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A NOTE ON BIFURCATION OF EQUILIBRIUM FORMS
OF A GAS BALLOON PARACHUTE

Anita Zgorzelska , Hanna Guze

Abstract. We will be concerned with deformations of a free elastic top rim
of a parachute of a gas balloon. The top rim is connected with the circular
deflation port of the balloon envelope by heavy duty flexible load tapes. The
inside part of the balloon is filled with compressed gas. Equilibrium forms of
the parachute may be found as solutions of a certain nonlinear functional-
differential equation with two physical parameters: an elasticity coefficient of
tapes and a physical parameter describing compressed gas. This equation pos-
sesses radially symmetric solutions corresponding to circular shapes of the top
rim. Our goal is to study the existence of symmetry breaking bifurcation of
the top rim of parachute.

1. Mathematical model

Bifurcation theory is a powerful tool in studying deformations of elastic
beams, shells or plates. Lots of works have been devoted to the study of
bifurcation in elasticity theory, see for instance [1], [4], [5], [11], [12], [14] and
references therein.

Our study was motivated by gas balloons. Precisely, we are interested in
the behaviour of the part of a balloon that is called an envelope. Following the
description in [8], the fabric of the envelope is flexible (elastic). It is composed
of large vertical sections called gores. Each gore is made up of the same number
of horizontal sections called panels. The panels and gores are held together
by stitching and by heavy duty flexible load tapes which help support the
weight of the balloon and minimize a strain on the fabric. The top part of
the envelope consisting of one panel of each gore is named a parachute (see
Fig. 1). The standard parachute possesses a circular deflation port – a crown
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ring that is closed off by a circular panel which is held sealed during a flight
by a flexible hook-and-loop closure. Moreover, we can treat a parachute in
a balloon envelope as a two-dimensional object, because its height is much
smaller than the length of a top rim - a horizontal tape between the parachute
and the rest of envelope. An equilibrium form of the gas balloon parachute
is described in polar coordinates by a 2π- periodic Cm+2-smooth positive
function r(θ), m ∈ N ∪ {0}.

PANEL

TOP RIM

GORE

PARACHUTE

CROWN RING

Figure 1. A balloon envelope: view from above

Let Cm(2π), m ∈ N ∪ {0}, denote the Banach space of 2π-periodic Cm-
smooth functions r(θ) with the standard norm

∥r∥m =

m∑
k=0

max
θ∈[0,2π]

|r(k)(θ)|,

where r(k)(θ) denotes the k-th derivative of r(θ) and r(0)(θ) = r(θ). It is well
known that Cm(2π) is continuously embedded into the Hilbert space L2(2π)
with the scalar product

⟨f, g⟩ =
∫ 2π

0

f(θ)g(θ)dθ.

The total energy of the parachute is given by:

(1.1) E(r, α, β) =

∫ 2π

0

(√
r2(θ) + r′2(θ) + αr(θ)

)
dθ − β lnS,

where α > 0 is an elasticity coefficient of heavy duty load tapes, β > 0 is a
physical parameter describing a compressed gas inside the gas balloon, and S
denotes the area of parachute, i.e.

S = S(r) =
1

2

∫ 2π

0

r2(θ)dθ.
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Gas balloons are inflated with a gas of lower molecular weight than the
ambient atmosphere. The most popular gas here is helium. Let us point out
that a similar model was investigated by the second author and J. Janczewska
in [7] and [8]. As a result of conversations with J. Janczewska, the formula for
the energy functional has been improved (simplified). The component of the
energy functional corresponding to the energy of compresses gas inside the
gas balloon depends only on one parameter. However the main conclusions
concerning deformations of the parachute are the same.

It can be easily calculated that the Fréchet derivative of the energy func-
tional E with respect to the variable r is of the form:

E′
r(r, α, β)h =

∫ 2π

0

r3(θ) + 2r(θ)r′2(θ)− r2(θ)r′′(θ)

(r2(θ) + r′2(θ))3/2
h(θ)dθ

+

∫ 2π

0

(
α− β

S
r(θ)

)
h(θ)dθ,

where α, β ∈ R+, r, h ∈ Cm+2(2π) and r(θ) > 0 for θ ∈ [0, 2π]. Critical points
of the energy functional E(r, α, β) are 2π-periodic Cm+2-smooth positive so-
lutions of the equation

(1.2)
r3(θ) + 2r(θ)r′2(θ)− r2(θ)r′′(θ)

(r2(θ) + r′2(θ))3/2
+ α− β

S
r(θ) = 0.

