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1. Description of the field and motivation

1.1 Introduction
In 1940 S. M. Ulam gave a lecture to The Mathematics Club of the University of Wiscon-

sin, where he presented a number of unsolved problems. One of them is considered to be
the starting point of the theory of stability of functional equations1. It can be formulated
as follows. Let G be a group and (H, d) a metric group. Does there exist for every ε > 0 a
δ > 0 such that for every f : G→ H satisfying

d(f(xy), f(x)f(y)) ≤ δ, for all x, y ∈ G,

there exists a homomorphism a : G→ H such that

d(f(x), a(x)) ≤ ε, for all x ∈ G?

Twenty years after giving this lecture S. M. Ulam published a book "Problems in Modern
Mathematics" [117], in which he formulated the problem of stability. First section of the
sixth chapter: "Some Questions in Analysis" is entitled "Stability". There he writes: ”For
very general functional equations one can ask the following question. When is it true that
the solution of an equation differing slightly from a given one, must of necessity be close
to the solution of the given equation? Similarly, if we replace a given functional equation
by a functional inequality, when can one assert that the solutions of the inequality lie near
to the solutions of the strict equation?”

Even more generally the problem of stability was formulated (while investigating stability
of isometries) in 1978 by P. M. Gruber [41], who reformulated the Ulam’s problem in this
way: “Suppose a mathematical object satisfies a certain property approximately. Is it then
possible to approximate this object by objects, satisfying the property exactly?”

At this point it is not possible to present a complete picture of stability theory of func-
tional equations. However, I would like to specify the main lines of research that emerged
from the question of S. Ulam, highlight the relationship of this theory with other branches
of mathematics and mention what are the most popular tools used in the study of such
issues.
1.2 Hyers Theorem and the discussion concerning the domain
Less than a year after the lecture of S. Ulam, D. H. Hyers obtained the first important

result related to this problem. In his paper [42] one can find the following theorem:

1Even earlier, in 1924, the similar problem was considered by G. Pólya i G. Szegö (see [94]) in some
special case.
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Theorem 1.1 (D. H. Hyers). Let X and Y be Banach spaces and f : X → Y satisfy the
condition

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε, x, y ∈ X,

with some ε > 0. Then there exists a (unique) additive function a : X → Y satisfying the
inequality

‖f(x)− a(x)‖ ≤ ε, x ∈ X.

Therefore, in the case where G and H are Banach spaces, the answer to Ulam’s question
is positive (with δ = ε); we say then that the Cauchy equation f(x + y) = f(x) + f(y)

is stable. In addition, looking at Hyers’ proof, we can immediately see that X can be
replaced by any additive semigroup. In the discussion under what assumption one can get
a similar approximation as in the Hyers Theorem let’s note that in [26] G. L. Forti showed
that the Cauchy equation is not stable on the free group generated by two elements. L.
Székelyhidi [106] (see also [105]) showed that stability can have place also in the case of non-
commutative domain – it is enough to assume that the domain is an amenable semigroup.
However, this assumption turned out to be too strong, as proved J. Lawrence [27]. Further
research in this direction conducted, among others, L. Giudici, whose unpublished results
can be found in a survey by G. L. Forti [28].
1.3 Discussion concerning target space
Similarly the assumptions concerning the target space in Hyers Theorem were discussed.

G. L. Forti and J. Schwaiger [29] proved the following theorem:

Theorem 1.2 (G. L. Forti, J. Schwaiger). Let G be a commutative group with an element
of infinite order and let Y be a normed space. Then the following implication holds true: if
for every function f : G→ Y satisfying

‖f(x+ y)− f(x)− f(y)‖ ≤ ε, x, y ∈ G,

there exists a homomorphism a : G→ Y such that

‖f(x)− a(x)‖ ≤ ε, x ∈ G,

then Y is complete.

Another line of research was indicated by L. Székelyhidi in [107], its culmination is the
following theorem proved by Z. Gajda [31].

Theorem 1.3 (Z. Gajda). Suppose that the Hyers Theorem holds true for complex func-
tions defined on a semigroup S and let Y be a sequentially complete linear-topological
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Hausdorff space. Then, if f : S → Y and

S × S 3 (x, y) −→ f(x+ y)− f(x)− f(y)

is bounded then there exists an additive function a : S → Y such that the difference f − a
is bounded too.

1.4 Methods of proving stability
In the theory of the stability of functional equations several techniques have been deve-

loped. They allow us to study the stability of some types of classical functional equations.
The technique based on the so-called Hyers sequences is the most popular and often used.
It refers to the original proof of Hyers [42].

A second technique was introduced by J. A. Baker in [6]. Baker based the proof of the
following theorem concerning stability of a nonlinear functional equation on the Banach
Contraction Principle.

Theorem 1.4 ( J. A. Baker). Let T be a nonempty set, (Y, ρ) a complete metric space,
φ : T → T , F : T × Y → Y , 0 ≤ λ < 1 and let

ρ(F (T, u), F (t, v)) ≤ λρ(u, v), t ∈ T, u, v ∈ Y.

Then, for every function f : T → Y satisfying the condition

ρ(f(t), F (t, f(φ(t)))) < ε, t ∈ T,

with some ε ≥ 0, there exists a unique function f0 : T → Y such that

f0(t) = F (t, f0(φ(t))), t ∈ T

and
ρ(f(t), f0(t)) < ε/(1− λ), t ∈ T.

Later the fixed point method was successfully used in the theory of stability (see for
example [18]).

Another technique, based on invariant means, was proposed by L. Székelyhidi in [106],
[105]. Namely, L. Székelyhidi proved Hyers Theorem for complex mappings defined on an
amenable semigroup.

However, it seems that the diversity of the issues under consideration does not allow for
the development of any universal techniques in the study of Ulam-type problems.
1.5 Different “types of stability”
Considering Ulam’s problem for a functional equation of exponential function:

f(x+ y) = f(x)f(y),
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resulted in the following statement:

Theorem 1.5 (J. A. Baker [5]). If S is a semigroup and f : S → C satisfies

|f(x+ y)− f(x)f(y)| ≤ ε, x, y ∈ S

with some ε ≥ 0, then either f is bounded (by (1 +
√

1 + 4ε)/2) or it is an exponential
function.

In this case we say that the functional equation is superstable. R. Ger in [34], [35]
explained that such unusual behavior is a consequence of mixing addition and multiplying
in C. 2

Superstability is only one of many possible “types of stability” in the sense of Ulam.
Others are, for example, b-stability, uniform b-stability, inverse stability, hyperstability.
Relations between these various kinds of stability are discussed by Z. Moszner in [83], [90]
(among others).
1.6 Ulam’s problem with unbounded control function
Let me mention also the Ulam’s problem with an unbounded control function3. Such

research began at the turn of the 1940s and 1950s (see T. Aoki [3]). I will quote here a
theorem from a book of N. J. Kalton, N. T. Peck and J. W. Roberts [61].

Theorem 1.7 (N. J. Kalton, N. T. Peck, J. W. Roberts). A Banach space X is a K-space
if and only if for every homogenuous function f : X → R satisfying

| f(x+ y)− f(x)− f(y) |≤ ε(‖x‖+ ‖y‖), x, y ∈ X

2The following theorem can be consider as an exponential counterpart of Hyers Theorem:

Theorem 1.6 (D. Kazhdan, [64]). let G be a topological group which is amenable, and let U be a group
of unitary operators on a Hilbert space H. Then, for every function f : G→ U satisfying

‖f(x+ y)− f(x)f(y)‖ ≤ ε, x, y ∈ G

and ε < 1
100 there exists a representation τ : G→ U of group G such that

‖τ(x)− f(x)‖ ≤ ε, x ∈ G.

In general, Ulam’s problem of stability of functional equation of exponential function (for maps with
vector values) has not been solved until today. Some results can be found in paper of R. Ger, P. Šemrl
[37] and in a monograph of D. H. Hyers, G. Isac i Th. M. Rassias [43], and further information about the
quasirepresentations of groups was included in a survey of A. I. Shtern [100] and a paper of M. Burger, N.
Ozawa, A. Thom [10].

3Namely, we replace ε from the right hand side of inequality (1.1) by a function depending on x and y.
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with some ε, there exists a linear functional (not necessarily continuous) mapping L into
X such that

| f(x)− L(x) |≤ K‖x‖,
for some constant K and all x ∈ X.

The aforementioned theorem turned out to be an inspiration for other authors investi-
gating the problem of Ulam. Additionaly, this stability property proved to be very useful
for mathematicians dealing with the K-space theory.

Other stability results with unbounded control function can be found in monograph
[43], and further connections between K-space theory and stability theory, among others,
in paper of F. Cabello Sánchez [11]. A paper of F. Cabello Sánchez and J. M. F. Castillo
[12] is also worth mentioning, in which the relationship between the problem of Ulam and
twisted sums of Banach spaces is examined. The multiplicative counterparts of the above
theorem can be found in a book of K. Jarosz [53] and articles of B. E. Johnson [54], [55].
1.7 Ulam’s problem for inequalities
We meet with yet another situation while considering Ulam’s problem for inequalities.

Already in 1950s classic Ulam’s problem for convexity was considered by D. H. Hyers and
S. M. Ulam [44].

Theorem 1.8 (D. H. Hyers, S. M. Ulam). If f is a real function defined on a convex subset
D of Rn satisfying, with some ε ≥ 0, inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε,

for all x, y ∈ D and t ∈ [0, 1], then there exists a convex function g : D → R such that

|f(x)− g(x)| ≤ knε, x ∈ D,

where kn = (n2 + 3n)/(4n+ 4).

In this theorem, the dependence of stability constants on the dimension of space was
obtained, and Z. Kominek and J. Mrowiec in [70] showed the lack of stability in the case of
infinitely dimensional spaces. The problem of stability of convex function was considered
later in 1984 by P. W. Cholewa in [17] (he improved the constants kn), and at the end
of the century by M. Laczkovich in [72]. In 2011 a paper of M. Laczkovich and R. Paulin
[73] was published; the authors introduced another constant corresponding to bounded
functions (second Whitney constant) and showed its connection to the stability constant
of the Jensen equation.
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1.8 Summary
Above, I presented only a brief and selective introduction to the theory of stability of

functional equations. More of interesting results can be found in the monographs of D. H.
Hyers, G. Isac and Th. M. Rassias "Stability of Functional Equations in Several Variables"
[43] and in the survey paper of G. L. Forti [28], R. Ger [36] and L. Székelyhidi [109].

Despite the passing of many years, the problem of stability of functional equations is
still alive and attracts the interest of many mathematicians.
1.9 My results in this field
My scientific achievement is part of the research line related to the problem of Ulam -

the problem of stability of functional equations. When selecting publications for scientific
achievement, not only did I want to present the results obtained, but also to show the
examples of methods used to solve stability problems. I tried to list various problems
arising from S. Ulam’s question, and also pointed out the variety of methods that I used to
achieve the results described below. Hence the conscious choice of papers seemingly distant
from each other, but connected by a common denominator, which is S. Ulam’s question
from 1940.

Papers [A] and [C] refer to the stability problem of one of the most important functional
equations - the translation equation. This problem put up many years ago is not fully solved
until today. My results published in [A] give a positive answer in the class of continuous
functions defined on R× I, where I is a real interval. Paper [C] is, in a sense, a refinement
and complement to the paper [A]. In addition, it also raises the issue of “reverse stability”
- we ask if the fact of being in close proximity to the exact solution results in being an
approximate solution. In the case of the translation equation (in this situation) the answer
is negative, but in [C] the conditions under which it will be so are given.

In papers [B], [E], [F] and [G] I remain faithful to the original problem of Ulam – the
problem of stability of the Cauchy equation. Nevertheless, the methods presented in these
articles are rather different from those used so far.

In the paper [B], a new technique of proof of Hyers theorem based on the Markov-
Kakutani theorem is presented. The results contained in [D] show that this technique can
be successfully used also in the stability study of other functional equations, using also
other common fixed point theorems.

