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Abstract. The main purpose of this note is to show a new sufficient condition
for the asymptotic stability of Markov operators acting on the space of signed
measures. This condition is applied to stochastically perturbed dynamical sys-
tems, and iterated function system (IFS). They are formulated in terms of adjoint
operators. This approach simplifies further applications.

Our results are based on two principles. The first one is the LaSalle invariance
principle used in the theory of dynamical systems. The second is related to
the Kantorovich-Rubinstein theorems concerning the properties of probability
metrics.

1. Introduction

The Kantorovich-Rubinstein maximum principle is stimulated by the Kantorovich-
Rubinstein duality theorem ([8, 12, 14]). The duality theorem has a long and colourful
history, apparently originating in 18th century (1781) work of Monge on the transport
of mass problem ([11]). Let µ1 and µ2 are two Borel probability measures given on
a separable metric space (X, %) and let V be the space of probability measures on
X × X such that its projections on the first and second coordinates are µ1 and µ2,
respectively i.e.

V = V (µ1, µ2) :=
{
b ∈M1(X ×X); Π1b = µ1, Π2b = µ2

}
The measures µ1 and µ2 may be viewed as the initial and final distribution of mass
and V as the space of admissible transference plan. If the unit cost of shipment from
x to y is %(x, y) then the total cost is∫

X×X

%(x, y)b(dx, dy).
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Thus we see that minimization of transportation costs can be formulated in terms of
finding a distribution on X ×X whose marginals are fixed, and such that the double
integral of the cost function is minimal. The duality Kantorovich-Rubinstein theorem
can be stated as follows

inf
b∈V

∫
X×X

%(x, y)b(dx, dy) = sup
f∈H

∫
X

f(x)(µ1 − µ2)(dx).

During the study of the classical Monge transport problem L. V. Kantorovich and G.
S. Rubinstein discovered some interesting properties of the functional

ϕµ(f) =
∫
X

f(x)µ(dx) for µ = µ1 − µ2.

In particular this functional always admits its maximum value on the set of Lips-
chitzean functions with Lipschitz constant L ≤ 1. Moreover, every function which
realizes the maximum of ϕµ satisfies the condition

|f(x)− f(y)| = %(x, y),

for some x, y ∈ X,x 6= y . This property will be called the Kantorovich-Rubinstein
maximum principle. The maximum principle will be used to prove a new sufficient
condition for asymptotic stability for Markov operators acting on the space of signed
measures. This condition generalizes some previous results of A. Lasota ([9]), K. oskot
and R. Rudnicki ([10]).

2. Kantorovich-Wasserstein metric in the space of measures

Let (X, %) be a Polish space, i.e., a separable, complete metric space. By BX
we denote the σ–algebra of Borel subsets of X and by M the family of all finite
(nonnegative) Borel measures on X. By M1 we denote the subset of M such that
µ(X) = 1 for µ ∈M1. The elements of M1 will be called distributions. Further let

Msig = {µ1 − µ2 : µ1, µ2 ∈M},
be the space of finite signed measures.

Let c be a fixed element of X. For every real number α ≥ 1 we define the setsM1,α

and Msig,α by setting

M1,α = {µ ∈M1 : mα(µ) <∞},
Msig,α = {µ ∈Msig : mα(µ) <∞}

where

mα(µ) =
∫
X

(%(x, c))α|µ|(dx).

Evidently Msig,α ⊂ Msig,β for α ≥ β. It is evident that these spaces do not
depend on the choice of c. For every f : X → R and µ ∈Msig we write

〈f, µ〉 =
∫
X

f(x)µ(dx), (1)
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whenever this integral exists. In the spaceM1 we introduce the Kantorovich-Wasserstein
metric by the formula

‖µ1 − µ2‖K = sup{|〈f, µ1 − µ2〉| : f ∈ K} for µ1, µ2 ∈M1, (2)

where K is the set of functions f : X → R which satisfy the condition

|f(x)− f(y)| ≤ %(x, y) for x, y ∈ X.

3. Markov operators

An operator P :M→M is called a Markov operator if it satisfies the following
conditions:

(i) P is positively linear

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2µ2

for λ1, λ2 ≥ 0 and µ1, µ2 ∈M,

(ii) P preserves the measure of the space

Pµ(X) = µ(X) for µ ∈M. (3)

Every Markov operator P can be uniquely extended as a linear operator to the
space of signed measures. Namely for every µ ∈Msig we define

Pµ = Pµ1 − Pµ2, where µ = µ1 − µ2; µ1, µ2 ∈M.

