1930). If there is a nontrivial σ-additive measure on a set X, then either there
exists a measurable κ which is not greater than |X|, or there exists a real measurable cardinal which
is not grater than 2ℵ0.

Robert Solovay proved [So2] that the existence of a measurable cardinal κ, implies that there exists
a forcing notion P, such that in a generic extension V [G] (where G ⊆ P is a generic filter over model
V ) κ = 2ℵ0 and κ is real-measurable.

In [So1] Solovay showed that the existence of a strongly inaccessible cardinal implies that it is con-
sistent with the Zermelo-Frankel theory and depending choices axiom (ZF+ DC ) that every subset
of R is measurable with respect to the Lebesgue measure, and has the Baire property. Moreover,
every uncountable subset of R contains a perfect set. The axiom DC says that for every set X and
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arbitrary relation R ⊆ X × X such that dom(R) = X, there exists a sequence (xn)n∈ω ∈ Xω such
that (xn, xn+1) ∈ R for every n ∈ ω.

The transfinite recursion theorem, which is a consequence of the axiom of choice AC, is the main
tool for the construction of nonmeasurable sets with respect to the Lebesgue measure, and sets which
do not have the Baire property. Using transfinite recursion, we can obtain a Bernstein set A ⊂ X in
an uncountable Polish space X. Recall that A is a Bernstein set if for each perfect subset P ⊆ X we
have A ∩ P 6= ∅ and Ac ∩ P 6= ∅.

Nikolai Lusin (Wacław Sierpiński) proved that CH implies the existence of a so called Lusin
(Sierpiński, resp.) set in R. A set is a Lusin (Sierpiński) set if is uncountable and and has a countable
intersection with every set of first Baire category (Lebesgue measure zero, resp). Of course, the
definition of a Lusin set extends naturally to every Polish space.

A consequence of the axiom of choice AC is the existence of a nonprincipial ultrafilter U ⊆P(ω)
on ω, which allowed Sierpiński to construct a non-measurable subset with respect to the Haar measure
on the Cantor space 2ω = {0, 1}ω, defined as follows

{x ∈ 2ω : {n ∈ ω : x(n) = 1} ∈ U }.
Jacek Cichoń and Przemysław Szczepaniak [CS] gave a new method for construction of a nonme-

asurable subsets of Euclidean space Rn. They used a linear isomorphism Rn and Rm over the field of
rational numbers. If f : Rn → Rm is such an isomorphism for different numbers m,n, then for every
set A ⊆ Rn such that int(A) 6= ∅ and int(Ac) 6= ∅, the image f [A] ⊆ Rm is a nonmeasurable set with
respect to the m-dimensional Lebesgue measure.

The existence of Bernstein and Vitali sets and the existence of nonprincipial ultrafilter on ω used by
Sierpiński to construct a nonmeasurable set on the Cantor space are provable within ZFC theory.
This is not the case for Lusin and Sierpinski sets, which can be constructed, e.g., in any model
in which the continuum hypothesis is satisfied; but, e.g., Martin’s Axiom and the negation of the
continuum hypothesis MA+¬CH prohibit the construction of these sets. However, if to any ground
model V, such that V |= CH, we add ω2 Cohen independent reals Cω2 = {cξ ∈ 2ω : ξ < ℵ2}, then
in the generic extension V [Cω2 ] there exists a Lusin set with the cardinality ℵ2 = c. Moreover, the
set Cω1 = {cξ : ξ < ℵ1} /∈ M is a Lusin set. Therefore Cω1 is not measurable in the sense of Baire.
Similarly, if to any model V |= CH, we add ℵ2 Solovay independent reals, we get a nonmeasurable
set with respect to the Lebesgue measure of cardinality less than c in the generic extension.

In [Ku] Kazimierz Kuratowski, assuming CH, proved that for each family A ⊆ M of pairwise
disjoint sets of first category, such that

⋃
A /∈ M, there exists a subfamily A′ ⊆ A whose union is

not measurable in the sense of Baire.
One of the well known theorems on nonmeasurable unions of sets is the following theorem proved

by Jan Brzuchowski, Jacek Cichoń, Edward Grzegorek and Czesław Ryll-Nardzewski [BCGR].

Theorem 2. Let I be a σ-ideal with a Borel base on a Polish space X, containing all singletons.
Then for every point-finite family A ⊆ I such that

⋃
A /∈ I, there exists a subfamily A′ ⊆ A, such

that the union
⋃
A′ is not I-measurable, i.e. does not belong to the σ-field of sets generated by the

σ-ideal I and the σ-field of all Borel sets Bor(X).

Lev Bukovsky proved this theorem for partitions of R into the first Baire category sets or into
Lebesgue measure zero sets. His paper [Bu] appeared in the same issue of the Bulletin of the Polish
Academy of Sciences as the paper [BCGR]. The author used a nonelementary method of generic
ultrapower for Cohen forcing in the case of the first category sets and Solovay forcing of adding a
one random real for the measure case.

The last two assertions cannot be extended to the point-countable families A ⊆ N , i.e. those for
which we have

(∀x ∈ X) ({A ∈ A : x ∈ A} ∈ [A]≤ω).

Namely, David Fremlin [Frem], by adding ω2 independent Cohen reals to the ground model L which is
the Gödel constructible universe, constructed a point-countable family A ⊆ N of Lebesgue measure
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zero sets, such that
⋃
A = R and for each subfamily B ⊆ A the union

⋃
B is measurable with respect

to the Lebesgue measure.
In the particular case of measure, it is not known whether for each partition of the segment [0, 1] into

sets of Lebesgue measure zero, we can select a subfamily whose union is completely nonmeasurable,
i.e. has the inner measure equal to 0 and the outer measure equal to 1. A partial result was obtained
by David Fremlin and Stevo Todorćević in [FrTod]. The authors showed that for any partition of the
interval [0, 1] into sets of Lebesgue measure zero and for any ε > 0 one can select a subfamily the
union of which has inner measure less than ε and outer measure greater than 1− ε.

A special case of the set-theoretical union of families, are algebraic sums of subsets of (G,+). If
A,B ∈P(G), then we define the algebraic sum of A and B as follows

A+B = {a+ b ∈ G : (a, b) ∈ A×B}.

In this report we consider only uncountable Polish Abelian groups.
Sierpiński [Sier] showed that there are two subsets of X, Y of the real line R such that X + Y is

not Lebesgue measurable.
A pair (I,A) has the perfect set property if every set B ∈ A\ I contains a perfect set. ((N ,LM)

and (M,BP) are examples of such pairs, where LM is the σ-algebra of all Lebesgue measurable
subsets of R, and BP is the algebra of all subsets of R having the Baire property). Recently, Marcin
Kysiak proved in [Kys1] that if I is a σ-ideal on the real line, I contains all singletons, A ⊆P(R)
and the pair (I,A) has the perfect set property, then for any subset A ⊆ R such that A + A /∈ I
there exists X ⊆ A for which X +X /∈ A.

As a corollary we obtain the theorem of Ciesielski, Fejzić and Freiling [CFF] which says that if
A ⊆ R is a subset of R such that A + A has positive outer measure, then there exists a set X ⊆ A
such that X+X is Lebesgue nonmeasurable. The analogous theorem for the σ-ideal of first category
sets M also holds and it follows from the fact that (M,BP) has the perfect set property. In [CFF]
the authors proved the following theorem: if A + A /∈ N for A ⊆ R, then there exists a subset
X ∈ P(A) of Lebesgue measure zero such that X + X is Lebesgue nonmeasurable. The analogous
theorem for the Baire category holds, too.

Jacek Cichoń and Andrzej Jasiński proved the following theorem in [CJ].

Theorem 3. If I is a translationally invariant σ-ideal on the real line R having a co-analytic base,
then the following two properties are equivalent:

• (∃A,B ∈ I) (A+B /∈ I),
• (∃A,B ∈ I) (A+B /∈ Bor(R)[I]).

Bor(R)[I] denotes the σ-algebra generated by all Borel sets and all elements of I.
Using the structure of Vitali set, Jacek Cichoń, Alexander Kharazishvili and Bogdan Węglorz

proved that if G is an uncountable, analytic proper subgroup of the real line, then there exist
measurable and nonmeasurable (in the sense of Lebesgue) selectors in the quotient group R/G.

In the Polish space theory a crucial role is played by the following cardinal coefficients.
Let F be a family of subsets of a Polish space X. Let

add(F) = min{|A| : A ⊆ F ∧
⋃
A /∈ F},

non(F) = min{|A| : A ⊆ X ∧ A /∈ F},
cov(F) = min{|A| : A ⊆ F ∧

⋃
A = X},

covh(F) = min{|A| : A ⊆ F ∧ (∃B ∈ Bor(X) \ F) B ⊆
⋃
A},

cof(F) = min{|A| : A ⊆ F ∧ (∀B ∈ F)(∃A ∈ A) B ⊆ A},
Cof(F) = min{|A| : A ⊆ F ∧ (∀B ∈ F)(∃A ∈ A) A ⊆ B}.
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Additionally, the following two cardinal numbers describe the smallest size of unbounded and domi-
nating families, respectively, on the Baire space ωω:

b = min{|B| : B ⊆ ωω ∧ (∀x ∈ ωω)(∃y ∈ B) ¬(y ≤∗ x)}

d = min{|D| : D ⊆ ωω ∧ (∀x ∈ ωω)(∃y ∈ D) x ≤∗ y}
(where f ≤∗ g stands for (∃m ∈ ω)(∀n ≥ m)f(n) ≤ g(n)). These two cardinals are related to the
previous coefficients for the σ-ideals of sets of first Baire category and of Lebesgue measure zero. The
relations between these cardinals are the content of the following Cichoń diagram:

cov(N ) // non(M) // cof(M) // cof(N ) // c
OO

b

OO

// d

OO

ω1
// add(N )

OO

// add(M)

OO

// cov(M)

OO

// non(N ),

OO

where → stands for the inequality ≤ between cardinals. Additionally, we known that

add(M) = min{b, cov(M)}, cof(M) = max{d, non(M)}.
In [CKP] Cichoń Kamburelis and Pawlikowski proved that if quotient algebra Bor(X)[I]/I is c.c.c.,
then cof(I) = Cof(Bor(X)[I] \ I), what gives an equality between those cardinal coefficients for
σ-ideals M and N on the real line R.

The monograph [BartJud] as well as the article [BJS] are closely related to the Cichoń diagram.
In particular, the authors presented models of ZFC where all coefficients are either ω1, ω2 and all
admissible (by the diagram) schemes are realised.

Description of scientific achievement.

Further we will use the standard set-theoretical notation, e.g. ω will denote the smallest infinite
ordinal, α, β, γ, ξ, η will denote infinite ordinals, κ, λ will denote infinite cardinal numbers, P(X)
will denote the power set of X, [X]<κ, [X]≤κ, [X]κ will denote the families of all subsets of X of
size less than, less or equal to, equal to κ, respectively. A separable topological space X is a Polish
space if it is complete and metrizable. We will consider only uncountable Polish spaces. By Borτ (X)
we will denote the σ-algebra of Borel sets on a topological space (X, τ), and, if the topology is clear
from a context, this family is simply denoted by Bor(X). ByM,N we will denote σ-ideals of sets of
the first category sets (on an uncountable Polish space) and of sets of Lebesgue measure zero (on a
Euclidean space Rn), respectively. We say that I ⊆P(X) is an ideal with a Borel base on a Polish
space X if (∀A ∈ I)(∃B ∈ Bor(X)) A ⊆ B ∧B ∈ I.

Let I be a fixed σ-ideal on a Polish space X, then the σ-algebra Bor(X)[I] generated by the family
Bor(X) ∪ I is called the σ-algebra of measurable sets relative to the σ-ideal. Then such σ-algebra
can be written as {B4I : (B, I) ∈ Bor(X) × I}, where 4 stands for the symmetric difference of
two sets. Every subset of a Polish space X is I-measurable if and only if it is a member of the
σ- algebra Bor(X)[I]. Similarly, a mapping which is Bor(X)[I]-measurable will be called for short
I-measurable. Each family A ⊆P(X) is called I-summable if for any subfamily A′ ⊆ A the union⋃
A is I-measurable. For example, every family of open sets of a Polish space is I-summable for

any σ-ideal with a Borel base. Each subset of the real line is N -nonmeasurable iff it is not Lebesgue
measurable. Analogously, each subset of a Polish space is M-nonmeasurable if it does not have the
Baire property.

One of the main notions I focused on in my research is the complete nonmeasurability with respect
to an ideal containing all singletons (defined on a Polish space).
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Definition 1. Let I ⊆ P(X) be a fixed σ-ideal with a Borel base, containing all singletons in a
Polish space X. A set A ∈P(X) is completely I-nonmeasurable when

(∀B ∈ Bor(X) \ I) (A ∩B 6= ∅ ∧ Ac ∩B 6= ∅).