In publications [E], [F] Ulam’s problem for the Cauchy’s equation is combined with the
problem of Erdős [22] and I. Farah’s approach from the paper [24]. We prove that when
a set of such points (x, y), for which the value f(x + y) and the sum f(x) + f(y) are far
from each other by at least ε is of a small measure (but perhaps positive), then there is a
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homomorphism F such that the set of x’s for which the distance between f(x) and F (x)

are not close enough to each other, is of small measure.
In [G] we extend the areas of research related to the problem of Ulam. Namely, we for-

mulate and investigate the problem of Ulam for the homomorphisms of lattices. We define
in two ways what it means to be "the approximate homomorphism" of the lattices and, in
these two cases, we prove the stability of the Cauchy equation (properly understood).

2. Stability of the translation equation

2.1 Introduction
A functional equation of the form

(2.1) F (s+ t, x) = F (t, F (s, x)), s, t ∈ T, x ∈ X,

where a function F is defined on a set T ×X with values in a set X and T is a set with
binary operation + is called the translation equation. We can interprete the set T as time,
then F (t, x) denotes the place of point x in time t. It is convenient to put f t := F (t, ·),
then the translation equation takes the form

(2.2) f t ◦ f s = f s+t, s, t ∈ T.

The translation equation is one of the most important functional equations, it appears in
a natural way in many topics4. It links the iteration theory with the functional equations.
The solutions of the the translation equation with T = R, or T = (0,∞) (it is convenient
to consider the form (2.2)) are these functions f : X → X, such that the discrete process
(fn)n∈N generated by f has a continuous extension to the real time, or positive real time.
A family of continuous maps {f t; t ∈ R} or {f t; t ∈ (0,∞)}, satisfying (2.2) is called
an iteration group or iteration semigroup, respectively. Moreover, if the initial condition
f 0 = id is satisfied, the family {f t; t ∈ R} is called a dynamical system5.

Some interesting issues discussed in the connection with the translation equation are,
among others,: the form of the solutions in different settings and under different assump-
tions (continuity, differentiablity, monotonicity), regularity of the solutions (when the me-
asurability of iteration groups or semigroups implies their continuity), embedding (and
near embedding6) into continuous iteration semigroups.
2.2 The stability of the translation equation in some class of functions
There are only a few articles on the stability of the translation equation.

4Quite a long list of such topics can be found in surveys of Z. Moszner [82] i [84].
5More about the stability of the dynamical systems can be found in the chapter 8 of this presentation.
6see chapter 10 of this presentation.
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Let me start with disscusing the case of continuous functions defined on R× I, where I
is a real interval, since this is the class of functions I was dealing with in my research.

Results concerning that case can be found in the papers [14], [A] and [C].
More precisely, J. Chudziak under the following assumptions:

(H)

I is an open real interval, G : R× I → I,
the function G(·, x0) : R→ I is a continuous surjection for some x0 ∈ I,
|G(t, G(s, x0))−G(s+ t, x0)| ≤ δ, for s, t ∈ R and a δ > 0,

shown in [14] how to define a homeomorphism g : R→ I such that

|G(t, x)− g(g−1(x) + t)| ≤ 9δ, t ∈ R, x ∈ I,

i.e., he proved that for a continuous iteration group F given by

(2.3) F (t, x) = g(g−1(x) + t), x ∈ I, t ∈ R,

we have

|G(t, x)− F (t, x)| ≤ 9δ, x ∈ I, t ∈ R.

In the article [A], I assume that I is a real interval, a function G : R×I → I is continuous
with respect to each variable and the following inequality

(2.4) |G(s,G(t, x))−G(t+ s, x)| ≤ δ, s, t ∈ R, x ∈ I,

is satisfied for some δ > 0. It turns out that there is some family U of open disjoint
subintervals of the interval V := G(R × I) for which the assumptions (H) are satisfied,
even more, for an arbitrary point x ∈ U ∈ U the trajectory of x, i.e., R 3 t 7→ G(t, x) ∈ I,
is a surjection onto U . This implies that on every interval U ∈ U we can define F by (2.3).

For every x ∈ V \
⋃
U the interval G(R× {x}) has length no bigger than 8δ, so we can

approximate a function t 7→ G(t, x) by the constant function t 7→ G(0, x) =: F (t, x).
For x /∈ V we define F (t, x) according to the value of G(0, x).
What is left is to take care of the continuity of F on the boundary of V , hence, some

necessary modifications are needed. They result in the following formula for F :

F (t, x) =

{
gλ(g

−1
λ (f(x)) + t), if f(x) ∈ Uλ, t ∈ R;

f(x), if f(x) /∈
⋃
λ∈Λ Uλ, t ∈ R
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where U = {Uλ : λ ∈ Λ} and

f(x) =



x, if x ∈ [G(0, inf V ), G(0, supV )] ∩ I,
G(0, inf V ), if x ∈ [inf V,G(0, inf V )] ∩ I,
G(0, supV ), if x ∈ [G(0, supV ), supV ] ∩ I,
G(0, x), if x ∈ I \ V and G(0, x) ∈ [G(0, inf V ), G(0, supV )],

G(0, inf V ), if x ∈ I \ V and G(0, x) ∈ [inf V,G(0, inf V )],

G(0, supV ), if x ∈ I \ V and G(0, x) ∈ [G(0, supV ), supV ].

This was the sketch7 of the proof of the stability of the translation equation from [A],
i.e., the proof of the following theorem:

Theorem 2.1. Let I ⊆ R be a real interval, δ ∈ (0,∞), G : R × I → I be a function
continuous with respect to each variable satisfying (2.4). Then there exists a continuous
iteration group F : R× I → I, such that

(2.5) |G(t, x)− F (t, x)| ≤ 10δ, x ∈ I, t ∈ R.

The reason to write the paper [C] was to emphasize some relations between F and G

from the theorem above. In more details we list some facts which follow from (2.4) (see
[C, Theorem 2.2]), moreover, we inverse this theorem, i.e., we indicate which conditions
together with (2.5) guarantee satisfying (2.4) (see [C, Theorem 3.1]).

I am going to list these conditions, but first, let me start with reminding the commonly
known8 characterization of continuous solutions of the translation equation (where I ⊆ R
is an interval and T = R), to indicate some similarities between the form of H satisfying
the translation equation approximately, and F being a solution of this equation.

Theorem 2.2. Let F : R × I → I be a continuous solution to the translation equation,
V = F (R×I). Then there are open disjoint intervals Uλ ⊂ V , λ ∈ Λ, and homeomorphisms
hλ : R→ Uλ, such that for every x ∈ Uλ we have

F (t, x) = hλ(h
−1
λ (x) + t), t ∈ R,

and
F (t, x) = x, x ∈ V \

⋃
λ∈Λ

Uλ, t ∈ R.

7The full proof consists of some lemmas, corollaries from Section 2 of [A] and the “proper proof” from
Section 3 of that article (pages 1982-1986).

8Unforunately, I cannot pinpoint where this characterization appeared for the first time; it can be found
for example in the book of Z. Moszner [87], Chapter IX, 4D/ or it can be deduced from the monograph
[101].
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Moreover, there exists a continuous function f : I → V , such that f(x) = x for x ∈ V and

F (t, x) = F (t, f(x)), t ∈ R, x ∈ I \ V.

Conversely, for every continuous function f : I → I, such that f ◦ f = f , a family of
open disjoint intervals {Uλ : λ ∈ Λ} such that Uλ ⊂ f(I) and a family of homeomorphisms
{hλ : R→ Uλ : λ ∈ Λ}, the function F given by

(2.6) F (t, x) =

{
hλ(h

−1
λ (f(x)) + t), if f(x) ∈ Uλ, t ∈ R;

f(x), if f(x) /∈
⋃
λ∈Λ Uλ, t ∈ Ri.e., by the formula F (t, x) =


hλ(h

−1
λ (x) + t), if x ∈ Uλ, t ∈ R;

x, if x ∈ f(I) \
⋃
λ∈Λ Uλ, t ∈ R;

F (t, f(x)), if x ∈ I \ f(I)


is a continuous solution to the translation equation.

Below, I list some conditions which follow from (2.4) ([C, Theorem 2.2]). Of course,
each continuous iteration group F satisfies (2.4) with δ = 0, so, it satisfies the following
conditions (a)–(m) with δ = 0.

Suppose that G : R× I → I is a continuous solution of the following inequality

|G(s,G(t, x))−G(s+ t, x)| ≤ δ, x ∈ I, s, t ∈ R.

Then:

(a) there exist families U = {Uλ ⊂ I : λ ∈ Λ} of open and disjoint intervals of the
length greater or equal to 6δ and {hλ : R→ Uλ : λ ∈ Λ} of homeomorphisms, and
a continuous function f : I → I, such that f ◦ f = f ,

⋃
λ∈Λ Uλ ⊂ f(I),

|G(t, x)− f(x)| ≤ 10δ, t ∈ R, f(x) /∈
⋃
λ∈Λ

Uλ,

|G(t, x)− hλ(h−1
λ (f(x)) + t)| ≤ 10δ, t ∈ R, f(x) ∈ Uλ, λ ∈ Λ

(in particular, there exists a continuous solution F (given by (2.6)) to the translation
equation, such that |G− F | ≤ 10δ);

(b) ∀(x∈I, U∈U) (f(x) ∈ U ⇒ G(R× {x}) = U)

(if f(x) ∈ U ∈ U , then the trajectory of x is a surjection onto U);

(c) ∀(x∈I) (x ∈
⋃
U ⇒ f(x) = x);

(d) ∀(x∈I, t∈R) (|f(G(t, x))−G(t, x)| ≤ 2δ)

(it means, for y belonging to the set of values of G, the value f(y) is close to y);

(e) ∀(x∈I) (f(x) /∈
⋃
U ⇒ (∀t∈R f(G(t, x)) /∈

⋃
U)) ;
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(f) ∀x∈I (f(x) /∈
⋃
U ⇒ (∀s1,s2∈R |H(s1, x)−H(s2, x)| ≤ 6δ))

(trajectories of x, such that f(x) /∈
⋃
U , are “short”);

(g) the set of values of f is a subset of the set of values of G,
(h) every interval U ∈ U is “invariant”, i.e.,

G(R× {x}) = U, x ∈ U ∈ U ,

and
G({t} × U) = U, t ∈ R, U ∈ U ;

(i) either hλ is an increasing homoemorphism, and then

lim
t→∞

G(t, x) = supUλ =: bλ, lim
t→−∞

G(t, x) = inf Uλ =: aλ, x ∈ Uλ,

and for every t ∈ R we have G(s, x) > G(t, x)− 2δ for s > t;
or hλ is a decreasing homeomorphism, and then

lim
t→∞

G(t, x) = aλ, lim
t→−∞

G(t, x) = bλ, x ∈ Uλ,

and for every t ∈ R we have G(s, x) < G(t, x) + 2δ for s > t

(in this point I described the trajectories of x ∈ Uλ: if hλ is an increasing homeomorphisms
then G(·, x) is “almost” increasing, if hλ is a decreasing homeomorphism then G(·, x) is
“almost” decreasing’);

(j) for every λ ∈ Λ, such that aλ ∈ I:

G(t, aλ) = aλ, t ∈ R;

for every λ ∈ Λ, such that bλ ∈ I:

G(t, bλ) = bλ, t ∈ R

(the trajectories of the endpoints of Uλ are constant);

(k) for every x ∈ I such that x /∈
⋃
λ∈Λ

Uλ but there exist n,m ∈ Λ, such that bn ≤ x ≤

am, we have
|G(t, x)− x| ≤ 6δ, t ∈ R

(for x’s which are between some two intervals from the family U , the values G(t, x) are
close to x);

(l)
|G(t, x)−G(t, f(x))| ≤ 10δ, t ∈ R, x ∈ I;

moreover
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(m) for every λ ∈ Λ we have two possibilities:
• either there exists an ηλ > 0, such that

(2.7) |t1 − t2| ≤ ηλ ⇒ |hλ(t1)− hλ(t2)| ≤ 21δ, t1, t2 ∈ R,

and then for η∗λ := sup{ηλ > 0 : (2.7)} ∈ (0,∞] we have

hλ(t− η∗λ + h−1
λ (f(x))) ≤ G(t, x) ≤ hλ(t+ η∗λ + h−1

λ (f(x))), t ∈ R, f(x) ∈ Uλ,

if hλ increases (hλ(±∞) denotes lim
t→±∞

hλ(t)) and

hλ(t− η∗λ + h−1
λ (f(x))) ≥ G(t, x) ≥ hλ(t+ η∗λ + h−1

λ (f(x))), t ∈ R, f(x) ∈ Uλ,

if hλ decreases,
• or ηλ, such that (2.7) holds true does not exist and then

G(t, x) = hλ(t+ h−1
λ (f(x)), t ∈ R, f(x) ∈ Uλ

This point provides an estimation of the distance between G(t, x) and hλ(t+h−1
λ (f(x)) for

x such that f(x) ∈ Uλ for some λ ∈ Λ, better than it was described in the point (a). Either
this distance is exactly equal to zero (so the restriction of G to R×Uλ is an exact solution
of the translation equation, not only an approximate one), or we can at least control how
fast hλ increases, in such a case the equality between G(t, x) and hλ(t+h−1

λ (f(x)) does not
necessarily takes place, however, the inequalities form (m) shows how close G(t, x) and the
values hλ(t + h−1

λ (f(x)) are – in particular for t close to ±∞. From these inequalities we
can deduce that

lim
t→±∞

|G(t, x)− hλ(t+ h−1
λ (f(x))| = 0.

