[1]
B.
Rothkegel, Bilinear forms over semilocal Dedekind rings in number fields, Tatra Mt. Math. Publ. 32 (2005), 103--117.
[2] B. Rothkegel and A. Czogała, Witt equivalence of semilocal Dedekind domains in
global fields, Abh. Math. Sem. Univ.
Hamburg 77 (2007), 1--24.
[3] B. Rothkegel and A. Czogała, Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), No. 2, 185--217.
[4] B. Rothkegel, Nonsingular bilinear forms on direct sums of ideals, Math. Slovaca 63 (2013), No. 4, 707--724.
[5] B. Rothkegel, The image of the natural homomorphism of Witt rings of orders in a global field, Acta Arith. 160 (2013), No. 4, 349--384.
[6] A. Czogała and B. Rothkegel, Wild primes of a self-equivalence of a number field, Acta Arith. 166 (2014), No. 4, 335--348.
[7] A. Czogała, B. Rothkegel and A. Sładek, Wild primes of a higher degree self-equivalence of a number field, Ann. Math. Sil. 30 (2016), 17--38.
[8] A. Czogała, P. Koprowski and B. Rothkegel, Wild and even points in global function fields, Colloq. Math. 154 (2018), No. 2, 275--294.
[9] B. Rothkegel, Witt functor of a quadratic order, Math. Slovaca 68 (2018), No. 6, 1339--1342.
[10] B. Rothkegel, Maximality of orders in Dedekind domains, przyjęta do druku w Journal of Algebra and Its Applications, DOI: 10.1142/S021949882050125X.
[11] B. Rothkegel, Maximality of orders in number fields, przyjęta do druku w Banach Center Publications.
[12] A. Czogała, P. Koprowski and B. Rothkegel, Wild sets in global function fields, przyjęta do druku w Mathematica Slovaca.
[13] B. Rothkegel, Maximality of orders in Dedekind domains, II, w przygotowaniu.