For example, each set which is completely [X]≤ω-nonmeasurable is a Bernstein set, each set which
is completely N -nonmeasurable on the real line has an inner measure equal to zero and its completion
has an inner measure equal to zero, too. Each completely M-nonmeasurable set does not have the
Baire property in any nonempty open set.

For the σ-ideal of all null subsets of the Euclidean space Rn, the notion of completely N -non-
measureability agree with the notion of saturated non-measurable set. In the case of the σ-ideal of all
meager subsets of Rn, the notion of the set which is completeM-nonmeasurable is strictly connected
to the (∗) property. A subset A ⊆ Rn has (∗) property iff for any Baire measurable set B ⊆ Rn if
B ⊆ A or B ⊆ Ac then B is meager set. Saturated non-measurable and also subsets of the Euclidean
space which has (∗) property are investigated and can be found in some monographs as for example
in Marek Kuczma book [Kucz] (see section 3.3. Saturated non-measurable sets).

A family A of subsets of a set X is point-small iff

{x ∈ X :
⋃
{A ∈ A : x ∈ A} /∈ I} ∈ I.

In [H1] we have obtained the following result.

Theorem 4 ([H1, Thm 3.2]). If I is a σ-ideal with a Borel base on a Polish space X and covh(I) =
Cof(Bor(X)[I] \ I), then for each point-small family A ⊆ I such that X \

⋃
A ∈ I there exists a

subfamily A′ ⊆ A, such that the union
⋃
A′ is completely I-nonmeasurable.

The proof of this theorem as proofs of many such claims is based on a transfinite induction.
We construct a subfamily A′ ⊆ A and a set S ⊆ X such that S ∩

⋃
A′ = ∅, S ∩ B 6= ∅, and⋃

A′ ∩ B 6= ∅, for each B from some cofinal family F ⊆ Bor(X) \ I. The construction is possible
because covh(I) = Cof(Bor(X)[I] \ I).

It should be noted that for some configuration of cardinal coefficients the theorem about nonme-
asurability of unions of sets from a fixed σ-ideal on Polish space occurs in a large generality.

Theorem 5 ([H1, Thm 3.1]). Let I be a fixed σ-ideal on a Polish space X such that there exists a
completely I-nonmeasurable set of size less than covh(I). Then for any family A ⊆ I, such that X \⋃
A ∈ I, there exists a subfamily A′ ⊆ A, such that the union

⋃
A′ is completely I-nonmeasurable.

For the σ-ideal of the first category sets on R it is true that in the generic extension obtained by
adding ω2 independent Cohen reals {cξ : ξ < ω2} (here cov(M) = ω2 = c) there exists a completely
M-nonmeasurable set whose cardinality is strictly smaller than covh(M):

X = {cξ + r ∈ R : ξ < ω1 ∧ r ∈ Q}.
A similar argument works in the measure case, when we add ω2 independent random reals to the
Gödel universe L.

This theorem was applied by Yulia Kuznetsova in [Kuzn], where she considered some problems
related to harmonic analysis. She asked whether for every measure zero set A on the real line, there
exists a subset B ⊆ R such that A + B is nonmeasurable. In each model where the above theorem
is true for the ideal of the Lebesgue measure zero sets (e.g., in the model obtained by adding ω2

Solovay reals to the constructible universe) the answer to Kuznetsova’s question is positive. As a
result, in these models any measurable homomorphism between a locally compact topological group
and a topological group is continuous.

Theorem 4 was used in [H1] to prove that in Abelian Polish groups there exist subfamilies of
translationally invariant σ-ideals with nonmeasurable unions. Let (G,+) be a fixed Polish Abelian
group. An ideal I ⊆ P(G) is translationally invariant on G if and only if for any A ∈ I and any
g ∈ G, we have g + A = {g + a ∈ G : a ∈ A} ∈ I. We say that a set C ⊆ G is an I-Gruenhage
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set, if for any set B ∈ Bor(G)[I] \ I and any set T ∈ [G]<c the set B \ (C + T ) is not empty. Darji
and Keleti [DK] proved that if C ⊂ R is a compact set of packing dimension dimp(C) < 1, then
R 6= T +C for any T ∈ [R]<c. With this assertion, it is not difficult to show that the classical Cantor
set C is an N -Gruenhage set.

Namely, the following theorem was proved in [H1].

Theorem 6 ([H1, Thm 5.2]). If I is a translationally invariant σ-ideal with a Borel base on a Polish
Abelian group (G,+), then for every set C ⊆ G, for which C ∪ −C is an I-Gruenhage set, there
exists P ⊆ G, such that P + C is a completely I-nonmeasurable set in G.

In the proof of this theorem we used the fact that for the symmetric relation

R = {(x, y) ∈ G : x− y ∈ C ∨ y − x ∈ C},
the family A = {R[x] ∈ I : x ∈ G} satisfies the hypothesis of Theorem 4.

It is a natural question whether the conclusion of the above theorem can be strengthened to the
condition P ⊆ C. The answer is positive in the case of the classical Cantor set. To prove this result
we used the ultrafilter method, discussed in the introduction to this section.

Theorem 7 ([H1, Cor 5.10]). If C is the classical Cantor set, then there exists a subset P ⊆ C for
which the algebraic sum P +C is nonmeasurable in the sense of Lebesgue and does not have the Baire
property.

Using the fact that every uncountable Borel set has cardinality c, we obtain the following theorem.

Theorem 8 ([H1, Thm 4.1]). If X is an uncountable Polish space and A ⊆ [X]≤ω is a point-
countable family (i.e. {A ∈ A x ∈ A} ∈ [A]≤ω for every x ∈ X), such that

⋃
A = X, then there

exists a subfamily A′ ⊆ A such that
⋃
A′ is a Bernstein set.

As one can easily see, if c is a regular cardinal number, then the countable-point property of A can
be replaced, e.g. |{A ∈ A : x ∈ A}| < c for every x ∈ X. This condition cannot be generalised to c-
point families, for it is well known that if CH holds, then there exists a summable family A ⊆ [R]≤ω

covering R, i.e., such that the union of any subfamily is in the σ-field Bor(R)[[R]≤ω] = Bor(R)
generated by all Borel sets Bor(X) and the σ-ideal of all countable subsets. Moreover, for each
uncountable subfamily A′ ⊆ A we have

⋃
A′ = R and, of course, if it is countable, then

⋃
A′ is a

countable set.
Theorem 4.4 in the same article [H1] shows a relationship between the summability of a family

of closed sets in the Polish space and the Cantor-Bendixon rank. Let A ⊆ X be any subset of a
topological space X. By A′ we denote the set of all condensation points of A. Using induction on the
ordinals ON define Aα in the following way:

Aα =

{
(Aβ)′ if α = β + 1⋂
{Aξ : ξ < α} if α is a limit ordinal.

Theorem 9 ([H1, Thm 4.4]). Assume that I is a σ-ideal with a Borel base on a Polish space X. If
A ⊆P(X) is an I-summable family of countable closed sets of bounded countable Cantor-Bendixon
rank, i.e.

(∃α < ω1)(∀A ∈ A) (Aα = ∅),
then

⋃
A ∈ I.

It is an immediate application of this theorem that if A is a family of closed countable sets with
bounded countable Cantor-Bendixon rank and

⋃
A /∈ I, then there exists a subfamily A′ ⊆ A, such

that the union
⋃
A′ is I-nonmeasurable.

In [H2] (jointly with Szymon Żeberski) we investigate the existence of subfamilies of families of
sets from a fixed σ-ideal I whose unions are completely I-nonmeasurable. We have obtained results
concerning families of sets for which there exists a parametrisation which is regular in terms of
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descriptive complexity. We introduce the following notation. Let F ⊆ X × Y be a fixed relation. For
each x ∈ X and y ∈ Y let

Fx = {v ∈ Y : (x, v) ∈ F} and F y = {u ∈ X : (u, y) ∈ F},

πX [F ] =
⋃
{F y : y ∈ X} and πY [F ] =

⋃
{Fx : x ∈ X} (πX [F ] and πY [F ] denote the projections of

F onto X, Y , respectively). If T ⊆ Y , then F−1[T ] = {x ∈ X : Fx ∩ T 6= ∅} denotes the preimage
of T by F .

Let π be a fixed partition of a Polish space X. The π-saturation of a set A ⊆ X is defined as

A∗ =
⋃
{E ∈ π : E ∩ A 6= ∅}.

A partition π is Borel measurable if the π-saturation of every open set is a Borel set, π is strongly
Borel measurable if the π-saturation of any closed set is a Borel set. Every open set in a Polish
space is a countable union of closed sets, which implies that each strongly Borel measurable partition
is Borel measurable. The concept of strong Borel measurability allows us to find subfamilies with
unions which are completely I-nonmeasurable in a fairly wide class of partitions (of a Polish space)
into closed sets from a σ-ideal I.

Theorem 10 ([H2, Thm 2.1]). Let I be a σ-ideal with a Borel base such that

(∀B ∈ Borel(X) \ I)(∃F ∈ Clo(X)) (F ⊆ B ∧ F /∈ I).

If A ⊆ I is a strongly Borel measurable partition X into closed sets, then there exists A′ ⊆ A such
that the union

⋃
A′ is completely I-nonmeasurable.

Here we present a sketch of the proof. By Theorem 4, it is sufficient to prove that covh(I) = 2ω.
For this purpose we choose a perfect set F /∈ I contained in a fixed Borel set B ∈ Bor(X) \ I.
Then π = {E ∩ F : E ∈ F} is a strongly Borel measurable partition of F and therefore it is Borel
measurable as well. Now we can use the Kuratowski – Ryll-Nardzewski selector theorem. Let S be
a Borel selector of the partition π. Then |S| = c, because if S were a countable set then F would
be included in countably many elements of the partition π, thus F ∈ I would be an element of the
ideal, which contradicts F /∈ I.

This claim is transfered immediately to the case of Polish topological groups as follows.

Corollary 1. Let (G,+) be a Polish Abelian group and let H < G a subgroup which is a perfect set
and belongs to an ideal I. If I is translationally invariant in G, I has a Borel base, and I possess
I-positive perfect set property, then there exists a set of translations T ⊆ G, such that T + H is
completely I-nonmeasurable in the group G.

Theorem 11 ([H2, Thm 2.2]). Let I ⊇ [X]≤ω be a σ-ideal with a Borel base on a Polish space X and
let f : X → Y be an I-measurable mapping from X into a topological space Y such that for any y ∈ Y
f−1[{y}] ∈ I. Then there exists a subset T ⊆ Y such that f−1[T ] is completely I-nonmeasurable.

Without loss of generality it can be assumed that f is Borel measurable, and then for each Borel
set B ∈ Bor(X) \ I, the projection of the set (B × Y ) ∩ f onto the space Y is analytic and, hence,
it is countable or it has the cardinality c. If the projection is countable, then B can be covered by
countably many members of I, which is impossible. Then covh({f−1[{y}] : y ∈ Y }) = c, and then
by Theorem 4 the conclusion of Theorem 11 is proved.

The above result can be extended to a theorem which can be stated in terms of multifunctions.

Theorem 12 ([H2, Thm 2.3]). If I is a c.c.c. σ-ideal such as in the previous theorem, and F : X → Y
is an I-measurable multifunction such that F (x) ∈ [Y ]<ω for every x ∈ X, then there exists a set
T ⊆ Y such that F−1[T ] is completely I-nonmeasurable.

The proof of this theorem is based on the Kuratowski – Ryll-Nardzewski selector theorem and the
following theorem.
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Theorem 13. Let I be a c.c.c. σ-ideal with a Borel base on a Polish space X and let F ⊆ I be a
family of sets such that

• F is point-finite,
• (∀B ∈ Bor(X) \ I)(B ⊆ [

⋃
F ]I −→ |{F ∈ F : F ∩B 6= ∅}| = c).

Then there exists a subfamily F ′ ⊆ F , such that the union
⋃
F ′ is completely I-nonmeasurable in

the Borel envelope [
⋃
F ]I.

Here, for A ∈ P(X), [A]I = X \
⋃
A, where A ⊆ Bor(X) \ I is a maximal antichain of Borel

I-positive sets which are disjoint from the set A. As F is point-finite, we can find a subfamily F0 ⊆ F
which has the same Borel envelope as that of F ( i.e. [

⋃
F0]I = [

⋃
F ]I) such that covh(F0) = c.

Then, by transfinite induction, we can find a subfamily F ′ ⊆ F0 as in the conclusion of Theorem 13.
Without loss of generality, we can assume that our multifunction F is Borel measurable. So if we

choose any I-positive Borel set B, then using the Kuratowski – Ryll-Nardzewski theorem on selectors
applied to the restricted function F � B we can find a Borel selector s ⊆ F � B, which has size c,
because F is a point-finite uncountable family. Thus, the second assumption in the auxiliary theorem
is also satisfied which allows us to find a subfamily of F ′ which satisfies the assertion of Theorem 12.