It is known9, that the existence of the solution F of the translation equation in the
vicinity of G, i.e., satisfying inequality (2.5), does not guarantee that G satisfies the trans-
lation equation approximately: (2.4). The theorem below ([C, Theorem 3.1]) provides the
conditions which together with (2.5) guarantee that (2.4) holds true.

Theorem 2.3. Let I be a nondegenerate real interval, δ, A1, A2, B, C, D > 0, and let
H : R× I → I be a continuous function. Suppose that

(a’) there exist open disjoint intervals Un ⊂ I, n ∈ N , with N ⊂ N being some set of
indices, homeomorphisms hn : R→ Un, n ∈ N , and a continuous function f : I → I

such that f ◦ f = f , Un ⊂ f(I), n ∈ N ,

|H(t, x)− f(x)| ≤ A1δ, t ∈ R, f(x) /∈
⋃
n∈N

Un,

9see Theorem 4.4 i Theorem 4.5 from [X].
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|H(t, x)− hn(h−1
n (f(x)) + t)| ≤ A2δ, t ∈ R, f(x) ∈ Un, n ∈ N ;

(b’) ∀(x∈I, n∈N) (f(x) ∈ Un ⇒ H(R, x) ⊂ Un);
(c’) ∀(x∈I, n∈N) (x ∈ Un ⇒ f(x) = x);
(d’) ∀(x∈I, t∈R) (|f(H(t, x))−H(t, x)| ≤ Bδ);

(e’) ∀x∈I
(
f(x) /∈

⋃
n∈N

Un ⇒
(
∀t∈R f(H(t, x)) /∈

⋃
n∈N

Un

))
;

(f’) ∀x∈I
(
f(x) /∈

⋃
n∈N

Un ⇒ (∀s1,s2∈R |H(s1, x)−H(s2, x)| ≤ Cδ)

)
;

moreover
(m’) for every n ∈ N one of the following two possibilities holds:

• either there exists an ηn > 0, such that

(2.8) |t1 − t2| ≤ ηn ⇒ |hn(t1)− hn(t2)| ≤ Dδ, t1, t2 ∈ R,

and for η∗n := sup{ηn > 0 : (2.8)} ∈ (0,∞] we have

hn(t− η∗n + h−1
n (f(x))) ≤ H(t, x) ≤ hn(t+ η∗n + h−1

n (f(x))), t ∈ R, f(x) ∈ Un,

if hn increases, or

hn(t− η∗n + h−1
n (f(x))) ≥ H(t, x) ≥ hn(t+ η∗n + h−1

n (f(x))), t ∈ R, f(x) ∈ Un,

if hn decreases,
• or such an ηn, for which (2.8) holds true does not exist and then

H(t, x) = hn(t+ h−1
n (f(x)), t ∈ R, f(x) ∈ Un.

Then
|H(s,H(t, x))−H(t+ s, x)| ≤ Eδ, s, t ∈ R, x ∈ I,

where E := max{(2A2 +D),min{3A1 +B,A1 +B + C}}.

The second aim of writing [A] was to investigate the stability of the translation equation
in the class of surjections and to investigate the stability of the system of equations{

H(s,H(t, x)) = H(t+ s, x),

H(0, x) = x.

It turned out that the translation equation is stable in the class of surjective function but
the above system of equations is not stable for I ( R. However, a function H satisfying the
translation equation is surjective if and only if it satisfies the identity conditionH(0, x) = x.
It gave the motivation to start the cowork with Prof. Zenon Moszner concerning the stablity
(in different senses) of dynamical systems (in different senses, too). The results of this
cooperation include [X] (later this research was continued by Z. Moszner in [89] i [90]).
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2.3 The other results concerning Ulam’s problem for the translation equation
In [77] there was investigated the b-stability10 and stability in the sense of Hyers-Ulam11

of equation (2.1). This article contains a few remarks12 concerning some special cases13. The

10Let (T,+) be a monoid with a neutral element, (X, ρ) a metric space. We say that the equation (2.1)
is b-stable if for every G : T ×X → X the following implication holds: if

{ρ(G(s,G(t, x)), G(t+ s, x)) : x ∈ X, s, t ∈ T}

is bounded then there exists a solution F of (2.1), such that the set

{ρ(G(s, x), F (s, x)) : x ∈ X, s ∈ T}

is bounded.
11We say that the equation (2.1) is jest stable in the Hyers-Ulam sense , if for every ε > 0 there exists

a δ > 0, such that for every G : T ×X → X satisfying

(2.9) ρ(G(s,G(t, x)), G(t+ s, x)) ≤ δ, x ∈ X, s, t ∈ T,

there exists a solution F to (2.1), such that

(2.10) ρ(G(s, x), F (s, x)) ≤ ε, x ∈ X, s ∈ T.

12First three come from an earlier article [85].
13These are:

• if T is a free group generated by 2 elements, X is the set of integers with natural metric then the equation
(2.1) is not b-stable;
• if T is a groupoid, X is the set of integers with natural metric then the equation (2.1) is Hyers-Ulam
stable;
• if T = {0} is the trivial group, X an arbitrary metric space, then the equation (2.1) is both b-stable and
Hyers-Ulam stable;
• if T = {0, 1} is the group of two elements, X = {0, 1, 1/2, 1/3, . . .} with natural metric, then there is not
true that:
for every ε > 0 there exists a δ > 0, such that for every G : T × X → X satisfying (2.9) there exists a
solution F of an equation (2.1), such that

F (0, x) = x, x ∈ X

and (2.10) holds true.



17

main results14 from the article [77] concern the stability of the equation (2.1) in classes

B = {H : T ×X → X : H(·, x0) is bijection for some x0 ∈ X}

and

I = {H : T ×X → X : H(·, x0) is injection

and H(T × {x0}) = H({0} ×X) for some x0 ∈ X}

Authors of the paper [48] considered the stability of the translation equation in the ring
of formal power series15 K[X] over the field K ∈ {R,C}. They proved in [48] that the

14In [77] there was proved that, if G ∈ B and g := G(·, x0) : T → X is a bijection, then the function
F : T ×X → X given by F (t, x) = g(g−1(x) + t) is a solution to the translation equation and belongs to
the class B (more precisely, F (·, g(0)) is a bijection). Moreover,

G(t, x) = G(t, G(g−1(x), x0)), t ∈ T, x ∈ X,

and

F (t, x) = G(g−1(x) + t, x0).

Hence, the equation (2.1) is obviously stable. Furthermore, if G ∈ I, g := G(·, x0) : T → X is injection
and G(T × {x0}) = G({0} ×X) =: X0, then the function F : T ×X → X given by

F (t, x) = g(g−1(f(x)) + t),

where

f(x) =

{
x, for x ∈ X0,
G(0, x), for x ∈ X \X0,

is a solution to the translation equation and belongs to the class I. Implication (2.9) ⇒ (2.10) holds with
ε = 2δ.

15There F (t,X) is a formal power series, i.e., it is of the form
∑∞

i=1 ci(t)X
i for some coefficients ci : G→

K, moreover by F (t, F (s,X)) we understand the series obtained by substitution
∑∞

i=1 ci(t)(F (s,X))i. For
a series p(X) =

∑∞
i=0 ciX

i we define ord(p(X)) as min{i ∈ N ∪ {0} : ci 6= 0}.
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translation equation is stable16 under some assumption on a group G (see [48, Theorem 2
i Theorem 3]).

3. Common fixed point theorems in the theory of stability of functional
equations

3.1 Introduction
In papers [B] and [D] I have developed a method of proving the stability of some func-

tional equation. This method relies on common fixed point theorems, more precisely, in
papers [B] and [D] I used the following theorems:

Theorem 3.1 ( A. Markow [79], S. Kakutani [59], [99]). Let X be a linear-topological
space, K ⊂ X be a nonempty convex compact subset of X . Assume that F is a family of
continuous affine selfmaps of K such that

F ◦G = G ◦ F, F,G ∈ F .

Then there exists a y ∈ K, such that F (y) = y for every F ∈ F .

Theorem 3.2 (R. DeMarr [20], [76]). Let (C,≤) be a complete partially ordered set with
the largest element. Suppose that F is a commuting17 family of nondecreasing selfmaps of
C. Then there exists a common fixed point of all selfmaps from F in the set C.

16We say that the translation equation F (t, F (s,X)) = F (s+ t,X) is stable if for every positive integer
N there is a positive integer M , such that for every family (F (t,X))t∈G of formal power series

F (t,X) =

∞∑
i=1

ci(t)X
i, t ∈ G,

if
ord(F (t+ s,X)− F (s, F (t,X))) > M, s, t ∈ G,

then there exists a group (F̄ (t,X))t∈G of formal power series

F̄ (t,X) =

∞∑
i=1

c̄iX
i, t ∈ G,

such that
ord(F (t,X)− F̄ (t,X)) > N, t ∈ G,

(i.e., ci = c̄i for 1 ≤ i ≤ N).
17i.e.,

F ◦G = G ◦ F dla F,G ∈ F
.
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3.2 A new proof of the Hyers Theorem
Below, I present a sketch of a new proof of the following version of the Hyers Theorem18;

a proof from the paper [B]:

Theorem 3.3 (Hyers, [42]). Let (S,+) be an abelian semigroup, ε ≥ 0, ϕ : S → K, where
K ∈ {R,C}. Suppose that

|ϕ(x+ y)− ϕ(x)− ϕ(y)| ≤ ε, x, y ∈ S.

Then there exists an additive function a : S → K such that

|a(s)− ϕ(s)| ≤ ε, s ∈ S.