It is easy to verify that this definition of P does not depend on the choice of µ1, µ2.
A Markov operator P is called a regular operator if there exists an operator acting

on the space of bounded Borel measurable functions U : B(X)→ B(X) such that

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈M. (4)

The operator U is called dual to P.
If in addition Uf ∈ C(X) for f ∈ C(X), then the regular operator P is called

the Markov-Feller operator.
Setting µ = δx in (4) we obtain

(Uf)(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X, (5)

where δx ∈M1 is the point (Dirac) measure supported at x.
From formula (5) it follows immediately that U is linear and satisfies the following

conditions
Uf ≥ 0 for f ≥ 0 f ∈ B(X), (6)

U1X = 1X , (7)

Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X). (8)

Here fn ↓ 0 means that the sequence (fn) is decreasing and pointwise converges to 0.
Conditions (6)–(8) allow to reverse the role of P and U . Namely, if a linear operator

U satisfying (6)–(8) is given we may define a Markov operator P :M→M by setting

Pµ(A) = 〈U1A, µ〉 for µ ∈M, A ∈ BX . (9)
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The dual operator U has a unique extension to the set of all Borel measurable
nonnegative (not necessarily bounded) functions on X, such that formula (4) holds.
Namely for a Borel measurable function f : X → R+ we write

Uf(x) = lim
n→∞

Ufn(x),

where (fn), fn ∈ B(X) is an increasing sequence of bounded Borel measurable func-
tions converging pointwise to f . Since the sequence (Ufn) is increasing the limit Uf
exists. Further from the Lebesgue monotone convergence theorem it follows that Uf
satisfies (4). This formula shows that the limit is defined in a unique way and does
not depend on the particular choice of the sequence (fn). Evidently this extension is
positively linear and monotonic.

4. Asymptotic stability of Markov operators.

A measure µ is called stationary (or invariant) with respect to a Markov operator
P if Pµ = µ.

A Markov operator is called asymptotically stable if there is a stationary distribution
µ∗ such that

lim
n→∞

‖Pnµ− µ∗‖K = 0 for µ ∈M1. (10)

A distribution µ∗ satisfying (10) is unique.
For given c ∈ X define

%c(x) := %(x, c) for x ∈ X.

An important role in the study of the asymptotic behaviour of Markov-Feller operator
P is played by the function U%c, where U denotes the dual operator to P . Since %c is
continuous and nonnegative the function U%c is well defined.

Using the Kantorovich-Rubinstein maximum principle, it is easy to give a sufficient
condition for the asymptotic stability of Markov operators acting on the space of
signed measures ([3]). As before let c be a fixed element of X and let %αc (x) :=(
%(x, c)

)α
for x ∈ X and α > 0.

Theorem 1. Let P : Msig → Msig be a Markov–Feller operator and let U be its
dual. Assume that

|Uf(x)− Uf(y)| < %(x, y) for x, y ∈ X, x 6= y, (11)

and for every f ∈ K.
Moreover, we assume that there exist constants A,B ≥ 0, and α > 1, such that

(Un%αc )(x) ≤ A%αc (x) +B for x ∈ X and n = 0, 1, 2, . . . . (12)

Then P is asymptotically stable with respect to the Kantorovich-Wasserstein metric.
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5. Discrete time stochastically perturbed dynamical system

We use this criterion to study stochastically perturbed dynamical systems. A
discrete time dynamical system describes the evolution of points by means of one
transformation xn+1 = S(xn). But practice this evolution can be randomly modified.
In this case we have a family of transformations {Sy}y∈Y and at each step xn+1 is
given by Sy(xn), where y is randomly selected. Such a process can be described by a
stochastically perturbed dynamical system.

Let (Ω,Σ, prob) be a probability space and let (Y,A) be a measurable space.
We consider a discrete time stochastically perturbed dynamical system on a locally
compact separable space (X, %) given by the recurrence formula:

xn+1 = S(xn, ξn) for n = 0, 1, . . . , (13)

where ξn : Ω → Y is a sequence of random elements, S : X × Y → X is a given
deterministic transformation and S(x, y) := Sy(x). In our study of the asymptotic
behaviour of (13) we assume that the following conditions are satisfied:

(i) The function S is measurable on the product space X×Y and for every fixed
y ∈ Y the function S(·, y) is continuous.

(ii) The random elements ξ0, ξ1, . . . are independent and have the same distribu-
tion, i.e., the measure

ϕ(A) = prob(ξn ∈ A) for A ∈ A,

is the same for all n.
(iii) The initial value x0 : Ω → X is a random element independent of the sequence

(ξn).
It is easy to derive a recurrence formula for the measures

µn(A) = prob(xn ∈ A), A ∈ B(X),

corresponding to the dynamical system (13). Namely µn+1 = Pµn, n = 0, 1, ...,
where the operator P :M1 →M1 is given by the formula

Pµ(A) =
∫
X

( ∫
Y

1A(S(x, y))ϕ(dy)
)
µ(dx). (14)

The operator P is a Markov–Feller operator and its dual U has the form

Uf(x) =
∫
Y

f(S(x, y))ϕ(dy) for f ∈ C(X). (15)

Now define a sequence of functions Sn by setting

S1(x, y1) = S(x, y1), Sn(x, y1, ..., yn) = S(Sn−1(x, y1, ..., yn−1), yn).

Using this notation we have

Unf(x) =
∫
Y

...