If we assume that a σ-ideal I with a Borel base is c.c.c., then Bor(X)[I] contains all analytic sets,
and then, by the Theorem 12, we obtain the following result.

Theorem 14 ([H2, Thm 2.4]). Let X and Y be Polish spaces and let I be a c.c.c. σ-ideal with a
Borel base on X. Let F ⊆ X × Y be an analytic relation in the product X × Y such that

(1) (∀y ∈ Y ) (F y ∈ I),
(2) X \ πX(F ) ∈ I,
(3) (∀x ∈ X) (|Fx| < ω).

Then there exists T ⊆ Y for which F−1[T ] is completely I-nonmeasurable.

The above three theorems are provable in ZFC theory, but we use additional conditions involving
some regularity of a family of sets from I. A natural question is whether the conclusions of these
assertions are true in the general case for a point-finite family A ⊆ I, for which the union is the
whole space, maybe, except a set from I. Unfortunately, we do not know the answer, however the
nonexistence of a quasi-measurable cardinal which is not greater than c gives positive answer, see
[H6].

We say that an uncountable cardinal κ is quasi-measurable if there exists a κ additive ideal
I ⊆P(κ), which is c.c.c. (i.e. each antichain in the algebra P(κ)/I is at most countable).

The following theorem is the main result of [H6], a joint article with Szymon Żeberski.

Theorem 15 ([H6, Thm 3.3]). Assume that there is no quasi-measurable cardinal κ ≤ c. If I is
a c.c.c. σ-ideal on a Polish space X and A ⊆ I is a point-finite cover of X, then there exists a
family of pairwise disjoint families {Aξ ⊆ A : ξ < ω1} such that each union

⋃
Aξ is completely

I-nonmeasurable in the space X.

The proof of this theorem is based on two lemmas in [Zeb] and Theorems 2.1 and 2.2 in [H6].

Lemma 1 ([Zeb], Lemma 3.4). If I is a c.c.c. σ-ideal on a Polish space X and A ⊆ I is a point-finite
family, such that

⋃
A /∈ I and the algebra P(A)/I is not c.c.c., then there exists an uncountable

collection of pairwise disjoint subfamilies {Aξ : ξ < ω1 ∧Aξ ⊆ A} with the same Borel envelope that
is not in I, i.e. [

⋃
Aξ]I = [

⋃
Aη]I 6= 0 for any ξ, η < ω1.

Lemma 2 ([Zeb], Lemma 3.5). If I is a c.c.c. σ-ideal on a Polish space X and A is any point-finite
covering of X, then the set

{A ∈ A : (∃B ∈ Bor(X) \ I) B ⊆ A}
is at most countable.

In [H6] we proved the following theorem.
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Theorem 16 ([H6, Thm 2.1]). Assume that A ⊆ I is a covering of a Polish space X such that for
every set D ∈ [X]<c the union

⋃
x∈D

⋃
{A ∈ A : x ∈ A} does not contain any I-positive Borel set

B ∈ Bor(X) \ I. Then the family I contains c many pairwise disjoint subfamilies {Aξ ⊆ A : ξ < c},
such that each union

⋃
Aξ is completely I-nonmeasurable in X.

The above theorem gives a result which is used in the proof of the main result of [H6].

Theorem 17 ([H6, Thm 2.2]). Assume that there is no quasi-measurable κ < c. If A ⊆ I is a family
of subsets of X Polish, such that for each x ∈ X, |{A ∈ A x ∈ A}| < c, and

⋃
A /∈ I, then P(κ)/I

is not ccc.

We will sketch the proof of Theorem 15. By transfinite induction we are finding a family of pairwise
disjoint I-positive Borel sets {Bσ : σ < γ} and a family {Aσξ : ξ < ω1} such that,

• (∀ξ, η < ω1) (ξ 6= η −→ Aσξ ∩ Aση = ∅)
• (∀ξ < ω1) (Bσ ∈ p

⋃
Aσξ \

⋃
ρ<σ BρqI)

where for any Y ⊆ X, pY qI is the set of ⊆I-minimal elements in {B ∈ Bor(X) : Y ⊆I B} which is
partially ordered by the relation ⊆I (i.e. u ⊆I v ←→ u \ v ∈ I), the property c.c.c. of I guarantees
that pY qI is not empty. This same property of I implies that γ < ω1 is a countable ordinal.

For a fixed σ < γ, let Aσ = {A \
⋃
ρ<σ Bρ : A ∈ A \

⋃
ρ<σAρ}. If

⋃
Aσ ∈ I, then the process

is completed. Otherwise, if
⋃
Aσ /∈ I then by Theorem 17 P(Aσ)/I is not c.c.c.. Then Lemma 1

allows us to find a family {Aσξ : ξ < ω1} such that for any ξ, η < ω1 [
⋃
Aσξ ]I = [

⋃
Aση ]I 6= 0. Then

we can find an I-positive Borel set Bσ, for example any member of p
⋃
Aσ0 \

⋃
ρ<σ Bρq.

Then, for each ξ < ω1, the family A′ξ =
⋃
{Aσξ : σ < γ} is point-finite and has Borel envelope

which is equal to entire space i.e. [
⋃
A′ξ]I = [

⋃
σ<γ B

σ]I = X. Moreover, a family {
⋃
A′ξ : ξ < ω1}

is point-finite and then Lemma 2 ensures that for at most countably many ξ < ω1 the union
⋃
A′ξ

contains an I-positive Borel set. Hence there exists β < ω1 such that for every ξ > β, the union⋃
A′ξ is completely I-nonmeasurable in X.
In every model of ZFC in which the additivity a σ-ideal is equal to c (for example, it is true for

the measure and the category ideals on R under Martin’s axiom) there exists a family A ⊆ I, which
is summable in the following sense:

(∀C ∈P(A))
(⋃
C ∈ I ∨ (

⋃
C)c ∈ I

)
.

This family is the tower described as follows. Let us enumerate a real line R = {xξ : ξ < c}, then
for every α < c, let Aα = {xξ : ξ < α}, then A = {Aα : α < c}. This family is a point-big, namely
the star A(x) = {A ∈ A x ∈ A} of any point x ∈ R lies in the co-ideal I∗, i.e. its complement is an
element of I.

This observation was the motivation to undertake the research of [H3] on measurability of unions
of point-big families. The following two theorems are the main results of this paper.

Theorem 18 ([H3, Thm 2.1]). If I is a σ-ideal with a Borel base on a Polish space X, then for each
family A ⊆ I satisfying the following conditions:

(1) (∀x ∈ X) (|A(x)| = c),
(2) (∀x, y ∈ X)(x 6= y −→ |A(x) ∩ A(y)| ≤ ω),
(3) covh(A) = c,

there exists a subfamily A′ ⊆ A, where
⋃
A′ is completely I-nonmeasurable,

Theorem 19 ([H3, Thm 2.2]). If I is a σ-ideal with a Borel base on a Polish space X, then for each
family A ⊆ I satisfying the conditions:

(1)
⋃
A = X,

(2) (∀x, y ∈ X)(x 6= y −→ |A(x) ∩ A(y)| ≤ ω),
(3) covh(A) = c,

there exists a subfamily A′ ⊆ A, where
⋃
A′ is I-nonmeasurable.
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Here, covh(A) = min{|D| : D ⊆ A ∧ (∃B ∈ Bor(X) \ I) B ⊆
⋃
D}.

In the rest of this paper, I gave definable examples of applications of above theorems. These
examples are constructible in any model of ZFC . For this purpose, I introduced the concept of the
so-called tiny perfect set relative to the fixed family of subsets of a fixed Polish group.

Definition 2 (perfect tiny set). If A ⊆ I is a family of subsets of a fixed Polish group (G,+) and if
I is a translationally invariant σ-ideal with a Borel base on G, then we say that P ⊆ X is a perfect
tiny set with respect to the family A, if:

• (∀B ∈ Bor(X) \ I)(∃s ∈ G) (|(S + P ) ∩B| = c),
• (∀A ∈ A)(∀t ∈ G) (|P ∩ (t+ A)| ≤ ω).

If we consider the family A of all lines in the Euclidean space Rn of dimension at least equal to
two, then the sphere Sn ⊆ Rn is an example of the perfect tiny set with respect to A. Similarly, every
line l ⊆ Rn is a tiny perfect set with respect to the family of all n-dimensional spheres in Rn+1.

These examples concern families of null subsets of the real plane, where covh is equal to c. The key
Lemma 3.2 in [H3] says that every perfect subset of a Polish group which has Haar measure, can be
translated into each Borel set of positive measure in such a way that the intersection has size c.

If we want to prove that covh(A) = c, it is sufficient to note that, if B is a set of positive Haar
measure, and A′ ∈ [A]<c, then there exists t ∈ G such that |(t+P )∩B| = c and |(t+P )∩

⋃
A′| < c.

From the above observations and Theorems 18 and 19 we obtain the following two conclusions.

Corollary 2 ([H3, Proposition 3.6]). Let I be any translationally invariant σ-ideal on a Polish group
(G,+) with the Borel base and let us assume that A ⊆ I is such that:

• there is a tiny perfect set with respect to A,
• (∀x ∈ G) (|A(x)| = c),
• (∀x, y ∈ G) (x 6= y −→ |A(x) ∩ A(y)| ≤ ω).

Then there exists A′ ⊆ A, such that
⋃
A′ is a completely I-nonmeasurable set in G.

Corollary 3 ([H3, Proposition 3.7]). Let I be any translationally invariant σ-ideal on a Polish group
(G,+) with a Borel base and let us assume that A ⊆ I and:

• there is a tiny perfect set with respect to A,
•
⋃
A = G,

• (∀x, y ∈ G) (x 6= y −→ |A(x) ∩ A(y)| ≤ ω).
Then there exists A′ ⊆ A such that

⋃
A′ is a I-nonmeasurable in G.

Using Corollary 3 we can easily obtain the following result.

Corollary 4. If n ≥ 2 and L is any family of lines in Rn such that
⋃
L = Rn, then there exists a

subfamily L′ ⊆ L such that
⋃
L′ is a nonmeasurable set with respect to the Lebesgue measure.

A family of lines in a Euclidean space can be replaced by a family of spheres.

Theorem 20 ([H3, Thm 3.10]). For each family circles of a fixed radius which covers the plane,
there exists a subfamily such that its union is nonmeasurable with respect to the Lebesgue measure
and there exists a subfamily such that the union does not have the Baire property. Moreover, if we
assume that each point on the plane is covered by c many circles from our family, then we can find
a subfamily, whose union is completely I-nonmeasurable, where I ∈ {N ,M}.

Passing from the plane to the n-dimensional Euclidean space, we can prove that:

Theorem 21 ([H3, Thm 3.11]). If A ⊆ {S(x, r) ∈P(Rn) : x ∈ Rn ∧ r > 0} is an arbitrary family
of n− 1 spheres in Rn which satisfies the condition

(∀x ∈ Rn) ({y ∈ Rn : (∃r > 0) (x ∈ S(y, r) ∧ S(y, r) ∈ A)} has positive measure).

Then there exists A′ ⊆ A such that
⋃
A′ is completely N -nonmeasurable in Rn.
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The articles of Sierpiński [Sier], Cichoń and Jasiński [CJ], Kysiak [Kys1] and the paper written by
Ciesielski, Freiling and Fejźić [CFF] were main motivation of the paper [H5] written together with
Szymon Żeberski.

In [H5] we substite the addition operation on the real line by another binary operation defined
on a Polish space. One of somewhat technical results which, however, gave nice applications, is the
following theorem.

Theorem 22 ([H5, Thm 3.4]). Let T be an arbitrary set, I be a σ-ideal with a Borel base on a Polish
space X. Let λ < c, or λ = c and λ be regular. If (Rα)α<c ∈ (P(T 2 ×X))c be a seqence of relations
of length c, such that for each α < c:

(1) {x : |R−1
α (x)| 6= c} ∈ I,

(2) |Rα ∩ S| < λ for every S of the form ∆, {a} × T × {x}, T × {a} × {x}, where a ∈ T, x ∈ X,
(3) (∀B ∈ Bor(X) \ I)(∃a ∈ T ) (|R−1

α (B) ∩ {a} × T | = c),
(4) (∀(a, b) ∈ T 2) (|Rα(a, b)| < λ).

Then there exists A ⊆ T such that, for any α < c, the image Rα(A2) is a completely I-nonmeasurable
in X.

In the proof of Theorem 22 we used the transfinite induction.
Theorem 22 implies two results concerning measure and category.

Corollary 5 ([H5, Cor 3.3]). There is a subset A of the real line R such that for every C1-function
f : R2 → R onto R the image f [A× A] is a completely N -nonmeasurable.