Sketch of the proof. Put X = `∞(S), i.e., the space of all bounded functions defined on
S with the values in K endowed with the supremum norm. Let `1(S) be the space of
all summable functions defined on the set S with values in K endowed with the norm
‖f‖ =

∑
s∈S |f(s)|. Since X = (`1(S))∗, we can consider the space X with weak∗−topology

and with this topology it is a linear-topological space. A family F = {Tx : X → X ; x ∈ S},
where

Tx(f) := f(x+ ·) + ϕ(x+ ·)− f(x)− ϕ(x)− ϕ(·), x ∈ S,
is a commuting family of continuous affine selfmaps of X . Moreover the set

C := {f ∈ Y : ‖f‖ ≤ ε, ‖Tx(f)‖ ≤ ε, x ∈ S}

is nonempty convex and Tx(C) ⊂ C for every x ∈ S. Its weak∗-closure, K, is a nonempty
weak∗-compact convex and invariant for every Tx, where x ∈ S. From Markov-Kakutani
Theorem we infer that there exists an f ∈ K, such that Tx(f) = f for all x ∈ S. Putting
a := f + ϕ we get that a : S → K is additive and ‖a− ϕ‖ = ‖f‖ ≤ ε. �

The reasoning presented above shows another method of proving Theorem 3.3 (after the
so called “direct method” [42], the method relying on some Banach contraction principle
-type theorem [96], [13] and the invariant mean method introduced in [106]).
3.3 An application of the common fixed point theorems to the stability of

some other functional equations
The aim of the paper [D] was to show the usage of the common fixed point theorems in

proving the stability of the functional equation of the form

(3.1) f(s � x) = F (s, f(x)), s ∈ G, x ∈ X,
18Let me remind that the original Hyers Theorem concerned approximate homomorphisms between two

Banach spaces. Let me remind also Theorem 1.3 for justifying why the target space in Theorem 3.3 is
“only” R or C.
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where G is an abelian group acting on a set X, Y is a set, F : G × Y → Y is a given
function and an unknown function f is defined on the set X and takes its values in Y .
Considering this equation was inspired by a functional equation from [1]:

(3.2) f(sx) = F (s, f(x)), s ∈ S, x ∈ X,

with unknown function f : S → S, where S is a semigroup with a neutral element, F : S×
S → S is a given function. It is worth noticing that some particular cases of (3.1) are

• the homogenity equation:

(3.3) f(sx) = spf(x), s ∈ K0, x ∈ X,

where K0 is a subgroup of the group (R \ {0}, ·) or (C \ {0}, ·), and X, Y are a
linear spaces over R or C, respectively;
• the periodic function equation:

(3.4) f(x+ kp) = f(x), x ∈ X, k ∈ Z,

where X is a group and p is its certain element;
• the microperiodic function equation:

(3.5) f(x+ qp) = f(x), x ∈ X, q ∈ Q,

where X is a linear space and p is its certain element;
• equation

(3.6) f(xy) = yf(x), x ∈ (0,∞), y ∈ R \ {0};

• equation

(3.7) f(s+ t) = s+ f(t), s ∈ G0, t ∈ G,

where G0 is a subgroup of a group G;
• equation

(3.8) f(xp) = f(x)p, x ∈ (0,∞), p ∈ G,

where G is a subgroup of ((0,∞), ·).
The stability of the equations (3.3), (3.6) and (3.7), so, of the special cases of the equation

(3.1), was investigated already in the papers [45, 46, 47, 49, 56, 69, 108, 111, 116]. Actually,
even more was shown there, that the equations (3.3) and (3.6) are superstable, i.e., that
every “approximate solution” is an “exact solution”. In the paper [D] using the common
fixed point method I have obtained “only” the stability of these equation, however, in [D,
Corollary 5.1] I showed how to easily get their superstability from their stability.
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Theorem 3.4 ([D], Theorem 3.2). Suppose that
(i) G is an abelian group acting on a set X, Y is linear-topological space;
(ii) F : G× Y → Y satisfies the translation equation:

F (s, F (t, x)) = F (st, x), s, t ∈ G, y ∈ Y ;

(iii) F (t, ·) : Y → Y are continuous and affine for every t ∈ G;
(iv) K ⊂ Y is a compact convex set such that 0 ∈ K, f0 : X → Y and

F (s, f0(x))− f0(s � x) ∈ K, x ∈ X, s ∈ G.

Then there exists a solution f : X → Y to the equation (3.1), such that

(3.9) f(x)− f0(x) ∈ K, x ∈ X.

The assumption (ii) may seem quite strong, however, it is satisfied in each of the above
mentioned special cases of the equation (3.1); moreover, as it was shown in [1], satisfying
the translation equation at least in one point is a necessary condition for existence of
solutions to the equation (3.2); furthermore, the assumption that the translation equation
is satisfied at least in one point may be not sufficient to obtain stability ([D, Example 5.2]).
The assumption (iii) is satisfied in examples (3.3)–(3.7). The assumption (iv) means that
f0 : X → Y satisfies the equation (3.1) approximately. On the other hand (3.9) expresses
that f is close to f0.

Sketch of the proof of Theorem 3.4. We consider X := Y X with the product topology
and define Gt : X → X , for t ∈ G, by the formula

Gt(f)(x) = F (t, f(t−1 � x)), f ∈ X , x ∈ X.

Let the set K consist of those function f ∈ X , for which f(x)− f0(x) ∈ K for x ∈ X and
Gt(f)(x) − f0(x) ∈ K for any x ∈ X i t ∈ G. It is enough to check that the assumptions
of Theorem 3.1 (with F := {Gt, t ∈ G}) are satisfied to get the existence of f ∈ K (which
implies (3.9)) such that Gt(f) = f for every t ∈ G (this means that f is a solution of
(3.1)). �

In [D, Theorem 4.2] I assume that:
– Y is a poset;
– f0 : X → Y satisfies (3.1) approximately, more precisely, there exist a, b : X → Y , such
that a(x) ≤ b(x) and

f0(x), F (t, f0(t−1 � x)) ∈ [a(x), b(x)], x ∈ X, t ∈ G,
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– F : G × Y → Y satisfies the translation equation, is increasing and “continuous” with
respect to the second coordinate19 (these assumptions about F allow us to use Theorem
3.2; let me emphasize that all of them are satisfied for (3.3)–(3.8) with suitable X, Y , G).
Sketch of the proof of stability the equation (3.1), i.e., of [D, Theorem 4.2]. We consider
Z = Y X with a partial order introduced by

f ≤ g ⇔ f(x) ≤ g(x) for x ∈ X.

We define Gt : Z → Z for t ∈ G by the formula

Gt(f)(x) = F (t, f(t−1 � x)).

For a family

F = {Gt, t ∈ G}

and the set

C = {f ∈ Z : f(x), Gt(f)(x) ∈ [a(x), b(x)] for x ∈ X, t ∈ G}

all the assumptions of Theorem 3.2 are satisfied, hence there exists in C a common fixed
point f of the family F . Since Gt(f) = f for every t ∈ G and f ∈ C we infer that
– f is a solution to (3.1),
– f is close to f0 in the following sense:

f0(x), f(x) ∈ [a(x), b(x)], x ∈ X,

which means that the equation (3.1) is stable. �

4. Ulam’s type problem for lattice homomorphisms

4.1 Introduction
A function f : X → Y , where X and Y are lattices, is called:
∨-homomorphism, if

f(x ∨ y) = f(x) ∨ f(y), x, y ∈ X;

∧-homomorphism, if

f(x ∧ y) = f(x) ∧ f(y), x, y ∈ X;

homomorphism, if it is both ∨-homomorphism and ∧-homomorphism. Up to now there are
only a few papers concerning the problem of stability (for homomorphisms) in lattices. Let
me remind the paper of N. J. Kalton and J. W. Roberts with the following deep result:

19see [D, Theorem 4.2, assumptions (B)].
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Theorem 4.1 (N. J. Kalton & J. W. Roberts [60]). Let X be a boolean algebra, f : X → R
be a function satisfying the inequality

|f(x ∨ y)− f(x)− f(y)| ≤ 1 for x, y ∈ X such that x ∧ y = 0.

Then there exists a map g : X → R, such that

g(x ∨ y) = g(x) + g(y) for x, y ∈ X such that x ∧ y = 0

and |f(x)− g(x)| < 45 for every x ∈ X.

This result is of fundamental importance in functional analysis, especially in theory of
twisted sums of quasi-Banach spaces (see [62]), as well as in the stability problem for
vector meaures (see [66]).

A somehow related result, very combinatorial in its nature, was obtained by I. Farah.

Theorem 4.2 (I. Farah [23]). Let n,m ∈ N, X = 2{1,2,...,m} and Y = 2{1,2,...,n}. Suppose
that ϕ : Y → [0,∞] is a submeasure, i.e., ϕ(∅) = 0, ϕ(A) ≤ ϕ(A ∪ B), for A,B ⊂ Y and
ϕ(A∪B) ≤ ϕ(A)+ϕ(B), for A,B ⊂ Y . Moreover, let us suppose that ϕ is nonpathological,
i.e., it is supremum of all measures it dominates. Let ε > 0 and f : X → Y satisfy

ϕ(f(x ∪ y)÷ (f(x) ∪ f(y)) < ε for x, y ∈ X,

ϕ(f(X \ x)÷ (Y \ f(x))) < ε for x ∈ X.

Then there exists a lattice homomorphism g : X → Y , such that ϕ(f(x)÷ g(x)) < 521ε for
every x ∈ X.

4.2 A description of the results from [G]
In [G] we proposed two ways of expressing that f : X → Y is an approximate ∨-

homomorphism of lattices X i Y . The first uses the so called control function, the second
way uses the system of neighbourhoods.

The proofs of two main results from [G] rely on the following separation lemma20.

20In the paper [G] we indicate that some corollary can be deduced from Lemma 4.1 and the following
theorem:

Theorem 4.3 (W. Kubiś [71]). Let L be a distributive lattice, B be a complete Boolean algebra, f, g : L→ B
and assume that f is a ∧-homomorphism, g is a ∨-homomorphism and f(x) ≤ g(x) for x ∈ L. Then there
exists a lattice homomorphism h : L→ B such that f(x) ≤ h(x) ≤ g(x) for every x ∈ L.

The mentioned corollary is written just before Theorem 7 from [G].
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Lemma 4.1. Let X be a distributive lattice and Y be a conditionally complete21 lattice.
Assume that maps Φ,Ψ: X → Y satisfy the following conditions: Φ ≤ Ψ,

Φ(x ∨ y) ≤ Φ(x) ∨ Φ(y) x, y ∈ X,

and
Ψ(x ∨ y) ≥ Ψ(x) ∨Ψ(y) x, y ∈ X.

Then there exists a ∨-homomorphism F : X → Y , separating Ψ and Φ, it means such that
Φ ≤ F ≤ Ψ.

The proof is constructive.
Considering Ulam’s problem with the constant control function turns out to be trivial,

that’s why we present in [G] two other possible approaches to this problem. The first
one uses the so called control functions (see (4.1) below, to express the fact that f is an
approximate ∨-homomorphism and (4.2), which indicates that f and F are close to each
other).

Theorem 4.4. Let X and Y be distributive lattices and assume that Y is conditionally
complete and satisfies the dual to the infinite distributive law, that is,

y ∨ inf S = inf{y ∨ s : s ∈ S},

for all y ∈ Y and nonempty S ⊂ Y bounded from below. Assume that maps f : X → Y

and φ, ψ : X ×X → Y satisfy the following conditions:

φ(z, z) ≤ φ(x, y) for x, y, z ∈ X such that x, y ≤ z,

ψ(x, y) ≤ ψ(z, z) for x, y, z ∈ X such that x, y ≤ z

and

(4.1) φ(x, y) ∧ f(x ∨ y) ≤ f(x) ∨ f(y) ≤ f(x ∨ y) ∨ ψ(x, y) for x, y ∈ X.

Then there exists a ∨-homomorphism F : X → Y , such that

(4.2) φ(x, x) ∧ f(x) ≤ F (x) ≤ f(x) ∨ ψ(x, x) for x ∈ X.

This proof is also constructive. First we define Φ and Ψ by

Φ(x) = inf
{
f(x1) ∨ . . . ∨ f(xn) : n ∈ N, x1, . . . , xn ∈ X, x = x1 ∨ . . . ∨ xn

}
and

Ψ(x) = sup
{
f(x1) ∨ . . . ∨ f(xn) : n ∈ N, x1, . . . , xn ∈ X, x = x1 ∨ . . . ∨ xn

}
,

21i.e., every nonempty bounded subset has the largest and the smallest element.
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and then we show that

φ(x, x) ∧ f(x) ≤ Φ(x) ≤ f(x), x ∈ X,

f(x) ≤ Ψ(x) ≤ f(x) ∨ ψ(x, x), x ∈ X.

Moreover we notice that

Φ(x ∨ y) ≤ Φ(x) ∨ Φ(y), x, y ∈ X,

and
Ψ(x ∨ y) ≥ Ψ(x) ∨Ψ(y), x, y ∈ X.

It enables us to make use of Lemma 4.1: the function F defined by

F (x) = sup{Φ(z); z ≤ x}, x ∈ X.

satisfies all the desired conditions.
The second of our approaches to the Ulam’s problem in lattices uses the system of

neighbourhoods (see (4.3) and (4.4)).