We are interested in radially symmetric solutions of the equation (1.2). Sub-
stituting r(θ) ≡ r into (1.2), we get an algebraic equation

1 + α− β

rπ
= 0

with a solution given by

(1.3) Rα =
β

π(1 + α)
,

which corresponds to a circular shape of the top rim of radius Rα. To sum
up, for all β ∈ R+ there exists a family of radially symmetric solutions of the
equation (1.2) given by

Γβ = {(Rα, α) : α ∈ R+},

where Rα is defined by (1.3).
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2. Symmetry-breaking bifurcation problem

We now want to find all values of the parameter α for which the radi-
ally symmetric solution Rα loses its stability. For this purpose we will study
bifurcation from the set of radial solutions with respect to α.

Definition 2.1. (Rα, α) ∈ Γβ is called a symmetry-breaking bifurcation
point of the equation (1.2) with respect to the set Γβ if there exists a branch
of non-radially symmetric solutions (r(t), α(t)) of (1.2), depending on |t| < ε,
with r(0) = Rα and α(0) = α.

Set

αk = k2 − 1, k ≥ 1.

Theorem 2.2. For each k ≥ 2, there exists a smooth family of non-radially
symmetric solutions (r(t), α(t)) of (1.2), defined for |t| < ε, satisfying

r(t)(θ) = Rα(t) + t · 1√
π
cos(kθ) + o(|t|).

In particular, at t = 0 we have r(0) = Rαk
and α(0) = αk. This implies that

(Rαk
, αk) ∈ Γβ is a symmetry-breaking bifurcation point for the equation (1.2).

The proof of the above theorem relies on the Crandall-Rabinowitz theorem
concerning simple bifurcation points (see [6]). We will apply the gradient
(variational) version of this theorem, developed by A.Yu. Borisovich (see [2],
[3]). To enhance clarity, let us state this theorem.

Theorem 2.3. Assume that H is a Hilbert space with a scalar product
(·, ·)H . Let X and Y be Banach spaces continuously embedded in H. Suppose
that a Cr-operator F : Xδ(0)×Rδ(α0) → Y and a Cr+1-functional E : Xδ(0)×
Rδ(α0) → R, where r ≥ 2, satisfy the following conditions:
1. F (0, α) = 0 for α ∈ Rδ(α0),
2. dimkerF ′

x(0, α0) = 1, F ′
x(0, α0)e = 0, (e, e)H = 1,

3. codim im F ′
x(0, α0) = 1,

4. E′
x(x, α)h = (F (x, α), h)H for (x, α) ∈ Xδ(0)× Rδ(α0) and h ∈ X,

5. E′′′
xxα(0, α0)(e, e, 1) ̸= 0.

Then (0, α0) is a bifurcation point of the equation

(2.1) F (x, α) = 0.

In fact, the solution set of this equation in a certain neighborhood of (0, α0)
consists of the curve Γ1 = {(0, α) : α ∈ Rδ(α0)} and a Cr−2-curve Γ2, inter-
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secting only at (0, α0). Moreover, if r ≥ 3, the curve Γ2 can be parametrized
by a variable t, |t| ≤ ε, as

Γ2 = {(x(t), α(t)) : t ∈ Rε(0)}, where x(0) = 0, α(0) = α0 and x′(0) = e.

Let us introduce the symbol Cm
e (2π), m ∈ N ∪ {0} be the subspace of

Cm(2π) of even functions. Set

X = Cm
e (2π) and Y = Cm(2π), m ∈ N ∪ {0}.

Given any α0 ∈ R+ take (Rα0
, α0) ∈ Γβ. Starting now, Xδ(0) and (R+)δ(α0)

denote balls of radius δ around 0 in X and α0 ∈ R+, correspondingly. For
ϱ ∈ Xδ(0) and α ∈ (R+)δ(α0) define

(2.2) r(θ) = Rα + ϱ(θ).

Note that r(θ) represents a small perturbation in X from Rα given by (1.3).
Substituting (2.2) in (1.1), we get the new energy functional Ê given by

Ê(ϱ, α, β) =

∫ 2π

0

(√
(Rα + ϱ)2 + ϱ′2 + α(Rα + ϱ)

)
dθ − β ln Ŝ,

where ϱ ∈ Xδ(0), α ∈ (R+)δ(α0) and

Ŝ = Ŝ(ϱ, α) =
1

2

∫ 2π

0

(Rα + ϱ)2dθ.