In the proof of this theorem we have used the fact such that for any C1-function f : R2 → R onto
R the preimage of any Borel set of positive Lebesgue measure is still of positive (two-dimensional)
Lebesgue measure.

Corollary 6 ([H5, Cor 3.4]). There is a subset A of the real line R such that for every C1-function
f : R2 → R onto R which has non-zero partial derivatives outside a set of the first category, the
image f [A× A] is completely M-nonmeasurable.

In [CFF], Ciesiselski, Freiling and Fejźić constructed a null perfect set C, such that C + C is an
interval and the algebraic sum A+A cannot be a Bernstein set for any A ⊆ C. (The key fact implying
this theorem states that every point x ∈ C +C can be represented in finitely many ways.) However,
we have obtained a result which gives a set which is completely nonmeasurable with respect to a
σ-ideal.

Theorem 23 ([H5, Thm 3.5]). If T1, T2 are arbitrary sets and I is a σ-ideal with a Borel base on
Polish space X, then for every function f : T1 × T2 → X satisfying the conditions:

(1) F is ”onto”,
(2) {x ∈ X : ω < |f−1(x)|} ∈ I,
(3) for every Borel set B ∈ Bor(X) \ I:

|{A ∈ T1 : |{a} × T2 ∩ f−1(B)| = c}| = c,

there are A ⊆ T1, B ⊆ T2, for which the image of f(A×B) is completely I-nonmeasurable. Moreover,
if T1 = T2 then there exists A ⊆ T1 such that f(A× A) is completely I-nonmeasurable in space X.

An application of the Mycielski gives the following result.

Corollary 7 ([H5, Cor 3.5]). Let assume that we have three σ-ideals I1, I2 and I3 with a Borel base
on Polish spaces X1, X2, X3, respectively. If a function f : X1 ×X2 → X3 satisfies the conditions

• f is ”onto”,
• f−1(z) is at most countable set for all z’s from outside a set from the σ-ideal I3,
• for every Borel set B ⊆ X3 outside I3, there exists a set W ∈ Bor(X1×X2) \ (I1⊗I2), such

that W ⊆ f−1(B).



13

Then there are A ⊆ X1, B ⊆ X2, such that the image f(A × B) is completely I3-nonmeasurable in
the space X3.

Results contained in Jacek Cichoń’s article [C] were the inspiration for investigating generalised
Lusin sets. As already mentioned in the introduction, MA+¬CH does not allow the existence of a
Lusin set understood in the classical sense, but in any such model, there are c-Lusin sets. For a given
uncountable cardinal number κ we say that an uncountable subset A of a Polish space X is a κ-Lusin
set if κ ≤ |A| and its trace on each set of the first Baire category has cardinality less than κ. Of
course, this set is not a set of the first Baire category and it does not have the Baire property. If the
cofinality of κ is uncountable, then the family [X]<κ is a proper σ-ideal containing all singletons and
it is even a cof(κ)-complete ideal. A set A ⊆ X is κ-Lusin if and only if A /∈M and A ∩ Y ∈ [X]<κ

for each Y ∈M. This simple observation leads to the notion of an (I,J )-Lusin set for σ-ideals I,J
defined on a Polish space X.

Definition 3. Let I,J be σ-ideals on a Polish space X. A set A ⊆ X is called an (I,J )-Lusin set
if

• A /∈ I, and
• (∀Y ∈ I) (A ∩ Y ∈ J ).

Moreover, if κ is a fixed cardinal number, then we say that A ⊆ X is a (κ, I,J )-Lusin, if the
cardinality of A is equal to κ and A is an (I,J )-Lusin set.

We say that two σ-ideals I and J are orthogonal (I ⊥ J ) in a Polish space X, if there exists a
partition X = I ∪ J , such that I ∈ I and J ∈ J . Of course, Marczewski’s decomposition of the real
line guarantees that M ⊥ N . As we know from [H7, Fact 1.1], if I,J are orthogonal σ-ideals on
X, then there exists an (I,J )-Lusin set. However, if A is an (I,J )-Lusin, then it is not at the same
time a (J , I)-Lusin set.

In [H7] we (Szymon Żeberski and me) consider the family of sets A ⊆ P(X), which are non-
equivalent with respect to a fixed family F ⊆ XX of functions defined on X.

Definition 4. Let F ⊆ XX be a family of functions. We say that sets A,B ⊆ X are nonequivalent
with respect to F if

(∀f ∈ F) (A 6= B −→ ¬(f [A] = B ∨ f [B] = A)).

In [H7], we have proved a theorem which is a generalisation of the well-known Erdös-Sierpiński
duality.

Theorem 24 (Erdös-Sierpiński). Assuming CH, there exists a bijection f : R→ R, such that

(∀A ∈P(R)) (A ∈M←→ f [A] ∈ N ) ∧ (A ∈ N ←→ f [A] ∈M).

Theorem 25 ([H7, Thm 2.1]). Let I,J be arbitrary σ-ideals with a Borel base on a Polish space
X. If κ = covh(I) = cof(I) ≤ non(J ) and F ∈ [XX ]≤κ is any family of functions of size not greater
than κ, then there exists a family A of cardinality κ of pairwise nonequivalent (κ, I,J )-Lusin sets
with respect to F .

This theorem implies the following corollary, whose hypothesis is, for example, satisfied under CH.

Corollary 8 ([H7, Cor 2.3]). If I,J are σ-ideals with a Borel base such that covh(I) = non(J ) = c,
then there exists c-many (I,J )-Lusin sets which are pairwise non-equivalent with respect to the family
of all I-measurable functions.

When (I,J ) = (N ,M) or (I,J ) = (M,N ), we obtain the following corollaries.

Corollary 9 ([H7, Cor 2.4]). For M,N we have
• Assume that cov(N ) = c. There are c many different (c,N ,M)-Lusin sets which are not

equivalent to each other with respect to the family of Lebesgue measurable functions.
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• Assume that cov(M) = c. There are c many different (c,M,N )-Lusin sets which are not
equivalent to each other with respect to the family of Baire measurable functions.

In the same paper, we investigated the forcing notions, which preserve the property of being an
(I,J )-Lusin set for a definable proper ideals I,J in a Polish space X. In this paper we considered
definable forcing notions P = Bor(X) \ I, which were introduced in the work of Robert Solovay[So1]
for the ideals N and M, and intensively studied by many mathematicians. Most results concerning
this topic are contained in the monograph [Zapl]. A forcing notion P = Bor(X) \ I is definable if
each generic filter G ⊆ P (over a ground model V ) is definable from a generic real for which there
is a canonical name ṙ ∈ V P such that V [G] = V [r]. Further we consider definable σ-ideals I with a
Borel base for which the Borel codes for sets from I ∩ Bor(X) are absolute between any transitive
models of ZFC theory M ⊆ N . This means that: for every real x ∈ ωω ∩M

M |= ”#x ∈ Bor(X) ∩ I”←→ N |= ”#x ∈ Bor(X) ∩ I”.

We say that for a transitive model V of ZFC theory a definable forcing notion P ∈ V preserves
the property of being an (I,J )-Lusin set if for every (I,J )-Lusin set A ∈ V we have

V [G] |= ”A is a (I,J )-Lusin set”,

where G ⊆ P is a generic filter over V .
We say that a σ-ideal I in a Polish space X has the Fubini property if

(∀A ∈ Bor(X ×X)) ({x ∈ X : Ax /∈ I} ∈ I −→ {y ∈ X : Ay /∈ I} ∈ I).

We have proved the following theorem for c.c.c. forcings, related to the preservation of the property
of being a generalized Lusin set.

Theorem 26 ([H7, Thm 3.1]). Let κ be an uncountable cardinal number, and I,J be c.c.c. σ-ideals
which have the Fubini property. Suppose that PI = Bor(X) \ I and PJ = Bor(X) \ J are definable
forcings. Then the forcing PI preserves the (κ, I,J )-Lusin set property.

In particular, Solovay forcing which adds one random real to the ground model V , preserves all
Sierpiński sets lying in V . Similarly, the forcing which add one Cohen real preserves all Lusin sets
from the ground model.

An analogous theorem proved for a definable forcing notion which preserves a base of the ideal I.

Theorem 27 ([H7, Thm 3.2]). Let (P,≤) a be definable forcing notion that preserves a base of a
σ-ideal I in a Polish space X, namely, in any generic extension V [G]

{B ∈ Bor(X) ∩ I : B is encoded in V }
is still a base of I. Assume that Borel codes for Borel sets from I,J are absolute between transitive
ZFC models, then the forcing (P,≤) preserves being a (I,J )-Lusin set.

This theorem implies the following corollaries.

Corollary 10 ([H7, Cor 3.3]). Each forcing P, which preserves old reals (i.e. (ωω)V = (ωω)V
P
) and

such that codes for Borel sets in the σ-ideals I,J are absolute, preserves being a (I,J )-Lusin set.

Corollary 11 ([H7, Cor 3.5]). Let λ be an ordinal number, and Pλ = ((Pα, Q̇α) : α < λ) be a
countable support iteration of length λ, such that for each α < λ we have Pα 
 ”Q̇ − σ-closed” and
coding of Borel sets from ideals I,J is absolute. Then Pλ preserves being a (I,J )-Lusin set.

Results about the preservation of being a (I,J )-Lusin set were based on a method introduced
by Martin Goldstern in [Gold]. Let us consider an example of the usage that method. Let Ω be
the family of all clopen subsets of the Cantor space 2ω (which is countable) and consider the space
Crandom = {f ∈ Ωω : (∀n ∈ ω)λ(f(n)) < 2−n} (here λ is the Lebesgue measure) and Ω is equipped
with the discrete topology. For n ∈ ω, f ∈ Crandom, g ∈ 2ω, let

f vrandomn g ←→ (∀k ≥ n) g /∈ f(k).
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Let vrandom=
⋃
n∈ω vramdomn . Let f ∈ Crandom. Let

Af =
⋂
m∈ω

⋃
n≥m

f(n) ∈ N .

Note that Af is a set of measure zero. We can prove that for every set A ∈ N there exists f ∈ Crandom

such that A ⊆ Af .
It is well known that, for any g ∈ 2ω and n ∈ ω, the set {f ∈ Crandom : f vrandomn g} is closed in

Crandom. We also have f vrandomn g if and only if g /∈ Af .
Let N ≺ Hκ be a countable elementary submodel of Hκ for a large enough κ, such that P,vrandom∈

N . Let P be a forcing notion, and let ḟ0, . . . ḟk−1 ∈ V P will be names for functions in the Crandom, i.e.

 ”(∀i ∈ k) ḟi ∈ ˆCrandom”. Let f ∗0 , . . . f

∗
k−1 be a sequence of functions. Then the decreasing sequence

((pn))n∈ω ∈ P ω of P interprets {ḟi : i < k} as {f ∗i : i < k} if

(∀i < k)(∀n ∈ ω) (pn 
 ”ḟi � n = f ∗i � n”).

Let g ∈ Hκ, then we say that g covers N if

(∀f ∈ N ∩ Crandom) (f vrandom g).

Definition 5 (P preserves vrandom). Let (P,≤) and N ≺ Hκ be as above, where additionally we
assume that (P,≤) is a proper forcing notion. We say that P preserves vrandom if for every p0 ∈ P∩N ,
g ∈ 2ω and every sequence (pn)n∈ω ∈ P ω∩N that interprets {ḟi ∈ V P : i < k} as {f ∗i : i < k} ∈ N , if
g covers N with choosen sequence (ni)i<k such that f ∗i vni g for each i < k, then there exists q ≤ p0

such that:

(1) q is (N,P )-generic,
(2) q 
 ”(∀f ∈ N [G]) f v g”,
(3) (∀i < k) (q 
 ”ḟi vni g”).

The main tool of what we want to use are the following two theorems

Theorem 28 ([Gold], Fact 6.11). If P preserves vrandom, then P 
 λ(V ∩ 2ω) = 1.

Theorem 29 ([Gold], Cor 5.14, Thm 6). Let Pγ = ((Pα, Q̇α) : α < γ) be a countable support iteration
of proper forcings which satisfies the condition:

(∀α < γ) (
α ”Q̇ preserves vrandom ”),

then Pγ preserves vrandom.

Theorem 28 was used in the proof of the following theorem.

Theorem 30 ([H7, Thm 3.7]). Assume that forcing notion P preserves vrandom, then P preserves
property of being a (N ,M)-Lusin set.

In addition, we have the following

Remark 1. If V = L and P is a countable support iteration of forcing notions ((Pα, Q̇α) : α < ω2)
such that:

• if α is an even ordinal, then 
α ”Q̇α = R”,
• if α is odd, then 
α ”Q̇α = L”.