Theorem 4.5. Let X and Y be distributive lattices and assume that Y is conditionally
complete and satisfies the dual to the infinite distributive law, that is,

y ∨ inf S = inf{y ∨ s : s ∈ S}

f or all y ∈ Y and nonempty S ⊂ Y bounded from below. Assume moreover that there
is a function N : Y → 2Y each of whose value is a bounded set, and which satisfies the
following conditions:

(i) y ∈ N (y) for every y ∈ Y ;
(ii) if t, u ∈ N (z) and t ≤ y ≤ u, then y ∈ N (z);
(iii) supN (y) ∈ N (y) and infN (y) ∈ N (y) for every y ∈ Y ;
(iv) if t ∈ N (u) and u ∨ y ∈ N (z), then t ∨ y ∈ N (z).

Then for every map f : X → Y satisfying

(4.3) f(x) ∨ f(y) ∈ N (f(x ∨ y)) for x, y ∈ X

there exists a ∨-homomorphism F : X → Y such that

(4.4) F (x) ∈ N (f(x)), for every x ∈ X.

We gave a few natural examples of N satisfying conditions (i)–(iv).
Notice that in both theorems we can change ∨ into ∧ to get the analogous results for

approximate ∧-homomorphisms.
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In order to compare the above results with the already known theorems we considered
the stability of monotonic functions.

Notice that f : D ⊂ R→ R is
– increasing if and only if max{f(x), f(y)} = f(max{x, y}) for every x, y ∈ D,
– decreasing if and only if max{f(x), f(y)} = f(min{x, y}) for every x, y ∈ D.

Corollary 4.1. Let D ⊂ R, ε ≥ 0, and assume that a function f : D → R.
(a) If

max{f(x), f(y)} − f(max{x, y}) ≤ ε for x, y ∈ D,
then there exists an increasing function g : D → R, such that

|f(x)− g(x)| ≤ ε/2, for every x ∈ D.

(b) If
max{f(x), f(y)} − f(min{x, y}) ≤ ε for x, y ∈ D,

then there exists a decreasing function tg : D → R such that

|f(x)− g(x)| ≤ ε/2, for every x ∈ D.

From this corollary we can deduce the following result22.

Theorem 4.6 (W. Förg-Rob, K. Nikodem, Zs. Páles [30]). Let I ⊂ R be an interval, ε ≥ 0

and assume that a function f : I → R satisfies

min{f(x), f(y)} − ε ≤ f(tx+ (1− t)y) ≤ max{f(x), f(y)}+ ε

for x, y ∈ I, t ∈ [0, 1]. Then there exists a monotone function g : I → R such that

|f(x)− g(x)| ≤ ε/2, for every x ∈ I.

Finally, we observed23 that we can generalize the Corollary 4.1 to the following result:

Corollary 4.2. Let D and E be linearly ordered sets and assume that E is conditionally
complete. Let {Iλ : λ ∈ Λ} be a fixed cover of E, where each Iλ is an interval. Assume that
a function f : D → E satisfies the condition: for all x, y ∈ D there is λ ∈ Λ such that

{f(x ∨ y), f(x) ∨ f(y)} ⊂ Iλ.

Assume also that for each x ∈ D the set

I(x) :=
⋃
{Iλ : x ∈ Iλ}

22But (when D is an interval) the Corollary 4.1 can be deduced from Theorem 4.6.
23thanks to the referee of [G].
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is bounded above. Then, there exists an increasing function F : D → E such that f(x) ≤
F (x) ≤ sup I(x) for every x ∈ D.

5. Ulam’s problem in relation to measure

5.1 Introduction
P. Erdős in [22] posed the following problem:

Let f : R→ R be a function such that

f(x+ y) = f(x) + f(y) for (x, y) ∈ (R× R) \ Z,

where Z ⊂ R×R is of Lebesgue measure zero. Does there exist a function g : R→ R such
that

g(x+ y) = g(x) + g(y) for all (x, y) ∈ R× R,

and
g(x) = f(x) for x ∈ R \ U,

where U ⊂ R is of Lebesgue measure zero?
The positive answer to this problem can be found in papers of W. B. Jurkat [57] and N.

G. de Bruijn [9]; see also R. Ger [32] and Ja. Tabor [110].
R. Ger in [33] connected Ulam’s problem with the question of Erdős and proved (under

some assumptions about groups G, H and σ-ideals in G and G2) that if

d(f(x+ y), f(x) + f(y)) ≤ δ, for “almost all” (x, y) ∈ G2,

then there exists an additive function g : G→ H such that

d(f(x), g(x)) ≤ δ, for “almost all” x ∈ G.

Similar problem was considered in the paper of I. Farah [24], however, the author in-
dicates that his motivation was of a different nature. Let G and H be groups and µ a
probability measure in G such that

µ(a+X) = µ(X), µ(X + a) = µ(X), and µ({−x : x ∈ X}) = µ(X),

for measurable subsets X of group G and a ∈ G. For δ > 0 he called a map f : G→ H a
δ-approximate homomorphism of type I with respect to µ if

(5.1) µ2({(x, y) ∈ G×G : f(x) + f(y) 6= f(x+ y)}) ≤ δ

and

(5.2) µ({x ∈ G : f(x) 6= −f(−x)}) ≤ δ.
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He presented the following theorem:

Theorem 5.1 (I. Farah, [24]). If G is finite, µ is the uniform probability measure24 on G,
f : G→ H is a δ-approximate homomorphism of type I with respect to µ and δ ≤ 1

11
, then

there is a homomorphism h : G→ H such that

µ({x : f(x) 6= h(x)}) ≤ δ

1− 3δ
.

5.2 A description of the results from papers [E] and [F]
In paper [E] I prove a theorem similar to Theorem 5.1, but without the assumption (5.2),

however, with the additional assumption that G and H are abelian ([E, Theorem 2.1]).
Below I have rewritten a somehow more general version of this theorem: in the assumption
(5.1) we demand that there are “few” pairs (x, y) such that not only the value f(x + y)

differs from the sum f(x) + f(y) but is far enough from it.

Theorem 5.2 ([E] Theorem 2.2). Let G be a finite abelian group, Let H be an abelian
group with translation-invariant metric d : H × H → [0,∞), f : G → H, δ ∈ (0, 1 −

√
3

2
).

Suppose that
µ2({(x, y) : d(f(x) + f(y), f(x+ y)) > ε}) ≤ δ.

Then there is a 20ε-approximate homomorphism h : G→ H, i.e.,

d(h(a+ b), h(a) + h(b)) ≤ 20ε, a, b ∈ G

such that
µ({x : d(f(x), h(x)) > 7ε}) ≤ δ

1− 2δ
.

The aim of paper [F] is to remove the assumptions of the finiteness of G from theorems
of the type presented above. According to M. M. Day [21] the existence of right invariant
finitely additive probability measure defined on the set P(G) of all subsets of a group
G is equivalent to the existence of right invariant mean on G. So we assume that G is
amenable (with right invariant mean M) and that implies that there is a finitely aditive
right invariant probability measure µ, and we have

µ(A) = M(χA), A ⊂ G.

We can define in a natural way, that is by the formula25

µ2(Z) = My(µ(Zy)), Z ⊂ G×G,
24i.e., µ(A) = cardA

cardG .
25In this formula lower index y denotes that My(µ(Zy)) is a value of invariant mean M taken on a

function y 7→ µ(Zy) (with variable y), and Zy := {x : (x, y) ∈ Z}.
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finitely additive probability measure µ2 : P(G×G)→ [0, 1]. It turns out that

µ2(A×B) = µ(A)µ(B), A,B ⊂ G.

So, we can generalize Theorem 5.2 to the case of amenable groups G, that is to the
following theorem:

Theorem 5.3 ([F], Theorem 1.3). Let G be a group with a right-invariant, finitely additive
probability measure µ : P(G)→ [0, 1]. Suppose that H is a group with an invariant metric
d : H ×H → [0,+∞), ε ≥ 0, 0 ≤ δ < 1

12
. If a function f : G→ H satisfies

µ2
(
{(x, y) : d

(
f(x+ y), f(x) + f(y)

)
> ε}

)
≤ δ,

then for every ζ > 0 there exists a map F : G→ H such that

(5.3) d
(
F (x+ y), F (x) + F (y)

)
≤ 24ε, x, y ∈ G

and
µ
(
{x : d(f(x), F (x)) > ε}

)
≤ 4δ + ζ.

The proof of theorem was divided into a few steps26. We defined the sets

Z = {(x, y) : d(f(xy), f(x)f(y)) > ε}

and (for a suitable η > 0)

U = {y ∈ G : µ({x ∈ G : d(f(xy), f(x)f(y)) > ε}) > η}

= {y ∈ G : µ(Zy) > η}.

By estimating the measures of sets we deduced that for every x ∈ G the set

Ax := G \ [U ∪ (Ux−1)]

is nonempty and for every x ∈ G \ U the set

Bx := G \ [U ∪ (Ux−1) ∪ Zx]

is nonempty.
That allowed us to choose yx (for every x ∈ G) such that

yx ∈

{
Ax, if x ∈ U ,
Bx, if x ∈ G \ U.

This enabled us to define F : G→ H by the formula

F (x) = [f(yx)]
−1f(yxx), x ∈ G.

26Full proof is quite long and laborous, it can be found on pages 516–519 of paper [F].
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We showed that such F has all the desired properties.
Since every abelian group is an amenable group we can apply Theorem 5.3 to such groups,

however, it turns out that with a separate proof (analogous to the proof of Theorem 5.2) we
can get different thesis for abelian groups. Therefore we formulated and proved separately
in [F] the following theorem:

Theorem 5.4 ([F], Theorem 3.1). Let G, H be commutative groups ε ≥ 0, 0 ≤ δ ≤ 1−
√

3
2
.

Assume that µ : P(G) → [0, 1] is an invariant, finitely additive probability measure on G

and d : H ×H → [0,+∞) is an invariant metric on a group H. If a function f : G→ H

satisfies
µ2({(x, y) : d(f(x+ y), f(x) + f(y)) > ε}) ≤ δ,

then there is a map F : G→ H such that

(5.4) d(F (x+ y), F (x) + F (y)) ≤ 20ε, x, y ∈ G

and
µ({x : d(f(x), F (x)) > 7ε}) ≤ δ

1− 2δ
.

Both in Theorem 5.3 and in Theorem 5.4 we get the existence of a function F : G→ H

satisfying the additivity condition approximately (cf. (5.3), (5.4)).
If we add an assumption which will guarantee the stability of the Cauchy equation we

will be able to deduce that there exists an additive function such that for majority of
points (in a sense of measure µ) values of this additive function and of function f differ
only slightly.

For the clarity let us use the Hyers Theorem to get the following result:

Corollary 5.1 ([F], Corollary 3.2). Assume that ε ≥ 0, 0 ≤ δ ≤ 1−
√

3
2
, µ : P(G)→ [0, 1]

is an invariant, finitely additive probability measure on a commutative group G, let a Y be
a Banach space. If a function f : G→ Y satisfies

µ2({(x, y) ∈ G2 : ‖f(x+ y)− (f(x) + f(y))‖ > ε}) ≤ δ,

then there exists a function h : G→ Y such that

h(x+ y) = h(x) + h(y), x, y ∈ G,

and
µ({x ∈ G : ‖f(x)− h(x)‖ > 27ε}) ≤ δ

1− 2δ
.