∫
Y

f(Sn(x, y1, ..., yn))ϕ(dy1)...ϕ(dyn).
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Proposition 2. Assume that the mapping S : X×Y → X and the sequence of random
elements (ξn) satisfy conditions (i)–(iii). Assume moreover that there is n ∈ N such
that, the mathematical expectation of %(S(x, ξn), S(x, ξn) satisfies

E(%(S(x, ξn), S(x, ξn)) < %(x, x) for x, x ∈ X, x 6= x, (16)

and there exist constants α > 1, A, B ∈ R+ such that

Un%αc (x) ≤ A%αc (x) +B, for x ∈ X, n = 0, 1, 2, ..... (17)

Then the operator P defined by (14) is asymptotically stable with respect to the
Kantorovich-Wasserstein metric.

�
Using Proposition 2 it is easy to obtain a few known results concerning the stability

of Markov operators.
In fact from Proposition 2 we immediately obtain as a special case the stability

theorem of Lasota-Mackey (see [9], Theorem 2) where the conditions

E(|S(x, ξn)− S(z, ξn)|) < |x− z| for x, z ∈ X ⊂ Rd, x 6= z

and
E(|S(x, ξn)|2) ≤ A|x|2 +B for x ∈ X ⊂ Rd,

were assumed. The symbol | · | denotes an arbitrary, not necessary Euclidean, norm
in Rd and A and B are nonnegative constants with A < 1.

Furthermore, in the case when X is a locally compact separable metric space,
Proposition 2 contains a result of Łoskot and Rudnicki (see [10], Theorem 3). Namely,
they proved the asymptotic stability of P if

%(S(x, y), S(x, y)) ≤ λ(y)%(x, x) for x, x ∈ X
and

E%c(S(c, ξ1)) <∞,
where λ : Y → R+ and Eλ(ξ1) < 1.

In the special case when, Y = {1, ..., N}, the stochastic dynamical system (13)
reduces to an iterated function system

(S1, ..., SN ; p1, ..., pN ) where Sk(x) = S(x, k) and pk = prob(ξn = k).

Now operators (14) and (15) have the form:

Pµ(A) =
N∑
k=1

pkµ(S−1
k (A)) and Uf(x) =

N∑
k=1

pkf(Sk(x)). (18)

We will assume the following conditions:
N∑
k=1

pk%(Sk(x), Sk(x)) < %(x, x), for x, x ∈ X, x 6= x (19)

and
%(Sk(x), c) ≤ Lk%(x, c) for x ∈ X, k = 1, . . . , N, (20)

where c is a given point in X and the constants Lk are nonnegative constants.
In this case Proposition 2 implies the following result
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Corollary 3. If the IFS (S1, ..., SN ; p1, ..., pN ) satisfies conditions (19), (20) and
there exists a constant α > 1 such that

N∑
k=1

pkL
α
k < 1, (21)

then this system is asymptotically stable.

6. Biological application: Dynamical systems with multiplicative
perturbations

Our sequences (13) have no typical properties which are usually assumed in the
known versions of the limit theorems. In particular, the random variables are not
independent. The central limit theorem may be extended to various cases when
the variables in the sum are not independent. We shall here only indicate one of
these extensions for dynamical systems with multiplicative perturbations, which has a
considerable importance for various applications, especially to biological problems. It
will be convenient to use a terminology directly connected with some of the biological
applications.

We now turn our attention to dynamical systems with multiplicative perturbations
of the form

Xn+1 = Xn + ξn+1g(Xn),

where g : R → R is integrable. Such dynamical systems have been considered in a
biological context by H. Cramer in 20th century (1927) (see [2]) . It will be convenient
to use a terminology directly connected with some of the biological applications.
Suppose that we have n impulses ξ1, . . . , ξn acting the order of their indices. These
we consider as independent random variables. Denote by Xn the size of the organ
which is produced by the impulses ξ1, . . . , ξn. We may then suppose e.g. that the
increase caused by the impulse ξn+1 is proportional to ξn+1 and to some function
g(Xn) of the momentary size the organ

Xn+1 = Xn + ξn+1 ∗ f
(
Xn

)
⇐⇒ ξn+1 =

Xn+1 −Xn

f
(
Xn

) .

It follows that

ξ1 + ξ2 + . . .+ ξn =
n−1∑
k=0

Xk+1 −Xk

f
(
Xk

) .

If each impulse only gives a slight contribution to the growth of the organ, we thus
have approximately

ξ1 + ξ2 + . . .+ ξn ≈
X∫

X0

dt

f
(
t
) ,

where X = Xn denotes the final size of the organ. By hypothesis ξ1, ξ2, . . . , ξn are
independent variables, and n may be considered as a large number. Under the general
regularity conditions of the central random theorem it thus follows that, in the limit,
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the function of the random variable X appearing in the second member is normally
distributed. Consider the case f(t) = t.

X∫
X0

dt

t
= ln t

∣∣X
X0

= ln
X
X0

The effect of each impulse is then directly proportional to the momentary size of the
organ. In this case we thus fine that log X is normally distributed.

If, more generally, log(X − a) is normal (m,σ), it is easily seen that the variable
X itself has the logarithmico-normal distribution:

fX(x) =

{
1√

2πσ x
e−

(ln x−m)2

2σ2 dla x > 0,

0 dla x ≤ 0.
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