Then P preserves being (N ,M)-Lusin set, cov(N ) = ω2 = c, and P adds ω2 Laver reals. If A ∈ V
is a (N ,M)-Lusin set of full Haar outer measure (equal to 1) in 2ω, then in the generic extension
V [G] A is a completely N -nonmeasurable set of cardinality ω1 < c. Here R is the Solovay forcing
notion which adds a random real and L is the Laver forcing.



16

The method discovered by Cichoń and Szczepaniak [CS] of constructimg nonmeasurable subsets
in Euclidean spaces was an inspiration for [H4]. Although the proofs in [H4] are very elementary,
the results apply to infinite dimensional Banach spaces. The so called Steinhaus property played an
important role in the proofs of results in [H4]. We say that a σ-ideal I on an Abelian Polish group
has Steinhaus property if and only if for any sets A,B ∈ Bor(X)[I] \ I there is a non-empty open
set ∅ 6= U ⊆ G, such that U ⊆ A + B. An example of such a σ-ideal is the σ-ideal M of the sets of
the first category on any Banach space (X, ‖ · ‖). Let us denote by B = {x ∈ X : ‖x‖ < 1} the open
unit ball in a Banach space X.

In my note [H4] I consider only translation invariant ideals. The main results are the following
theorems.

Theorem 31 ([H4, Thm 2.2]). If X, Y are Banach spaces and
(1) I is a σ-ideal in Y which has Steinhaus property,
(2) (∀n ∈ ω \ {0})(∀A ∈ I) (nA = {n · a : a ∈ A} ∈ I),
(3) f : X → Y is any isomorphism between the spaces X, Y which is not a homeomorphism,

then the image of the unit ball f [B] is I-nonmeasurable in the space Y .

Theorem 32 ([H4, Thm 2.4]). If X, Y are Banach spaces and
(1) I is a κ-complete ideal in Y which has Steinhaus property,
(2) min{|D| : D ∈P(X)is dense in X} < κ,
(3) f : X → Y is any isomorphism between the spaces X, Y which is not a homeomorphism,

then the image of the unit ball f [B] is I-nonmeasurable in the space Y .

When the first space mentioned above is separable then we immediately obtain the following result.

Corollary 12. If X, Y are Banach spaces, X is separable, I ⊆ P(Y ) is a σ-ideal on Y which has
Steinhaus property, f : X → Y is an isomorphism which is not a homeomorphism between X and
Y , then the image of f [B] unit ball is a I-nonmeasurable set in Y .

Many of the results I have obtained are related to σ-ideals with Borel base defined on Polish spaces.
In [H8] I considered problems of nonmeasurability with respect to an ideal without Borel base; for
example the Marczewski ideal s0. Here by the Perf we denote the family of all perfect subsets of
a given Polish space X and by s ⊆ P(X) we denote the family of all Marczewski measurable sets
(also called s-measurable) in a Polish space X. The class s is defined as follows:

(∀A ∈P(X)) A ∈ s←→ (∀P ∈ Perf)(∃Q ∈ Perf) (Q ⊆ P ∧ (Q ⊆ A ∨ A ∩Q = ∅)).
We define the class s0 of Marczewski null sets ( or, for short, s0 sets) as follows:

(∀A ∈P(X)) A ∈ s0 ←→ (∀P ∈ Perf)(∃Q ∈ Perf) (Q ⊆ P ∧ A ∩Q = ∅).
It is known that every perfect subset in X is a disjoint union of continuum many perfect subsets.

We immediately conclude from this that every Lusin or Sierpiński set is in s0.
One of the first results obtained in this work is the following:

Proposition 1 ([H8 Prop. 2.2]). If c is a regular cardinal number and

A ⊆ {A : A is a Lusin set}
is any c-point family such that the union satisfies

⋃
A /∈ s0 , then there exists a subfamily A′ ⊆ A,

such that the union
⋃
A′ is not s-measurable.

We obtain an analogous result replacing a family of Lusin sets by a family consisting of Sierpiński
sets. Assuming the continuum hypothesis CH we can not leave the assumption that A is c-point
family, [H8, Proposition 2.3].

In the paper [JMS] written by Haim Judah, Arnold Miller and Saharon Shelah it was proved that
it is consistent with ZFC that add(s0) = ω1 and cov(s0) = c = ω2.
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As in the case of the existence of nonmeasurable unions of sets from σ-ideals with Borel base,
the existence of families of sets from s0 whose unions are not s0-nonmeasurable depends on cardinal
coefficients.

Theorem 33 ([H8, Thm 2.5]). Assume that covh(s0) = c. For any c-point family A ⊆ s0 of sets
from the Marczewski ideal s0, if

⋃
A /∈ s0, then there exists a subfamily A′ ⊆ A such that the union⋃

A′ is not s-measurable.

In the proof of the above theorem the assumption that covh(s0) = c was essentially used, but we
can show that it is consistent with ZFC+¬CH that there exists a partition A of size ω1 of the real
line R such that one can find a subfamily B ⊆ A for which the union

⋃
B is not an s-measurable set

(Theorem 2.3 in [H8]).
We have the following result concerning the situation covh(s0) < c:

Theorem 34 ([H8, Thm 2.6]). It is relatively consistent with ZFC that covh(s0) < c and there is a
partition A ⊆ s0 of the cardinality ω1 of the real line R, for which there is a subfamily B ⊆ A whose
union is not s-measurable.

To construct an appropriate model I have considered the ℵω1 finite support iteration of Cohen
forcing which adds one Cohen real.

Using a transfinite induction, we have shown the following theorem.

Theorem 35 ([H8, Thm 3.1]). If cov(s0) = c, and c is regular, then for each family A ⊆ s0, which
satisfies the following conditions

• A is a large-point family, i.e. {x ∈ X : |{A ∈ A : x ∈ A}| < c} ∈ s0,
• {(x, y) ∈ X2 : |{A ∈ A : x, y ∈ A}| = c} ∈ s0 × s0.

there is a subfamily A′ ⊆ A, such that
⋃
A′ is a Bernstein set.

Marczewski measurability is closely connected with perfect sets P which are defined from so called
perfect trees S by taking the following operation [S] = {x ∈ 2ω : (∀n ∈ ω)s � n ∈ S}. All mentioned
above trees forms Sacks forcing S with the inclusion as the order. Laver’s and Miller’s ideals as well
as the measurability notion can be defined in a similar way as it was done for Marczewski ideal.
Another example of a family of trees is the family of so called complete Laver trees sp: T ∈ sp if
T ⊆

⋃
n∈ω ω

n is a tree, and for any t ∈ T
{n ∈ ω : tan ∈ T} ∈ [ω]ω.

In the same work I have investigated relationships between nonmeasurability with respect to a tree
forcing notion and the existence of maximal almost disjoint families of functions on the Baire space.
We say that A ⊆ ωω is a maximal almost disjoint family of functions in the Baire space (shortly
m.a.d. family) if and only if for any different elements a, b ∈ A the common part is at most finite
and that A is maximal with respect to inclusion, i.e. for any x ∈ ωω there is an a ∈ A such that
x ∩ a is infinite.

In connection with these concepts, assuming CH, I have received the following result.

Theorem 36 ([H8, Thm 4.1]). Under CH there are A,B ⊆ ωω m.a.d families, such that A is not
l-measurable and B is not sp-measurable in the Baire space.

On the other hand, I obtained the following result under the negation of the continuum hypothesis.

Theorem 37 ([H8, Thm 4.2]). It is relatively consistent with ZFC+¬CH that there exists a m.a.d
A which is not sp-measurable in the Baire space.

This result was obtained by using a finite support iteration of posets (QT ,≤) of length κ (ω1 < κ),
where T ⊆ ω<ω is an sp -tree in which all branches form a family of almost disjoint functions in the
Baire space.

The forcing notion (QT ,≤) is defined as follows: p = (xp, s
g
p, s

b
p,Fp) ∈ QT iff
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• xp ∈ ω<ω and
• sgp, sbp are nonempty finite subtrees of T (finite subsets of T closed under restriction),
• Fp ∈ [ωω]<ω,

For t ∈ ω<ω and a nonempty finite tree τ ⊆ ω<ω let t � τ =
⋃
{s ∈ τ : s ⊆ t} be the maximal initial

subsequence of t that belongs to τ .
The order is defined as follows: for every p = (xp, s

g
p, s

b
p,Fp) ∈ QT and q = (xq, s

g
q , s

b
q,Fq) ∈ QT we

have p ≤ q iff
(1) xq ⊂ xp ∧ sgq ⊆ sgp ∧ sbq ⊆ sbp ∧ Fq ⊆ Fp,
(2) (∀t ∈ sgp) xp ∩ t ⊆ (t � sgq) ∪ xq,
(3) (∀h ∈ Fq)(xp ∩ h = xq ∩ h),
(4) (∀h ∈ Fq)(∀t ∈ sbp) t ∩ h = (t � sbq) ∩ h,
(5) (∀h ∈ Fq)(∀t ∈ sgp) t ∩ h = (t � sgq) ∩ h.

First I proved that this forcing notion is σ-centered (so is c.c.c.). Now, let G ⊆ QT be a generic
filter over V , and in the generic extension V [G] set

xG =
⋃
{xp : p ∈ G},

SgG =
⋃
{sgp : p ∈ G} and SbG =

⋃
{sbp : p ∈ G},

I proved the following claims.

Claim 1. (∀S ∈ SPT (T ) ∩ V ) (SgG ∩ S ∈ SPT (T ) and SbG ∩ S ∈ SPT (T )),

Claim 2. For every S ∈ SPT (T ) ∩ V the set

{z ∈ [SbG ∩ S] : |xG ∩ z| = |xG \ z| = ω}
is comeager in [SbG ∩ S].

Claim 3. If F ⊆ ωω ∩V is an almost disjoint family, then the families {xG}∪ [SgG]∪F and [SbG]∪F
are also almost disjoint.

Next, in the step β of the iteration ((Pα : α ≤ κ), (Q̇β : β < κ)) where we have 
Pβ Q̇β = Q̂T

show up the generic objects xβ = iGβ+1
(ẋHβ), Sgβ = iGβ+1

(ṠgHβ), Sbβ = igβ+1
(ṠbHβ)(here G ⊆ Pκ is a

generic filter over the ground model V |= GCH), where Hβ is iGβ+1
(Q̇T ) generic filter over V [Gβ],

such that Gβ+1 = Gβ ∗Hβ.
Next, we define A0 = ∅, Aβ+1 = Aβ ∪ {xβ} ∪ [Sgβ], where in the limit ordinal case, we take
Aβ =

⋃
ξ<β Aξ. Finally by taking any m.a.d. family containing A =

⋃
β<κA we can obtain the

desired set satisfying the conclusion of our theorem.
The last result of this work is the relative consistency of the ZFC theory and the inequality

cov(s0) < a (here a is the smallest size of m.a.d. family in the Baire space).
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My other scientific achievement

List of my publications in my other research achievement:

[P1] J. Kraszewski, R. Rałowski, P. Szczepaniak and Sz. Żeberski, Bernstein sets and kappa cove-
rings, Mathematical Logic Quarterly, 56 (2) 2010, pp. 216-224.

[P2] M. Bienias, Sz. Głąb, R. Rałowski, Sz. Żeberski, Two point sets with additional properties,
Czechoslovak Mathematical Journal, vol 63, no 4(2013), pp. 1019-1037.

[P3] R. Rałowski, P. Szczepaniak and Sz. Żeberski, A generalization of Steinhaus theorem and
some nonmeasurable sets, Real Analysis Exchange, vol. 35, nr 1 (2009/2010), pp. 1-9.

[P4] T. Banakh, M. Morayne, R. Rałowski, Sz. Żeberski, Topologically invariant σ-ideals on the
Hilbert cube, Israel Journal of Mathematics, vol. 209, (2015), pp. 715-743.

[P5] T. Banakh, M. Morayne, R. Rałowski, Sz. Żeberski, Topologically invariant σ-ideals on the
Euclidean spaces, Fundamenta Mathematicae, vol. 231, (2015), pp. 101-112.

[P6] T. Banakh, R. Rałowski, Sz. Żeberski, Classifying invariant σ-ideals with analytic base on
good Cantor measure spaces, accepted to Proceedings of American Mathematical Society.
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Center Publications, 95 (2011), pp. 273-280.

[P8] R. Gielerak and R. Rałowski, Statistical mechanics of Class of Anyonic Systems. The Rigorous
Approach, J. of Nonlinear Math. Phys. Vol 11 (2004), 85–91

[P9] R. Gielerak and R. Rałowski, Convergence of virial expansions for some anyonic-like systems,
Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Nałeczów,
1999). J. Math. Sci. (New York) 105 (2001), no. 6, 2555–2556

[P10] R. Rałowski, On the kernel of the Hermitian Form and Partition Function, Proceedings of
6th Int. School on Theoretical Physics, Symmetry and Structural Properties of Condensed
Matter. Word Scientific, 2001.