In the case of amenable groups we can use, for example, [26, Theorem 3] and [106], to
get the following corollary:
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Corollary 5.2 ([F], Corollary 3.3). Let G be a group with a right-invariant, finitely additive
probability measure µ : P(G)→ [0, 1], Y a Banach space, ε ≥ 0, 0 ≤ δ < 1

12
. If a function

f : G→ Y satisfies

µ2
(
{(x, y) : ‖f(x+ y)− f(x)− f(y)‖ > ε}

)
≤ δ,

then for every ζ > 0 there exists a map F : G→ Y such that

F (x+ y) = F (x) + F (y), x, y ∈ G,

and
µ
(
{x : ‖f(x)− F (x)‖ > 25ε}

)
≤ 4δ + ζ.
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6. The equations characterizing the absolute value of an additive
function

Introduction
In this part I am going to describe the results concerning the solutions and the stability

of the following functional equations:

max{f(x+ y), f(x− y)} = f(x) + f(y),(6.1)

min{f(x+ y), f(x− y)} = |f(x)− f(y)|,(6.2)
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max{f(x+ y), f(x− y)} = f(x)f(y),(6.3)

sup{f(x+ λy) : λ ∈ T} = f(x) + f(y),(6.4)

inf{f(x+ λy) : λ ∈ T} = |f(x)− f(y)|,(6.5)

sup{f(x+ λy) : λ ∈ T} = f(x)f(y),(6.6)

sup{f(x+ l(y)) : l ∈ L} = f(x)f(y),(6.7)

min{f(x+ y), f(x− y)} = f(x)f(y),(6.8)

max{f(x+ y), f(x− y)} = g(x)h(y),(6.9)

max{f(x+ y), f(x− y)} = f(x)g(y) + h(y),(6.10)

max{f(x+ y), f(x− y)} = f(y)g(x) + h(x).(6.11)

In equations (6.1), (6.2), (6.3), (6.8), (6.9), (6.10), (6.11) the real functions f, g, h are
defined on an abelian group G; in equations (6.4), (6.5) and (6.6) a real function f is defined
on a vector space V (over the field C), and T denotes the unit circle in C; in equation (6.7)
a real function f is define on an abelian group G, L ⊂ GG, id,− id ∈ L.

My contribution to establishing the form of the solutions or the stability of these equ-
ations is included in the papers [III]–[VIII].
• About the equation (6.1)
As it was proved by A. Simon and P. Volkmann in [103], the equation (6.1) characterizes

the absolute value of additive functions (other proofs were given by T. Kochanek and [65]
and W. Fechner [25]). This result was also achieved by P. Volkmann in [118] without the
assumption of the commutativity of G, but with a weaker assumption: f(xyz) = f(yxz)

for x, y, z ∈ G. This assumption was removed by I. Toborg in [115].
The proof of the stability of this equation can be found in [52]. The proof of the stability

of a more general equation

(6.12) max{f((x ◦ y) ◦ y); f(x)} = f(x ◦ y) + f(y),

where a real function is defined on a groupoid G with binary operation ◦ such that

(x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (y ◦ y), x, y ∈ G,

and with left neutral element can be found in [38]; whereas the paper [VIII] is devoted to
the stability of equation (6.12) with even more weaker assumptions concerning the domain
of f (G is a groupoid with a binary operation ◦ such that for every x, y ∈ G there exists a
k ∈ N such that

(x ◦ y)2k = x2k ◦ y2k , ((x ◦ y) ◦ y)2k = (x2k ◦ y2k) ◦ y2k ,
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the powers x2k are defined recursively by: x20 := x, x2k+1
:= x2k ◦ x2k).

Furthermore, the stability of the equation (6.1) was proved in [112] as a corollary from
the stability of a more general functional equation

f(x ◦ y) ? f(x � y) = f(x ◦ y).

• About the equation (6.2)
The form of the solutions to the equation (6.2) under the assumption that G = R, and

f : R→ R is a continuous function was given in the following theorem:

Theorem 6.1 ([52]). Let f : R→ R be a continuous function satisfying (6.2). Then either
there exists a constant c ≥ 0 such that f(x) = c|x|, x ∈ R, or f is periodic with a period
2p and f(x) = c|x| for x ∈ [−p, p], with some constant c > 0.

Actually, it is enough to assume the continuity in at least one point, since it implies the
continuity of f on the whole R ([52]). Moreover, some measurability assumptions concerning
f imply its continuity, which was investigated in [7] and [67].

Furthermore, T. Kochanek noticed that every function f = g ◦ a defined on an abelian
group G, where g : R → R is a solution to the equation (6.2) described in Theorem 6.1,
and a : G→ R is an additive function, is a solution to the equation (6.2).

In paper [V] there is a proof of stability of equation (6.2) in the class of real continuous
functions defined on R, i.e., a proof of the following theorem:

Theorem 6.2. Let δ ≥ 0 and f : R→ R be a continuous function such that

|min{f(x+ y), f(x− y)} − |f(x)− f(y)|| ≤ δ, x, y ∈ R,

then either f is bounded (and in this case it is close to the solution F ≡ 0 to the equation
(6.2)) or there exists a constant c > 0 such that

|f(x)− c|x|| ≤ 21δ, x ∈ R,

i.e., f is close to the solution F (x) = c|x| to the equation (6.2).

• About the equations (6.3) and (6.7)
The form of the solutions to the equation (6.3) under the additional assumption that

the abelian group G is divided by 6 were presented in [103] (these are the functions of the
form (i) or (ii) from the theorem below), and without this additional assumption in [VI]:

Theorem 6.3. Let G be an abelian group and f : G→ R. Then f satisfies the functional
equation (6.3) if and only if

(i) f ≡ 0
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or
(ii) f = exp ◦ |a|, for an additive function a : G→ R
or
(iii) there exists a subgroup G0 of group G such that

x, y ∈ G \G0 ⇒ (x+ y ∈ G0 ∨ x− y ∈ G0),

and

f(x) =

{
1, x ∈ G0;
−1, x /∈ G0.

Superstability of the equation (6.3) follows from the superstability of a more general
form of this equation, i.e., the equation (6.7) which was proved in [III]. Namely, using the
ideas from [5] I proved the following theorem:

Theorem 6.4. Let f : G→ R satisfy the inequality

|sup{f(x+ l(y)); l ∈ L} − f(x)f(y)| ≤ ε, x, y ∈ G,

then either f is bounded or it is a solution to (6.7).

• About the equations (6.4) and (6.5)
The equations (6.4) and (6.5) are analogous to (6.1) and (6.2), respectively, for functions

defined on some vector spaces over C. It turned out (see [8, Theorem 1]) that the equations
(6.4) and (6.5) are equivalent, moreover, each of them characterizes the absolute value of
linear functional.

In [IV] I investigated the stability of (6.4) and (6.5):

Theorem 6.5. Let δ ≥ 0, g : V → R satisfy

|sup
λ∈T

g(x+ λy)− g(x)− g(y)| ≤ δ, x, y ∈ V.

Then there is a solution f : V → C to the equation (6.4) such that

|f(x)− g(x)| ≤ 17δ, x ∈ V.

Theorem 6.6. Let δ ≥ 0, g : V → R satisfy

| inf
λ∈T

g(x+ λy)− |g(x)− g(y)|| ≤ δ, x, y ∈ V.

Then there exists a solution f : V → C to the equation (6.5) such that

|f(x)− g(x)| ≤ 49δ, x ∈ V.
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• About the equation (6.6)
The form of the solutions to the equation (6.6) was described in [III]:

Theorem 6.7. If f : V → R satisfies the functional equation (6.6) then either f ≡ 0 or
there exists a linear functional φ : V → C such that f(x) = exp |φ(x)|, x ∈ V .

Superstability of this equation follows from Theorem 6.4 ([III, Theorem 1.1]).
• About the equation (6.8)
The following result concerning the form of the solutions to the equation (6.8) comes

from [VI].

Theorem 6.8. Let G be an abelian group and f : G → R. Then f is a solution to the
functional equation (6.8) if and only if it has one of the following form:

1. f ≡ 0,
or

2. f(x) = exp(−|a(x)|), x ∈ G, for an additive a : G→ R,
or

3. there is a subgroup G0 of G with the property:

(6.13) x, y ∈ G \G0 ⇒ (x+ y ∈ G0 ∧ x− y ∈ G0),

and

f(x) =

{
1, x ∈ G0,

−1, x /∈ G0,

or
4. there is a subgroup G0 of G with the property:

(6.14) x, y ∈ G \G0 ⇒ (x+ y /∈ G0 ∨ x− y /∈ G0),

and

f(x) =

{
1, x ∈ G0,

0, x /∈ G0.

• About the equation (6.9)
As a corollary from [VII, Theorem 3.1] we get in [VI] the form of the solutions on the

real line, to the functional equation (6.9):

Theorem 6.9. Let f, g, h : R→ R and f be continuous. Then

max{f(x+ y), f(x− y)} = g(x)h(y) for x, y ∈ R

if and only if one of the following holds:
1. f ≡ 0, g ≡ 0, h− an arbitrary;
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2. f ≡ 0, h ≡ 0, g − anarbitrary;

3. f(x) = bcea|x−x0|, g(x) = bea|x−x0|, h(x) = cea|x|, x ∈ R, where a, b, c, x0 ∈ R,
abc > 0;
4. f(x) = bceax, g(x) = beax, h(x) = cesgn(bc)|ax|, x ∈ R, where a, b, c ∈ R.

• About the equations (6.10) and (6.11)
The equation

f(x+ y) = f(x)g(y) + h(y).

investigated in the monograph [2] was an ispiration for the papers [VI] and [VII]. It turns
out the the solutions to the above equations are either “trivial” with f being constant, or
connected with the solutions to the equation

a(x+ y) = a(x) + a(y),

or connected to the solutions to the equation

e(x+ y) = e(x)e(y).

Similarly I consider the common “pexiderization” of equations (6.1) and (6.3), however,
since the roles of x and y differ, I have got two functional equations: (6.10) and (6.11).
The main result of the paper [VI] describes the form of the solutions to the equation
(6.11). Suprisingly, it turns out that aside from the analogous results to these from [2], i.e.,
trivial solutions, with constant f , solutions connected with the equation (6.1) and solutions
connected with the equation (6.3), we get one more type of solutions, namely, connected
with the equation (6.8) (and that is why I have investigated also such an equation).

Theorem 6.10. Let f, g, h : G→ R, G be an abelian group. Then f, g, h satisfy the func-
tional equation (6.11) if and only if one of the following possibilities holds:
1. f(x) = b, g − an arbitrary, h(x) = b(1− g(x)), x ∈ G, where b ∈ R;
2. f(x) = cφ(x) + b, g(x) = φ(x), h(x) = b(1 − φ(x)), x ∈ G, where c, b ∈ R,
c > 0, and φ : G→ R satisfies (6.3);
3. f(x) = cφ(x) + b, g(x) = φ(x), h(x) = b(1−φ(x)), x ∈ G, where c, b ∈ R, c < 0,
and φ : G→ R satisfies (6.8);
4. f(x) = φ(x) + b, g(x) = 1, h(x) = φ(x), x ∈ G, where b ∈ R, and φ : G → R
satisfies (6.1).

The general form of (f, g, h) satisfying (6.10) was presented in [VII] under the additional
assumption that f, g, h are defined on R and that f is continuous:
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Theorem 6.11. Let f, g, h : R→ R satisfy the functional equation (6.10). If f is continu-
ous then we have one of the following possiblities:
1. f(x) = b, g − an arbitrary function, h(x) = b(1− g(x)), x ∈ R, where b ∈ R;
2. f(x) = cea|x−x0| + b, g(x) = ea|x|, h(x) = b(1 − ea|x|), x ∈ R, where x0, b ∈ R,
ac > 0;
3. f(x) = a|x− x0|+ b, g(x) = 1, h(x) = a|x|, x ∈ R, where b, x0 ∈ R, a > 0;
4. f(x) = ceax + b, g(x) = esgn(c)|ax|, h(x) = b(1− esgn(c)|ax|), x ∈ R, where a, b, c ∈
R;
5. f(x) = ax+ b, g(x) = 1, h(x) = |ax|, x ∈ R, where a, b ∈ R.

And conversely, if f, g, h are of the forms described in one of the points 1-5 then (f, g, h)

satisfies (6.10).

7. New proofs of Mazur–Orlicz Theorem and Markov–Kakutani Theorem

7.1 Introduction
Many well known and important theorems have been proved in many different ways.

The same applies to theorems of Markov-Kakutani and Mazur-Orlicz. In paper [XI] I show
the direct connection between these theorems by proving one with the use of the other.
7.2 Mazur-Orlicz Theorem and its proofs
Let me remind the Mazur-Orlicz Theroem:

Theorem 7.1. ([80]) Let X be a linear space, T a nonempty set, x : T → X, β : T → R,
and p : X → R be a sublinear functional. Then the following conditions are equivalent:

(i) there exists a linear functional a : X → R such that

a(y) ≤ pyx), y ∈ X,

β(t) ≤ a(x(t)), t ∈ T ;

(ii) for every n ∈ N, t1, . . . , tn ∈ T i λ1, . . . , λn ∈ (0,∞),
n∑
i=1

λiβ(ti) ≤ p

(
n∑
i=1

λix(ti)

)
.

Let me remind also the counterpart of this theorem for abelian groups:

Theorem 7.2. Let G be an abelian group, T a nonempty set, x : T → G, β : T → R, and
p : G→ R subadditive. Then the following conditions are equivalent:

(i) there exists an additive function a : G→ R such that

a(y) ≤ p(y), y ∈ G,
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β(t) ≤ a(x(t)), t ∈ T ;

(ii) for every n ∈ N and t1, . . . , tn ∈ T ,
n∑
i=1

β(ti) ≤ p

(
n∑
i=1

x(ti)

)
.

In both versions the implication (i)⇒ (ii) is obvious.
Except the long and rather difficult proof from [80], there are many different proofs of

Mazur-Orlicz Theorem and its generalizations. It can be found for example in [15], [19],
[63], [74], [92], [95] (probably the most elementary and elegant), [102] and [104].

My proof presented in [XI] relies on Markov-Kakutani Theorem. It lets us prove both
Theorem 7.1 and 7.2 in an analogous way. It does not need any other sophisticated theorems
to be used27.
7.3 Markov-Kakutani Theorem and its proofs
Let me remind (once more) Markov-Kakutani Theorem.

Theorem 7.3. (A. Markov [79], S. Kakutani [58]) Let X be a (locally convex28) linear-
topological space, C a nonempty convex compact subset of X, F a commuting family of
continuous affine selfmappings of C. Then there exists an x ∈ C such that f(x) = x for
every f ∈ F .

Markov-Kakutani Theorem can be proved with the use of different corollaries from Hahn-
Banach Theorem. In [119], Markov-Kakutani Theorem was proved by separation theorem
(nonvoid compact convex disjoint sets can be strongly separeted in locally convex spaces).
Also from separation theorem (point can be separated in locally convex spaces) and from
already mentioned [40, Theorem 3.2.2], Markov-Kakutani Theorem is derived in [40]. One
more proof of Markov-Kakutani Theorem based on separation theorem can be found in
[98].

Let me mention that the proof of Markov-Kakutani Theorem from [58] can be found in
monograph [99], whereas the most elegant and elementary one in my view belongs to J.
Jachymski [50].

27It may seem that also in [40] Mazur-Orlicz Theorem was proved by the use of Markov-Kakutani
Theorem. To emphasize the difference between the proof from [40] and the proof from [XI] let me describe
shortly the proof from [40]. First, in [40, Lemma 4.5.1] (repeating the result from [58]) some corollary from
Markov-Kakutani Theorem was used to prove Hahn-Banach Theorem. However, to prove Mazur-Orlicz
Theorem, authors of [40] use also some lemma about supporting sublinear functionals by linear functionals
and yet one more important result from the theory of infinite systems of inequalities [40, Theorem 3.2.2]

28This assumption is not necessary, however, many known proofs of this theorem do not go beyond such
spaces.
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The proof of Markov-Kakutani Theorem presented in [XI] is derived directly from Mazur-
Orlicz Theorem, and, similarly as in [40, 79, 98, 119] requires locally compact linear-
topological spaces.
7.4 The sketch of the proof of implication (ii) ⇒ (i) of Mazur-Orlicz Theorem

(presented in [XI])
• In the case of Theorem 7.2 we consider RG equipped with the product topology and

maps Fy : RG → RG, y ∈ G, defined by

Fyf(z) = f(z + y)− f(y), z ∈ G, f ∈ RG.

The maps Fy are continuous and affine and

(7.1) Fy ◦ Fz = Fy+z, y, z ∈ G,

so the family {Fy; y ∈ G} is commuting. Let us choose t0 ∈ T and put s := p(xt0) − βt0
and

C = {f ∈ RG :− p(−y) ≤ f(y) ≤ p(y) + s, y ∈ G,

− p(−y) ≤ Fzf(y) ≤ p(y), y, z ∈ G,

β(t) ≤ f(x(t)), t ∈ T,

β(t) ≤ Fyf(x(t)), t ∈ T, y ∈ G}.

From Markov-Kakutani Theorem we infer that there exists an a ∈ C being a fixed point
of every Fy, for y ∈ G. It means that

a(y + z) = a(y) + a(z), y, z ∈ G,

β(t) ≤ a(x(t)), t ∈ T

and

a(y) ≤ p(y) + s, y ∈ G.

From the last inequality we can deduce that

a(y) ≤ p(y), y ∈ G.

• In the case of Theorem 7.1 similarly like in the proof of Theorem 7.2 (described above)
we get the existence of an appropriate additive function a and one can show easily that
this a is also linear.
7.5 The sketch of the first step of the proof of Markov-Kakutani Theorem

(presented in [XI])
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Often the proof of Markov-Kakutani Theorem is divided into two steps. First, the follo-
wing theorem is shown29:

Theorem 7.4. Let X be a locally convex linear-topological space, C ⊂ X be a nonvoid
convex compact set and F : C → C continuous and affine function. Then F has a fixed
point.

We can use either Theorem 7.1 or Theorem 7.2. Let us put

B = {F (x)− x : x ∈ C}.

Suppose that 0 /∈ B. The set B is nonempty convex and compact. Let U ⊂ X \ B be a
convex and balanced neighbourhood of zero. Of course, U is absorbing. Let p : X → R be
a Minkowski functional of the set U , i.e.,

p(x) = inf{r > 0; x ∈ rU}, x ∈ X.

The functional p is sublinear and {x ∈ X; p(x) < 1} ⊂ U . From the compactness of C we
infer that there exists an N ∈ N such that C ⊂ NU , and hence

(7.2) p(x) ≤ N, x ∈ C.

Let T = C and β(t) = 1, x(t) = F (t)− t for t ∈ T . For an arbitrary n ∈ N, t1, . . . , tn ∈ T
and λ1, . . . , λn ∈ (0,∞), we have

n∑
i=1

λiβ(ti) ≤ p

(
n∑
i=1

λix(ti)

)
.

So the condition (ii) of Mazur-Orlicz Theorem is satisfied. Therefore there exists a linear
functional a : X → R such that

a(x) ≤ p(x), x ∈ X

and
1 = β(t) ≤ a(x(t)) = a(F (t)− t), t ∈ C.

For x ∈ C and n ∈ N one can check that

a(F n(x)) ≥ a(x) + n, x ∈ C, n ∈ N,

which taking into account (7.2), implies that

N ≥ p(F n(x)) ≥ a(F n(x)) ≥ a(x) + n, x ∈ C, n ∈ N.

We get a contradiction. Hence 0 ∈ B, which means that there exists a fixed point of F .
29The second step (i.e., proof of the Markov-Kakutani Theorem using Theorem 7.4) which I presented

in [XI], is standard, the same can be found in [40], [119], [98], [50], hence, I will not repeat it here.



42

8. Results concerning stability of the translation equation and
dynamical systems not included in the habilitation thesis

8.1 Introduction
Connections between various approaches to the problem of stability of the translation

equation (see [83], [86], [88], [89], [90]) and selected paradoxes related to this topic ([78], [90])
are among many research interests of Z. Moszner. In a shared article [X] we investigated
whether the systems of equations which define dynamical system or the translation equation
in some classes of functions (such classes in which the solution of the translation equation is
a dynamical system) are stable (and we took into consideration different types of stability,
most of them I will describe in what follows). Further results concerning this topic can be
found in [89] and [90].
8.2 Dynamical systems
Let I ⊂ R be a nondegenerate real interval and F : R × I → I. By F 0 we denote the

function F (0, ·).

Defintion 8.1. The continuous function F : R× I → I is called a dynamical system, if it
is a solution to the translation equation:

(8.1) F (t, F (s, x)) = F (s+ t, x), s, t ∈ R, x ∈ I;

and

(8.2) F (0, x) = x, x ∈ I.

It turns out that the condition (8.2) in the above definition can be replaced by any of
the following:

(1) function F 0 is differentiable and

(8.3) (F 0)′(x) = 1, x ∈ I.

(2) F 0 is strictly increasing.
(3) F is not constant and F 0 is differentiable.
(4) F is a surjection.

In a paper [X] we write, for the sake of simplicity, about the dynamical systems according
to one out of the five (equivalent) definitions.
8.3 Different kinds of stability
To simplify the following definitions let us introduce some labels:

(8.4) |H(s,H(t, x))−H(t+ s, x)| ≤ δ, s, t ∈ R, x ∈ I;
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(8.5) |H(0, x)− x| ≤ δ, x ∈ I;

(8.6) |(H0)′(x)− 1| ≤ δ, x ∈ I.

Furthermore put
H := {H : R× I → I : H continuous};

Fj := {F : R×I → I : F is a continuous solution of the system: (8.1) & (8.j)} for j = 2, 3;

Hk := {H : R×I → I : H is a continuous solution of the system: (8.4) & (8.k)} for k = 5, 6.

We say that the system of functional equations:(8.1) & (8.j), for j = 2, 3, is:

• Hyers-Ulam stable, if

∀ε>0 ∃δ>0 ∀H∈H
[
if H ∈ Hj+3, then ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I
]

;

• b-stable, if

∀δ>0 ∀H∈H
[
if H ∈ Hj+3, then ∃ε>0 ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I
]

;

• uniformly b-stable, if

∀δ>0 ∃ε>0 ∀H∈H
[
if H ∈ Hj+3, then ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I
]

;

• inversely stable, if

∀δ>0 ∃ε>0 ∀H∈H
[
if ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, then H ∈ Hj+3

]
;

• inversely b-stable, if

∀H∈H
[
if ∃ε>0 ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, then ∃δ>0H ∈ Hj+3

]
;

• inversely uniformly b-stable, if

∀ε>0 ∃δ>0 ∀H∈H
[
if ∃F∈Fj

|H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, then H ∈ Hj+3

]
.

Below I will formulate the definitions of different types of stability of the translation
equation in the class of functions F such that F 0 is strictly increasing. If we change the
expression “F 0 is strictly increasing” into either “F is not constant and (F 0)′ exists” or
“F is a surjection” in the definitions below, we obtain definitions of stability of the trans-
lation equation in, respectively, the class of functions F such that F is not constant and
(F 0)′ exists, or the class of surjective functions. Here also, to simplify some expressions we
introduce some notation. Let

K := {F : R× I → I : F continuous, F 0 is strictly increasing},

K1 := {F ∈ K : F is a continuous solution of (8.1)},
K4 := {H : R× I → I : H is a continuous solution of (8.4)}.
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We say that the translation equation (8.1) is

• stable in Hyers-Ulam sense in the class K, if

∀ε>0 ∃δ>0 ∀H∈K [if H ∈ K4, then ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I] ;

• b-stable in the class K, if

∀δ>0 ∀H∈K [if H ∈ K4, then ∃ε>0 ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I] ;

• uniformly b-stable in the class K, if

∀δ>0 ∃ε>0 ∀H∈K [if H ∈ K4, then ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I] ;

• inversely stable in the class K, if

∀δ>0 ∃ε>0 ∀H∈K [if ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, then H ∈ K4] ;

• inversely b-stable in the class K, if

∀H∈K [if ∃ε>0 ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, to ∃δ>0H ∈ K4] ;

• inversely uniformely b-stable in the class K, if

∀ε>0 ∃δ>0 ∀H∈K [if ∃F∈K1 |H(s, x)− F (s, x)| ≤ ε for s ∈ R, x ∈ I, then H ∈ K4] .