[P11] R. Gielerak and R. Rałowski, Wick Algebras Approach to Physics of 2D Systems, Proceedings
of 5th Int. School on Theoretical Physics, Symmetry and Structural Properties of Condensed
Matter. Word Scientific, 1999.

[P12] R. Rałowski, On Wick algebras with additional twisted commutation relations, J. Phys. A 30
(1997),no. 9, 3235–3247.

[P13] W. Marcinek R. Rałowski, On Wick algebras with braid relations, J. Math. Phys. 36(1995),
no. 6, 2803–2812.

[P14] M. Kozłowski and R. Rałowski, The dielectric response with respect to the weight distribution
of relaxation times, Journ. of Math. Chem. vol. 46, nr 4 (2009), pp. 1087-1102,

[P15] R. Rałowski and M. Kozłowski, The Havriliak-Negami Dielectric Response in Time Domain,
Polish J. Chem., Vol 79 (2005), 1353–1356.

[P16] M. Kozłowski, R. Rałowski, H. Kołodziej, An Application of the Burr Function to the De-
scription of Dielectric Relaxation Data in Frequency Domain, IEEE Trans. DEI. Vol 10 (2003),
256-259.

The papers that include the remainder of my research can be divided into three parts. The first
part consists of purely mathematical papers; the second includes work in the field of mathematical
physics and the last one consists of my articles in the field of physical chemistry.

In [P1] we have considered sets A in Abelian Polish groups, such that each set of fixed cardinality
κ can covered by a single translation of A. These sets are called κ-covering sets. Similarly, we say
that a set A ⊆ G is a < κ-covering, if any subset of the group G of size less than κ, can be covered by
a single translation of A. The inspiration for this work were the results obtained by Muthuvel [Mu]
concerning κ-covering sets for κ being a finite cardinal and by Nowik [Now1, Now2] who considered
ω or < ω-covering sets with low descriptive complexity. In these articles Nowik gave examples of a
partition of the Cantor space 2ω into continuum many Borel sets which are also ω-covering sets, and
of a partition into two sets, such that the first set N is a Gδ-set of measure zero and the second set
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M is an Fσ meager set , such that every two disjoint countable sets can be inserted using a single
translation into the sets M and N , respectively.

The first result of our work is about the existence of a partition of the real line R into two Bernstein
sets, such that each of them is not a 2-covering. On the other hand, we have found a partition of
R into continuum many Bernstein sets which are < cof(c)-covering. Moreover, if I is a σ-ideal on
the real line R which has Steinhaus property, and if we assume that non(I) < c, then there exists a
completely I-nonmeasurable set which is also a < c-covering set.

The concept of a κ-covering set became the starting point for some variations of this idea, namely,
S-covering and I-covering.

We say that a family A is a κ-S-covering if
• A is a family of pairwise disjoint subsets of the real line R,
• |A| = κ,
• (∀F ∈ [R]κ)(∃t ∈ R)(∀A ∈ A)(|(t+ F ) ∩ A| = 1 ∧ t+ F ⊆

⋃
A).

Ostatnie wyniki związane z diagramem Cichonia powstały dzięki nowym metodom
Our results apply to families A whose elements are completely nonmeasurable sets with respect

to some σ-ideals on R. The following theorem is an example of such application.

Theorem 38 ([P1, Thm 3.3]). Let κ be a fixed cardinal number such that 2 < κ < c. If 2κ ≤ c, then
there exists a partition of R onto κ many Bernstein sets {Bξ : ξ < κ} such that

• for any ξ < κ, Bξ is not a 2-covering set but
• {Bξ : ξ < κ} is κ - S-covering.

The above theorem shows that S-covering and κ-covering are completely different notions.
It is known that, under MA, if ω ≤ κ < c then 2κ = c, which ensures consistency of the conclusion

of the above theorem with ZFC theory.
In the next theorem we consider a slightly more general situation.

Theorem 39 ([P1, Thm 3.5]). Let κ be a cardinal number that satisfies the equality 2κ = c. Let
(G,+) is uncountable Abelian Polish group with a metric d. In addition, let I ⊆ P(G) be a fixed
σ-ideal on G such that

• (∀B ∈ Bor(G) \ I)(∀D ∈ [I]<c) (|B \
⋃
D| = c),

• there exists a ∈ rng(d) \ {0}, such that (∀x ∈ G) ({Y ∈ G : d(x, y) = a} ∈ I).
Then there exists a family of pairwise disjoint sets {Bξ : ξ < κ} with the following properties:

(1) Bξ is completely I-nonmeasurable in G for any ξ < κ,
(2) Bξ is not a 2-covering set for any ξ < κ,
(3) {Bξ : ξ < κ} is κ - S-covering.

Translation in the definition of a κ-covering set, can be replaced, for example, by any isometry of
the real plane. Then we deal with the concept of a set, which is κ - I-covering. Namely, every subset
of the plane A ⊆ R2 is κ - I-covering if the following condition is fulfilled

(∀B ∈ [R2]κ)(∀ϕ ∈ R2R2

) (ϕ is an isometry and ϕ[B] ⊆ A).

The following two theorems show the difference between 2 and 3 - I coverings.

Theorem 40 ([P1, Thm 4.3]). Each Bernstein set in R2 is a 2 - I-covering set.

Theorem 41 ([P1, Thm 4.4]). There exists a Bernstein set in R2, which is not a 3 - I-covering set.

The conclusuion of the Theorem 40 can not be extended to arbitrary complete I-nonmeasurable
sets.

Theorem 42 ([P1, Thm 4.5]). If I ∈ {N ,M} then there exists a completely I-nonmeasurable set
in R2, which is not a 2 - I-covering set.
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In [P2], written together with Marek Bienias, Szymon Głąb and Szymon Żeberski, we investigated
sets which were introduced by Stefan Mazurkiewicz. In the literature, these sets are known as Mazur-
kiewicz sets but also as two-point sets. We say that a subset of the plane A ⊆ R2 is a Mazurkiewicz
set if every line has exactly two common points with A. It is known that these sets are quite complex,
which was showed by Larman in [Lar] namely, they can not be Fσ but in the constructible universe
L, these sets can be coanalytic, which was proved by Miller in [Mi].

The first result in this article is the existence of the Mazurkiewicz set, which is a Hamel basis of
the real plane R2 over the field of rational numbers Q and is also a completely I-nonmeasurable
set with respect to any σ-ideal with a Borel base containing all singletons. Then we have proved
the existence of a Mazurkiewicz set, which is in the Marczewski ideal s0. In addition, if a σ-ideal
I has the property that for every Borel set B not in I there exist c many parallel lines, such that
each of them has the intersection with the set B of the cardinality equal to continuum, then, firstly,
there exists a Mazurkiewicz set in the ideal s0, which is a Hamel base and is also a completely
I-nonmeasurable set, and, secondly, there exists a Mazurkiewicz set, which is a Hamel base and is
completely I-nonmeasurable and is also an s-nonmeasurable set.

The concept of Mazurkiewicz set can be naturally generalized to a κ point set. For a cardinal
number 2 ≤ κ ≤ c, it is a subset of the plane which meets every straight line in exactly κ points. We
have proved that for any positive integer n ≥ 2, every n-point set can be decomposed into n pairwise
disjoint bijections on R.

We have found a relationship between Bernstein sets on the line R and Mazurkiewicz sets. Namely,
for any Bernstein set B ⊆ R there is a Mazurkiewicz set A ⊆ R2, which is both a set of measure
zero and of the first category in R2 with the property that f−1[(0, 1)] is equal to B for any function
f ⊆ A

It is easy to see that each Mazurkiewicz set is neither a Bernstein nor a Lusin, nor a Sierpiński set.
For this reason, we have introduced a notion of a partial Mazurkiewicz set, i.e. such a set, which has
at most two common elements with every line. We have obtained the result that says that under CH,
there is a Lusin set, which is a partial Mazurkiewicz set. The analogous result holds for Sierpiński’s
set.

In addition, in [P1] we have shown the existence of an ℵ0-point set, which is not a 2 - I-covering
set. We showed that there is an ℵ0-point set, which is an ℵ0-covering set.

We showed that, when we add ω2 independent Cohen reals to the constructible universe L, then
we obtain a model of ZFC theory, in which ω1 < c = ω2 and there is an ℵ1-point set, which is at
the same time an ℵ1-covering one.

For a fixed natural number n greater than one, we have found examples of n-point sets, one of
which is not a 2 - I-covering and the other is n-covering.

In the same work we investigated the combinatorial properties of Mazurkiewicz sets as, in some
sense, families of almost disjoint sets. Let h be a fixed definable Borel bijection between the real line
R and the Ramsey space [ω]ω of all infinite subsets of ω. Let π1, π2 be the orthogonal projections
of the plane R2 onto the first and the second axis, respectively. Then it is relatively consistent with
the ZFC theory that ¬CH and there is a partial Mazurkiewicz set A ⊆ R2, for which the image
h[π1[A] ∪ π2[A]] is a maximal almost disjoint family in ω of cardinality ω1.

The final result of the paper [P2] says that in the model obtained by adding ω2 independent Cohen
reals to the constructible universe L, there is a partial Mazurkiewicz set C ⊆ R2 of size ω2, which is
a Lusin set and it has the following property:

(∃A ∈ N )(∀D ∈ [C]ω1) (A+D = R2).

The analogous result where instead of a Lusin set one obtains a Sierpiński set can be obtained by
adding ω2 Solovay reals to L.

The Steinhaus theorem which says that for any two sets A ⊆ R and B ⊆ R with positive Lebesgue
measure, the algebraic sum A + B has a nonempty interior was the inspiration for another work,
[P3], written jointly with Przemysław Szczepaniak and Szymon Żeberski.
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The first result of this article is the following generalization of the above mentioned Steinhaus
Theorem.

Theorem 43 ([P3, Thm 2.1]). Let I be N or M. Let a function f : R × R → R of the class C1

satisfy

{(x, y) ∈ R2 :
∂f

∂x
(x, y) = 0 ∨ ∂f

∂y
(x, y) = 0} ∈ I.

Let A,B ∈ Bor(R) \ I. Then the image f [A×B] contains a non-empty open interval.

This theorem in its basic version, which is the Steinhaus theorem, was main tool for the proof of
the Cichoń-Szczepaniak Theorem [CS] on the unit ball in a Euclidean space.

Theorem 44 (Cichoń-Szczepaniak). If m,n are two different positive integers and f : Rn → Rm is
a given isomorphism over the field of rational numbers Q. Then for any set A ⊆ Rn such that A,Ac

have non-empty interior in Rn, the inner m-dimensional Lebesgue measure of the image f [A] is equal
to zero, and the outer m-dimensional Lebesgue measure of f [A] is full.

Application of Theorem 44 gives a nonmeasurable sets with some algebraic properties. Examples
are provided by the following theorems.

Theorem 45 ([P3, Thm 3.2]). There exists a completely N -nonmeasurable set A ⊆ R such that
A+ A = A and A− A = R.

Theorem 46 ([P3, Thm 3.3]). There is a partition A = {An : n ∈ ω} of the real line R onto
completely N -nonmeasurable sets, such that for every n ∈ ω we have An + An = An.

Theorem 47 ([P3, Thm 3.5]). There is a partition A = {An : n ∈ ω} of the real line R onto
completely N -nonmeasurable sets, such that

(∀m,n ∈ ω) (m 6= n −→ Am + An = R \ {0}).

Theorem 48 ([P3, Thm 3.7]). There is a set A ⊆ R, such that
A,A+ A,A+ A+ A, . . . are completely N -nonmeasurable and

⋃
n∈ω

A+ . . .+ A︸ ︷︷ ︸
n

= R.

Theorem 49 ([P3, Thm 3.9]). There is a set A ⊆ R, such that

A ( A+ A ( A+ A+ A ( . . .

are completely N -nonmeasurable and
⋃
n∈ω

A+ . . .+ A︸ ︷︷ ︸
n

is also completely N -nonmeasurable set on R.

Theorem 50 ([P3, Thm 3.11]). There is a set A ⊆ R, such that

A ) A+ A ) A+ A+ A ) . . .

are completely N -nonmeasurable sets on R.

We gave the multiplicative couterparts (which are applications of the results obtained above).

Theorem 51 ([P3, Cor 3.2]). There is a set A ⊆ R completely N -nonmeasurable, such that A·A = A.