8.4 Summary of the results obtained in [X]
The table below summarises the results of investigations concerning different kinds of

stability of dynamical systems (several others were discussed in the article). It turned out
that the stability of the dynamical system depends on the boundness of interval I and on
which of the equivalent five definitions of dynamical system we consider.

def.1 def .2 def. 3 def. 4 def. 5
((8.1) & ((8.1) & ((8.1) & ((8.1) & ((8.1) &

F (0, x) = x) (F 0)′(x) = 1) F (0, ·) strictly
increasing)

(F 0)′ exists) F sujection)

stability in a sense only for
for every I for no I for every I

Hyers-Ulam I = R
b-stability only for I

only for I bounded for every Iuniform bounded
b-stability or I = R
inverse stability for no I
inverse

for no I only for I bounded
b-stability only for I
inverse uniform bounded
b-stability
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8.5 The stability of the translation equation in the class of continuous function
F : (0,∞)× I → I

At the end of this section let me discuss the results from [I]. I investigated there the
stability of the translation equation in the class of continuous functions defined on (0,∞)×I
with values in I, where I ⊂ R is an interval. The full answer to the question analogous to
that one posed by Ulam was not achieved. Therefore this article includes only some partial
results. In [I, Theorem 3.1] I listed some additional conditions under which an approximate
iteration semigroup is close to some iteration semigroup. And in [I, Theorem 3.2] I proved
without those additional conditions that δ-iteration semigroup H : (0,∞)× I → I can be
approximated (with ε accuracy) by an iteration semigroup not necessarily on the whole
interval I, but at least on the set clH((0,∞)× I) \ L, where |L| ≤ η (δ is suitably chosen
to the given arbitrary ε and η > 0).

9. Stability of Cauchy and Pexider equations

9.1 Results from [II]
In [II] we proved the stability of the Pexider functional equation

F (xy) = G(x) +H(y), x, y ∈ S,

under very weak assumptions concerning the domain of the functions F,G,H30. Namely,
we assume that S is a Tabor groupoid, i.e., it is a set with an operation · such that

∀x,y∈S ∃k∈N (xy)2k = x2ky2k .

The powers of the form x2k are defined recursively:

x20 = x, x2k+1

= x2kx2k .

Theorem 9.1. Let S be a Tabor groupoid with left- and right neutral element. Suppose that
V is symmetric, bounded ideally convex31 subset of the Banach space E. Let f, g, h : S → E

satisfy the condition
f(xy)− g(x)− h(y) ∈ V, x, y ∈ S.

Then there exist functions F,G,H : S → E such that the Pexider functional equation is
satisfied

F (xy) = G(x) +H(y), x, y ∈ S,
30Stability of the Pexider functional equation was investigated also in some other papers: [91], [39],

[68], but in these papers the assumptions concerning the domain were stronger, however the assumptions
concerning the target space were weaker than in our paper [II].

31The subset V of Banach space E is ideally convex [75], if for every bounded sequence d1, d2, . . . ∈ V
and every sequence α1, α2, . . . ≥ 0 such that

∑∞
k=1 αk = 1, we have

∑∞
k=1 αkdk ∈ V .
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and
F (x)− f(x) ∈ 3V, G(x)− g(x) ∈ 4V, H(x)− h(x) ∈ 4V, x ∈ S.

9.2 The results from [VIII]
In [VIII] we present some results concerning Tabor groupoids. Among others: conditions

sufficient for a semigroup with an idempotent element to be a Tabor groupoid, an example
of a group which is not a Tabor groupoid and an example of nontrivial Tabor groupoid32.
Moreover we formulated the following corollary from an earlier paper of P. Volkmann:

Theorem 9.2. Let S be a Tabor groupoid, V bounded closed and convex subset of a Banach
space E, and f : S → E satisfy

f(xy)− f(x)− f(y) ∈ V, x, y ∈ S.

Then there exists a unique additive function a : S → E such that

a(x)− f(x) ∈ V, x ∈ S.

The following characterization of bounded perturbation of additive functions was proved:

Theorem 9.3. Let S be a Tabor groupoid, A bounded and closed subset of a Banach space
E, f : S → E. Then the following conditions are equivalent:

(P) f = a+ r, where a : S → E is additive, r(x) ∈ A for x ∈ S;
(Q) there exist bounded sets B,C ⊂ E such that

f(xy)− f(x)− f(y) ∈ B, x, y ∈ S,

2kf(x)− f(x2k) ∈ 2kA+ C, x ∈ S, k ∈ N.

In this paper some stability results concerning the functional equation (6.12) were inc-
luded, which was already mentioned in the Chapter 6 of this work.
9.3 Results from [IX]
In [IX] we prove the theorem concerning the stability of the following version of Pexider

equation:
f(xy) = g(x)h(y) + k(y),

for functions defined on an amenable semigroup.

Theorem 9.4. Let S be an amenable semigroup with a neutral element, f, g, h, k : S → C,
ε ≥ 0,

|f(xy)− g(x)h(y)− k(y)| ≤ ε, x, y ∈ S.
32Some other results concerning Tabor groupoids can be found in [114].
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Then there exist functions F,G,H,K : S → C satisfying equation:

F (xy) = G(x)H(y) +K(y), x, y ∈ S,

such that the differences f − F , g −G, h−H and k −K are bounded.

In the proof we use the invariant mean method which is a popular method for proving
stability of functional equations.
9.4 The results from [XII]
In [XII] we prove the following abstract version of Hyers Theorem:

Theorem 9.5. Let Y be an abelian group divided in a unique way by 2, let B ⊂ Y be a
1
2
-convex set such that ⋂

n∈N

1

2n
(B −B) = {0}.

Suppose that for every sequence (yn)n∈N0 of point of group Y the following implication holds
true:
if

yn+1 +
1

2n+1
B ⊆ yn +

1

2n
B, n ∈ N0,

then ⋂
n∈N0

(yn +
1

2n
B) 6= ∅.

Then for an arbitrary abelian semigroup (S,+) and an arbitrary function f : S → Y satis-
fying

f(s+ t)− f(s)− f(t) ∈ B, s, t ∈ S,
there exists a unique additive function a : S → Y such that

a(s)− f(s) ∈ B, s ∈ S.

The motivation was to explain why in different “theorems of Hyers’ type” there are
assumptions either about the completness of the target space or about the compactness
of the “set of errors” B. It turns out that it is a consequence of intersection properties
(Cantor Theorem for complete spaces and the finite intersection property of a family of
compact sets). Two corollaries for maps with values in topological spaces – either with the
assumption of sequentiall completness of Y , or compactness of B – generalized many of
the earlier results (a series of papers with the versions of Hyers Theorem for maps in some
particular complete spaces – for example “2-Banach spaces” [93], complete nonarchimedean
spaces [81], “β-Banach spaces” [97] – or version of Hyers Theorem with compact “error set”
B [XII, Theorem 1.2], [4]).
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Under the assumption of completeness of Y we have:

Corollary 9.1. Let B 6= ∅ be a 1
2
-convex closed and bounded subset of abelian, uniquely

divisible by 2, sequentially complete topological Hausdorff group Y , without elements of
finite order. Then for an arbitrary abelian semigroup (S,+) and an arbitrary function
f : S → Y fulfilling

f(s+ t)− f(s)− f(t) ∈ B, s, t ∈ S,
there exists a unique additive function a : S → Y such that

a(s)− f(s) ∈ B, s ∈ S.

In the case of compactness of “error set” B we have:

Corollary 9.2. Let Y be an abelian, uniquely divisible by 2, topological group such that
the map

Y 3 x 7→ 1

2
x ∈ Y

is continouos and let B be 1
2
-convex and compact subset of Y fulfilling

∞⋂
n=0

1

2n
(B −B) = {0}.

Then for an arbitrary abelian semigroup (S,+) and an arbitrary function f : S → Y satis-
fying

f(s+ t)− f(s)− f(t) ∈ B, s, t ∈ S,
there exists a unique additive function a : S → Y such that

a(s)− f(s) ∈ B, s ∈ S.
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The list of publications containing results from Ph. D. Thesis:

[XIV] Barbara Przebieracz, Approximately iterable functions, Proceedings of ECIT06, Grazer Math. Ber.,
Bericht Nr 351 (2007), 139–157.

[XV] Barbara Przebieracz, The closure of the set of iterable functions, Aequationes Math. 75 (2008),
239–250.

[XVI] Barbara Przebieracz, Weak almost iterability, Real Analysis Exchange 34(2), (2008/2009), 359–376.

10. Results included in Ph. D. Thesis

In [120] M.C. Zdun characterized continuous selfmappings of an interval X ⊂ R, which
are embeddable in continuous iteration semigroups, i.e., these continuous f : X → X, for
which there exists a continuous solution F : (0,∞)×X → X of the translation equation

F (s, F (t, x)) = F (t+ s, x), s, t ∈ (0,∞), x ∈ X,

satisfying
f(x) = F (1, x), x ∈ X.

Functions embeddable into continuous iteration semigroups are called iterable. As a respon-
se to the problem posed by E. Jen in monograph of Gy. Targonski [113, problem (3.1.12)],
W. Jarczyk proposed the following definition of functions which are, in a sense, close to
the iterable ones:

A continuous function f : X → X is called almost iterable, if there exists an iterable
function g : X → X such that

(10.1) lim
n→∞

(fn(x)− gn(x)) = 0, x ∈ X,

and this convergence is uniform on every component of the set33 [af , bf ] \ Per(f, 1).
In [51] one can find a characterization of almost iterability.
In [XVI] I investigated some generalizations of almost iterability, namely the form of the

functions satisfying (10.1) without the additional assumption about uniform convergence
which appeared in the definition of almost iterability (such functions were called weak
almost iterable), furthermore, I described functions satisfying the condition (10.1) for x
from some “large” set either in a sense of measure or topology. The following theorem
contains the characterization of weak almost iterability.

33Let me remind that Per(f, 1) stands for the set of all fixed points of function f and Per(f, 2) stands
for all the periodic points of order 2 of function f , i.e.,

Per(f, 1) = {x ∈ X : f(x) = x}, Per(f, 2) = {x ∈ X : f2(x) = x, f(x) 6= x},

moreover af and bf denotes the smallest and the greatest, respectively, fixed point of f .



50

Theorem 10.1. A continuous function f : X → X is weak almost iterable if and only if
Per(f, 2) = ∅ and there are points ai, bi ∈ Per(f, 1), i ∈ I, such that [af , bf ] =

⋃
i∈I [ai, bi]

and for every i ∈ I one of the following possibilities holds true:
(i) ai = bi;
(ii) (ai, bi) ∩ Per(f, 1) = ∅, f([ai, bi]) = [ai, bi];
(iii) (ai, bi) ∩ Per(f, 1) = {ci}, x < f(x) < bi, for x ∈ (ai, ci), ai < f(x) < x for

x ∈ (ci, bi);
(iv) (ai, bi) ∩ Per(f, 1) = ∅, bi = bf , f(x) > x for x ∈ (ai, bi);
(v) (ai, bi) ∩ Per(f, 1) = ∅, ai = af , f(x) < x for x ∈ (ai, bi).

In [XIV] I proposed another definition of functions “close to” the iterable ones. The main
result of this paper is included in the following theorem:

Theorem 10.2. A continuous function f : X → X satisfies the condition

(W) for every ε > 0 there exists an iterable function g : X → X and a positive integer
n0 such that |fn(x)− gn(x)| < ε for n ≥ n0, x ∈ X,

if and only if
(i) the restriction f |[af ,bf ] is an increasing function

and one of the following conditions holds: (ii)–(iv)
(ii) Per(f, 2) = ∅,
(iii)

⋂
n∈N f

n(X) = [af , bf ],
(iv) for every x ∈ X the sequence (fn(x))n∈N converges.

The conditions listed below, equivalent to belonging to the closure of the set of iterable
functions come from [XV].

Theorem 10.3. Let f : X → X be a continuous function. Then the following conditions
are equivalent:
(1) There exist points x1, x2 ∈ X such that

x1 ≤ f(x1) ≤ f(x) ≤ f(x2) ≤ x2, x ∈ X,

and the restriction f |[x1,x2] increases.
(2) For every ε > 0 there exists an iterable function g : X → X such that

|fn(x)− gn(x)| < ε, n ∈ N, x ∈ X.

(3) For every ε > 0 there exists an iterable function g : X → X such that |f(x)− g(x)| < ε

for x ∈ X.
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(4) For every ε > 0 there exists an ε-iteration semigroup34 F : (0,∞)×X → X such that

|fn(x)− F (n, x)| < ε, n ∈ N, x ∈ X.

(5) For every ε > 0 there exists an ε-iteration semigroup F : (0,∞)×X → X such that

|f(x)− F (1, x)| < ε, x ∈ X.

34We say that a continuous function F : (0,∞)×X → X is an ε-iteration semigroup, if it satisfies

|F (s, F (t, x))− F (t+ s, x)| ≤ ε, for x ∈ X, s, t ∈ (0,∞).
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