Theorem 52 ([P3, Cor 3.3]). There is a set A ⊆ R, such that

A ( A · A ( A · A · A ( . . .

are completely N -nonmeasurable and
⋃
n∈ω

A · . . . · A︸ ︷︷ ︸
n

is also completely N -nonmeasurable on R.
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The question whether the minimum size of a family of Cantor sets which is necessary to cover the
Hilbert cube Iω is the same as the minimum size of a family of Cantor sets whose union covers the unit
interval I = [0, 1] was open for quite a while and was attracting attention of some mathematicians
(for instance was posed on the UCL webpage of Marianna Csörney). In [P4], written jointly with
Taras Banakh, Michał Morayne and Szymon Żeberski, we gave the affirmative answer. In this article,
we have considered topologically invariant ideals on the Hilbert cube Iω equipped with the product
topology. Treating ideals I ⊆ [Iω]≤ω and P(Iω) as trivial ones on the Hilbert cube, we showed that
the ideal of meager sets M on Iω is a maximal ideal among all topologically invariant σ-ideals with
the base which has Baire property and that σ-idealM is the greatest among non-trivial topologically
invariant σ-ideals on Iω with base generated by the σ-compact sets in Iω. On the other hand, we have
considered the σ-ideal generated by the so-called minimal Cantor sets on the Hilbert cube Iω, that
is these sets C which are homeomorphic to the Cantor set and such that for any perfect set P ⊆ Iω
there is a homeomorphism h ∈ Homeo(Iω) for which h[C] ⊆ P . This ideal is denoted by σC0. It is
contained by every nontrivial topologically invariant σ-ideal with the analytic base on Iω. A Cantor
set is minimal if and only if it is a Zω-set. A closed set A ⊆ Iω is a Zω-set if and only if the set

{f ∈ C(Iω, Iω) : f [Iω] ∩ A = ∅}
is a dense set in the space of all continuous functions C(Iω, Iω) equipped with the compact-open
topology.

The combinatorial characterization of cov(M), non(M) given by Tomasz Bartoszyński (eg [Bart],
[BartJud]) implies the following inequalities

cov(σC0) = cov(M) ≤ cov(I) ≤ cov(σC0), non(M) = non(σC0) ≤ non(I) ≤ non(M).

In the study of cardinal coefficients as add(·), or cof(·), a major role is played by the fact that
the space Homeo(Iω) of all homeomorphisms of the Hilbert cube Iω forms a Polish space with the
compact-open topology metrizable by

d̃(f, g) = sup
x∈Iω

d(f(x), g(x)) + sup
x∈Iω

d(f−1(x), g−1(x)).

The Z-set unknotting theorem guarantees that every two minimal Cantor sets A,B ⊆ Iω are ambien-
tly homeomorphic which means that there is a homeomorphism h ∈ Homeo(Iω) such that f [A] = B.
It follows that for a fixed minimal Cantor set A and any dense G ∈ Gδ contained in Iω the set

{h ∈ Homeo(Iω) : h[A] ⊆ G}
is a dense Gδ in the space Homeo(Iω).

For given any two σ-ideals I,J on a Polish space, we can define the relative cardinal coefficients
as follows

add(I,J ) = min{|A| : A ⊆ I ∧
⋃
A /∈ J },

cof(I,J ) = min{|B| : B ⊆ J ∧ (∀A ∈ I)(∃B ∈ B) A ⊆ B}.
One of the main result of this article is characterizing the cardinal coefficients for σ-ideals M and
σC0 which can be written as:

• non(σC0) = non(M),
• cov(σC0) = cov(M),
• add(σC0) = add(M) = add(σC0,M),
• cof(σC0) = cof(M) = cof(σCM).

We also studied topologically invariant and proper σ-ideals on the Hilbert cube, which are not
included in the σ-ideal M of meager sets. It turns out that the σ-ideal σG0 generated by the so-
called tame - Gδ sets is the smallest topologically invariant σ-ideal on Iω among all topologically
invariant σ-ideals with the Baire property on the Hilbert cube which are not included in the σ-ideal
M. We have

ω1 ≤ add(σG0) ≤ cov(σG0) ≤ add(M) ≤ cof(M) ≤ non(σG0) ≤ cof(σG0) ≤ c.
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To sum up, for any σ-ideals I,J on Iω with analytic base such that I ⊆ M and J 6⊆ M we have
the following topological variant of Cichoń’s diagram:

non(σG0) // non(J ) // cof(J ) // c

non(I) non(M) // cof(M) //

OO

cof(I)

==

add(I)

OO

// add(M)

OO

// cov(M)

OO

cov(I)

OO

ω1

00

// add(J ) // cov(J ) // cov(σG0).

OO

The article [P5], written jointly with Banakh, Morayne and Żeberski, examined the cardinal co-
efficients for topologically nontrivial invariant σ -ideals on Euclidean spaces. Recall, by a nontrivial
σ-ideal we understand a σ-ideal containing uncountable sets and not equal to the family of all sub-
sets of the space considered. As previously, first we determine the greatest with respect to inclusion
non-trivial σ-ideal that is topologically invariant having a base with Baire property. This is the ideal
of all meager sets M on Rn (Theorem 2.1 in [P5]).

We have also found the least with respect to inclusion topologically invariant σ-ideal with analytic
base. This ideal, denoted by σC0, is generated by the family of so-called of tame-Cantor sets (Theorem
2.2 in [P5]). A tame-Cantor set is a set h[C], where h : Rn → Rn is a homeomorphism of Rn and
C ⊆ R × {0}n−1 is a Cantor set (on a copy of R). Of course, all tame-Cantor sets are ambiently
homeomorphic to each other. One of equivalent definitions of a tame-Cantor set is that a closed
subset of Rn is a tame-Cantor set, if for any ε > 0, there is a finite family F of homeomorphic copies
of n-dimensional cube [0, 1]n, each of them of diameter smaller than ε, such that the desired set is
contained in interior of

⋃
F . The main result of [P5] concerning cardinal coefficients is the following

theorem.

Theorem 53 ([P5], Thm 2.4). For σC on Rn the following equalities hold

• non(σC) = non(M),
• cov(σC) = cov(M)),
• add(σC) = add(σC,M) = add(M),
• cof(σC) = cof(σC,M) = cof(M).

Then for nontrivial topological invariant σ -ideals σC ⊆ I ⊆M with analytic base in Rn, we have
the following relations between cardinal coefficients.

Corollary 13 ([P5], Corollary 2.3). For any nontrivial topologically invariant σ-ideal I with analytic
base in Rn we have

• non(I) = non(M),
• cov(I) = cov(M),
• add(I) ≤ add(M),
• cof(M) ≤ cof(I).

Here the inequalities can be sharp as one can see in Example 2.6 of [P5]; for the non-trivial
topologically invariant σ -ideal I on R2 generated by the segment [0, 1] × {0}, add(I) = ω1, while
cof(I) = c.
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The above corollary can be represented by the following diagram

non(I) non(M) // cof(M) // // cof(I) // c

ω1
// add(I)

OO

// add(M)

OO

// cov(M)

OO

cov(I)

OO

From the above corollary we have obtained relations between cardinal coefficients for the σ-ideals
σDk generated by the closed subsets of Rn of topological dimension k < n.

Theorem 54 ([P5], Thm 2.7). For any nonnegative integer k < n the σ-ideal σDk generated by the
closed subsets of Rn of dimension equal at most k we have

• non(σDk) = non(M),
• add(σDk) = add(M),
• cov(σDk) = cov(M),
• cof(σDk) = cof(M).

In [P6], an article written jointly with with Banakh and Żeberski, we consider the classification of
all σ-ideals with Borel base which are invariant with respect to a good Borel measure defined on the
Cantor space.

An ordered pair (X,λ) is called a Cantor measure space, if X is homeomorphic to the Cantor space
2ω and λ : Bor(X)→ [0,∞) is a σ -additive Borel function, vanishing on all singletons of the space
X. We say that two measure-spaces (X,λ), (Y, µ) are isomorphic if there exists a homeomorphism h
between the spaces X, Y such that for any Borel set B ⊆ X, λ(B) = µ(h[B]).

We say that a mapping h : X → X is invariant with respect to λ if for every Borel set B ⊆ X,
λ(h[B]) = λ(b). Furthermore, we say that a σ -ideal I defined on (X,λ) is invariant with respect to
λ if for any set A ∈ I and measure-preserving homeomorphism h : X → X we have h[A] ∈ I.

Let us note that there is a measure λ on the Cantor set X such that the group Hλ(X) of all
homeomorphisms preserving measure λ consists of one element only, Hλ(X) = {idX} . Then every
σ-ideal on X with Borel base is invariant with respect to the measure λ. Then there are 2c many
λ-invariant σ-ideals with Borel base on X.

A Cantor measure space (X,λ) is called good if for any non-empty open set U ⊆ X, λ(U) > 0 and
λ is homogeneous in the following sense: for any two clopen sets U, V ⊆ X such that λ(U) < λ(V ),
there is a clopen subset U ′ ⊆ V such that λ(U) = λ(U ′).

Akin in [Akin] proved that every two good Cantor measure spaces (X,λ), (Y, µ) are isomorphic if
and only if the spectra λ(Clopen(X)) and µ(Clopen(Y )) are equal, where

λ(Clopen(X)) = {λ(U) : U ⊆ X jest clopen w X}.
The main result is contained in the following theorem.

Theorem 55 (P6, Thm. 1.1). Every nontrivial invariant σ -ideal with analytic base on a good Cantor
measure space (X,λ) is one of the following σ-ideals

E , M∩N , M, N .

Here E is the σ -ideal generated by the collection of all closed zero measure sets with respect to λ.
We have the following diagram

M

""F
FF

FF
FF

FF

[X]≤0 // [X]≤ω // E //M∩N

::vvvvvvvvvv

$$H
HH

HH
HH

HH
H P (X)

N

<<xxxxxxxx

.
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In the proof of the above theorem, the homogeneity of λ plays an important role. The following
lemmas, which can also be considered as separate results, were used in the proof of this theorem.

Lemma 3 ([P6], Lemma 2.4). Every measure-preserving homeomorphism h : A → B between two
closed nowhere dense sets A,B ⊆ X of a good Cantor measure space (X,λ) can be extended to a
measure preserving homeomorphism f : X → X of the whole space X.

Lemma 4 ([P6], Lemma 2.5). Let us assume that (X,λ), (Y, µ) are two Cantor measure spaces, such
that λ(X) < µ(Y ). If GX ⊆ X , GY ⊆ Y are Gδ null sets with respect to the measures λ and µ,
respectively, and GY is dense in Y , then there is a measure-preserving embedding f : X → Y such
that f [GX ] ⊆ GY .

Lemma 5 ([P6], Lemma 2.7). If A ⊆ X is a closed subset of a good Cantor measure space (X,λ)
and λ(A) > 0, then for every positive real ε > 0, there is a finite set of measure (λ) preserving
homeomorphisms h1, . . . , hn of X such that

λ(
n⋃
i=1

hi[[A]) > λ(X)− ε.

Lemma 6 ([P6], Lemma 2.10). For any two Fσ meager subsets A,B of a good Cantor measure space
(X,λ), such that λ(A) = λ(B) = λ(X), there is a measure-preserving homeomorphism h : X → X,
such that h[A] = B .

Lemma 7 ([P6], Lemma 2.11). If A ⊆ X is an analytic subset of a Cantor measure space (X,λ)
which is not a member of the σ-ideal E, then A contains a Gδ set G ⊆ A such that λ(G) = 0 and
λ � G is a strictly positive measure (i.e. taking a positive value on each non-empty open set contained
in G).

Together with Maciej Burnecki, we have considered problems related to the so-called coarse-
topologies on the group G of all N -invariant transformations on the unit segment I = [0, 1] pre-
serving the σ-ideal of null sets with respect to the Lebesgue measure. These topologies are defined
using a fixed Orlicz function ϕ : R→ [0,∞] which satisfies the so-called ∆′ condition with a positive
constant c > 0.

The first result in [P7] is a theorem which says that if the Orlicz function satisfies ∆′ condition
with a constant c > 0 and if h : [0,∞) → [0,∞) is a Borel measurable function for which there is
a positive constant λ > 0 such that for every x ∈ [0,∞), h(x) ≤ ϕ−1(λx), then for any τ ∈ G and
f ∈ L0(m), the transformation

T (h)
τ = (f ◦ τ−1)(h ◦ ωτ )

is a bounded linear operator on the Orlicz space Lϕ(m) and the inequality

|T (h)
τ ‖ϕ ≤ max{1, cλ}

holds. Here m is the Lebesgue measure on I, ωr is the Radon-Nikodym derivative of the measure
m ◦ τ for τ ∈ G and L0(m) is the set of all m-measurable functions on the unit interval I.

The ∆′ condition ensures that the Orlicz space Lϕ(m) is separable and the result mentioned above
guarantees that the set

Gh = {T (h)
τ : τ ∈ G}

is bounded in the operator space L(Lϕ(m)) with respect to the strong operator topology generated
by the base of the form:

V (P, ε, x1, . . . , xn) = {Q ∈ L(Lϕ(m)) : (∀i ∈ {1, . . . , n}) |Q(xi)− P (xi) | < ε}.
Moreover, the separability of the Orlicz space Lϕ(m) implies that the topology restricted to a bounded
Gδ set W ⊆ L(Lϕ(m)) is metrizable as follows

(∀P,Q ∈ W )

(
d(P,Q) =

∑
n∈ω

‖P (fn)−Q(fn)‖
2n‖fn‖

)
,
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where {fn : n ∈ ω} is a fixed, countable dense set in the Orlicz space Lϕ(m). Gh is the image of the
mapping T h defined by

G 3 τ 7→ T (h)(τ) = T (h)
τ ∈ L(Lϕ(m)).

By the Θϕ,h we denote the topology on the group G induced by the topology on Gh by mapping T (h).
The main result of this paper says that all topologies Θϕ,h are equal whenever ϕ satisfies the ∆′

condition, h is any Borel measurable function defined on the interval [0,∞) such that h(0) = 0 and
the following two conditions are satisfied:

• (∃λ > 0)(∀x, y ∈ [0,∞)) (|ϕ(h(x))− ϕ(h(y))| ≤ λ|x− y|),
• (∃η > 0)(∀x, y ∈ [0,∞)) (|ϕ−1(x)− ϕ−1(y)| ≤ η|h(x)− h(y)|).

These topologies were introduced and investigated on the Lp spaces by Choksie and Kakutani, see
[CK], and then some results were transfered to Orlicz spaces by Burnecki [Burn].

My first scientific paper was in the domain of theoretical physics. In the quantum mechanics,
there are two types of elementary indistinguishable particles, namely, those that have rational spin
(angular quantum momentum) which are called fermions (protons, electrons, quarks) and those that
have integer spin called bosons such as photons, gluons responsible for the transmission of the strong
interactions, and the two bosons W and Z which transfer the weak interactions. Pauli’s exclusion
principle prohibits the appearance of two fermions in a one quantum state, while bosons can exist
in the same quantum state in any quantity. These phenomena of interactions of many particles, can
be described in the so-called second quantization formalism, where the basic operators are defined
on a separable Hilbert space. There are the so-called creation a+ and annihilation a operators. The
creation and annihilation operators for bosons satisfy the following relations: for any i, j ∈ n for
n ∈ ω

aia
+
j − a+

j ai = δij1 ∧ aiaj − ajai = 0 ∧ a+
i a

+
j − a+

j a
+
i = 0 CCR relations

while for fermions we have

a+
i a

+
j + ajai = δij1 ∧ aiaj + ajai = 0 ∧ a+

i a
+
j + a+

j a
+
i = 0. ACR relations

Within the formalism of the second quantization John Bardeen, Leon Cooper and Robert Shrieffer
built a theory to explain superconductivity in metals at temperatures near absolute zero. The basic
mechanism is the appearance at low temperatures of a quantum state in the metal particles in
which two electrons with opposite spins bind to form a boson which is called a Cooper pair. Cooper
pairs can be present in the same quantum state in any quantity and then can take the form of a
superconducting gas which does not interact with the cristal lattice of a metal. Moreover, the magnetic
field does not penetrate to the interior of a metal; such a phenomenon is called the Meissner effect.
The BCS theory can predict the phase transition into the superconductivity state at much lower
temperatures than the transition temperature of nitrogen from the gas phase into the liquid state.
However, the phenomenon of the transition to the superconducting state of certain substances having
a structure far from the crystal symmetry has been observed experimentally. There is a chance that
this phenomenon can be explained by the quasi-particle theory. Such particles are called anyones
and were described in a joint paper of Leinass and Myrhaim [LM] and in Wilczek’s article [Wil]. The
above-mentioned quasi-particles are the basis for explaining the quantum Hall effect. In contrast to
bosons or fermions the phase function of many particles may change in an arbitrary manner and
these particles form the intermediate system between fermions and bosons. In connection with this
phenomenon, in [P12], [P13] I investigated the existence and properties of operator algebras defined
on the quotient spaces of a tensor product of a one particle Hilbert space. These are a generalization
of the algebra generated by the operators of creation and annihilation of bosons, or fermions:

(1) aia
+
j −

∑
k,l

cklija
+
k al = δij1, aiaj −

∑
kl

b̃klijakal = 0

As a result of these considerations I obtained a necessary condition for the existence of such repre-
sentations. Namely, the matrices B = (bklij )i,j,k,l∈{1,...,n} and C = (cklij )i,j,k,l∈{1,...n} for some n ∈ N are
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related in the following way:

(2) (1−B)(1 + C̃) = 1 where c̃klij = cikjl .

Let E be a linear space over the field of complex numbers C with a fixed basis {ei}i∈I where I ⊆ N.
Let TE =

⊕
n∈ω E

⊗n denote the tensor algebra. Let C : E ⊗ E → E ⊗ E be a fixed linear operator
and g : E ⊗ E → C be the linear functional such that g(ei ⊗ ej) = δij for any i, j. For 1 ≤ i < m let
C

(i)
m : E⊗m+1 ⊗ TE → E⊗m+1 ⊗ TE be defined as follows:

C(i)
m (x1 ⊗ . . .⊗ xi ⊗ xi+1 ⊗ . . .⊗ xm ⊗ x) = x1 ⊗ . . .⊗ C(xi ⊗ xi+1)⊗ . . .⊗ xm ⊗ x.

The operator hm : E⊗m+1 → E⊗m−1 is defined as follows:

hm =
m∑
k=1

(1k−1 ⊗ g ⊗ 1mk)C
(k−1)
m . . . C(0)

m .

If (2) is fulfilled and if we assume that

• B̃(2)C(1)C(2) = C(1)C(2)B̃(1) and
• [h(1)hkC(k−1) . . . C(1) + . . .+ h(k−2)C(k−3) . . . C(1)h(2)](1− B̃(1)) = 0 for k ∈ N \ {0, 1, 2},

then the operator representation of particles fulfilling equation (1) exists.
If we assume that the operator C has the operator norm on a Hilbert space E ⊗ E not greater

than 1, then the operator of position can be written as follows:

E 3 f 7→ φ(f) = (a(f) + a+(f))/
√

2

and is essentially selfadjoint on the Fock space F , which is a quotient tensor algebra with a scalar
product. For any x, y ∈ E⊗n+1 this scalar product is defined as follows:

< x, y >C=< x, Pn+1y >0 ∧Pn+1 = (1⊗ PN)Rn+1 ∧Rn+1 = 1 + C
(1)
n+1 + . . .+ C(1)

m . . . C(n)
m

where

< u1 ⊗ . . .⊗ un, v1 ⊗ . . .⊗ um >0= δn,m

n∏
i=1

< ui, vi >, for the product < ·, · >: E2 → C.

for any fixed vectors u1, . . . un, v1, . . . vm ∈ E. In the Fock space F , the creation operators are conju-
gated to the anihillation operators and vice versa.

Examples of such algebras are of course algebras generated by bosons or fermions. Moreover, for
any complex number qi ∈ C, such that |qi| = 1 for any i ≤ dimE the matrix elements in the case of
the so-called colored bosons are expressed as follows:

bklij = b̃klij = qj q̄iδilδjk ∧ aklij = qiq̄jδilδjk

and for the colored fermionic statistics:

bklij = b̃klij = −qj q̄iδilδjk ∧ aklij = −qiq̄jδilδjk.
The operator algebra determined by the matrices

b̃klij = 1 ∧ cij = q2δij

is generated by the creation and annihilation operators related to each other in the following way:

bib
+
j − q2δijb+

j bi = δij1 ∧ bibj − bjbi = 0 = b+
i b

+
j − b+

j b
+
i .

Using appropriate transformations on the above operators bi, b+
j , proposed by Chaichian, Gross and

Presnajder [CGP], we obtain the deformed algebra SUq(n) derived from cans and Woronowicz [PW]
generated by the operators Ai, A+

j of relations defined as:

AiAj = qAjAi ∧ A+
j A

+
i = qA+

i A
+
j for i < j,

AiA
+
j = qA+

j Ai for i 6= j,
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AiA
+
i − q2A+

i Ai = 1− (1− q2)
∑
k>i

A+
k Ak.

In [P10] I determined the kernel of a twisted scalar product defined on the tensor product TE of
the n-dimensional complex space E. This product is definable from the operator T : E⊗E → E⊗E
given by the following formula

(∀i, j ∈ {1, . . . , n})(qi,j ∈ C) T (ei ⊗ ej) = qi,jej ⊗ ei ∧ |qi,j| = 1 ∧ qi,j = qj,i.

Then for x, y ∈ TE the product is given by the formula 〈x, y〉T = 〈x, Py〉0 where for x1, . . . , xn, y1, . . . , ym ∈
E:

〈x1 ⊗ . . .⊗ xn, y1 ⊗ . . .⊗ ym〉0 = δn,m

n∏
i=1

〈xi, yi〉.

Here the projection P =
⊕

n∈ω Pn is acting on TE and for n ∈ ω
Pn = (1 + T n1 ) . . . (1 + T nn−1 + . . .+ T nn−1 · · ·T n1 ∈ End(E⊗n)).

If dimE ≥ 2 , then ker〈·, ·〉T = {x ∈ TE : 〈x, x〉T} =
⊕

n∈ω Zn, where

Zn = {x ∈ E⊗n : x =
∑
ī

(
∑
σ∈Gī

ασ,̄iF (σ))eī −→ (∀ī = (i1, . . . , in))
∑
σ∈Gī

ασ,̄i = 0},

Gī = Imfī, ī = (i1, . . . , in), fī((j1, . . . , jn)) = σ ∈ Sn and the permutations σ fulfill the following
equality σ(j1, . . . , jn) = ī = (i1, . . . , in). In addition, in the same paper I found the statistical sum
for a great canonical ensemble of the mixed bosonic and fermionic particle system described by
the Manin algebra specified by the twist quantum operator T ∈ End(E ⊗ E) acting on the square
tensor of D-dimensional space E over the field of complex numbers C with fixed orthonormal basis
{ei : i ∈ {1, . . . , k}} ∪ {fj : j ∈ {1, . . . , D − k}}

T (ei ⊗ ei) = ei ⊗ ei ∧ T (fj ⊗ fj) = −fj ⊗ fj,
i 6= j −→ T (ei ⊗ ej) = qi,jej ⊗ ei ∧ T (fi ⊗ fj) = qi+k,j+kfj ⊗ fi,

T (ei ⊗ fj) = qi,j+kfj ⊗ ei,
where the complex numbers qi,j ∈ C satisfy the relation

qi,j · qi,j = 1 ∧ qi,j = qj,i.

Then for the Hermitian operator h defined on the above mentioned basis of the space E, h(ei) = εiei,
h(fj) = ηjfj, for the fixed real numbers εiηj ∈ R corresponding to the energy of bosonic and fermionic
particles, the statistical sums on the n-particle space E⊗n are as follows

tr(Pne
dΓn(h)) =

k∏
i=1

(1− eεi)−1

D−k∏
j=1

(1 + eηj),

dΓn(h) = h⊗ 1⊗ . . .⊗ 1 + 1⊗ h⊗ 1⊗ . . .⊗ 1 + . . . 1⊗ . . .⊗ 1⊗ h.
In [P8], [P9] written jointly with with Roman Gielerak, we considered Leinaas-Myrheim systems

of quasi-particles with given commutation relations of creation and annihilation operators
ar(x)ar(x)+ − er(x,y)ar(x)+ar(x) = δ(x− y)1

ar(x)ar(x)− er(x,y)ar(x)ar(x) = 0

ar(x)+ar(x)+ − er(x,y)a+
r (x)a+

r (x) = 0,

(r : R2d → R and y(x, y) + y(y, x) = 0 for any x, y ∈ Rd). Here h is a given one particle hamiltonian
h = hV = −∆σ + µ, where σ ∈ C3(∂V ) is a boundary condition of the class C3 for the set V ⊆ Rd

and here ∆σ is the Laplace operator, while µ is the chemical potential and β > 0 is the so-called
inverse temperature. We showed the existence of the thermodynamic limit of the free density energy

lim
V↗Rd

lnZr
V (β, µ)

|V |
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in a finite volume of the grand canonical Gibbs ensemble:

Zr
V (β, µ) ≡ TrΓr(hV )Γr(e

−βh(µ)).

Here Γr(hV ) is a Fock module as the resulting quotient algebra of the tensor algebra T (H) by the
two-sided ideal generated by the above-defined commutation relations of the creation a+

r and the
annihilation operators ar (here H = HV = L2(V ) denotes the one particle Hilbert space of all square
integrable functions on V on which acts the hamiltonian hV ). From the one particle hamiltonian we
require the existence of the trace trH(e−βhV (µ)) defined on the one particle Hilbert space H. I should
mention here that the above result is the starting point for the study of phase transitions of the
Leinaas-Myrheim quasi-particles.

The last three works from the list, [P14], [P15] and [P16], concern physical chemistry. Together
with Mirosław Kozłowski and Hubert Kołodziej we studied the behavior of the dielectric response in
the time and frequency domains for chemical compounds possessing a certain crystal structure.
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