Furthermore, the Fréchet derivative of Ê with respect to ϱ is expressed by

Ê′
ϱ(ϱ, α, β)h =

∫ 2π

0

(Rα + ϱ)3 + 2(Rα + ϱ)ϱ′2 − (Rα + ϱ)2ϱ′′

((Rα + ϱ)2 + ϱ′2)3/2
hdθ

+

∫ 2π

0

(
α− β

Ŝ
(Rα + ϱ)

)
hdθ.

Let us define the mapping F̂ : Xδ(0)× (R+)δ(α0) → Y by the formula

F̂ (ϱ, α, β) =
(Rα + ϱ)3 + 2(Rα + ϱ)ϱ′2 − (Rα + ϱ)2ϱ′′

((Rα + ϱ)2 + ϱ′2)3/2
+ α− β

Ŝ
(Rα + ϱ).

Of course F̂ is smooth. It is easy to notice the following

Lemma 2.4. The mapping F̂ is the variational gradient of Ê with respect
to the inner product in L2(2π), i.e.,

Ê′
ϱ(ϱ, α, β)h =

∫ 2π

0

F̂ (ϱ, α, β)hdθ =
〈
F̂ (ϱ, α, β), h

〉
fol all ϱ ∈ Xδ(0), h ∈ X and α ∈ (R+)δ(α0).
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Consider the equation of the form

(2.3) F̂ (ϱ, α, β) = 0.

The equation (2.3) has a trivial family of solutions

Γ̂β = {(0, α) ∈ X × R+ : α ∈ (R+)δ(α0)}.

In order to prove the existence of a symmetry-breaking bifurcation branch
of solutions of the equation (1.2) at (Rαk

, αk), we will investigate bifurcation
from the set of trivial solutions Γ̂β of the equation (2.3).

Lemma 2.5. For each α ∈ (R+)δ(α0), F̂ ′
ϱ(0, α, β) : X → Y given by the

formula

(2.4) F̂ ′
ϱ(0, α, β)h = − 1

Rα
h′′ − β

(
1

πR2
α

h− 1

π2R2
α

∫ 2π

0

hdθ

)
is a Fredholm map of index 0.

The proof is similar to that in [8]. It is sufficient to show that F̂ ′
ϱ(0, α, β) is

the sum of a Fredholm map of index 0 and a completely continuous map. Ac-
cording to the implicit function theorem, a necessary condition for bifurcation
from the trivial solutions of (2.3) at (0, α0) is that dimker F̂ ′

ϱ(0, α0, β) > 0.
To determine the critical values of the bifurcation parameter, we need to solve
the equation

(2.5) F̂ ′
ϱ(0, α, β)h = 0

considering two additional constraints

(2.6)
∫ 2π

0

h(θ) cos θdθ = 0

and

(2.7)
∫ 2π

0

h(θ)dθ = 0.

The evenness of h(θ) and the condition (2.6) prevent any displacement of the
mass center of the parachute. Additionally, conditions (2.6) and (2.7) rule
out h(θ) = cos(θ) and h(θ) = const ̸= 0. Consequently, assumption (2.7)
leads to a loss of radial symmetry. Furthermore, assumption (2.7) reduces
equation (2.5) to

− 1

Rα
h′′ − β

1

πR2
α

h = 0.
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We choose the bifurcation mode ek(θ) = 1√
π
cos(kθ) for k ≥ 2. Using for-

mula (1.3), we finally obtain

α = αk = k2 − 1, k ≥ 2.

Now, it is enough to show that

Ê′′′
ϱϱα(0, αk, β)ekek ̸= 0.

It follows from Lemma 2.4 that

Ê′′
ϱϱ(0, α, β)hg =

〈
F̂ ′
ϱ(0, α, β)h, g

〉
.

Applying (2.4) and substituting h = g = ek, we obtain

(2.8) Ê′′
ϱϱ(0, α, β)ekek =

1

Rα

(
k2 − 1− α

)
.

Finally, differentiating (2.8) with respect to α we have

Ê′′′
ϱϱα(0, α, β)ekek =

π

β

(
k2 − 2− 2α

)
,

and thus

Ê′′′
ϱϱα(0, αk, β)ekek = −π

β
k2 < 0, k ≥ 2.

It follows from Theorem 2.3 that (0, αk) is a bifurcation point of (2.3) and
the solution set of (2.3) in a neighbourhood of this point is the sum of Γ̂β and
a smooth curve (ϱ(t), α(t)), |t| < ε, such that ϱ(0) = 0, α(0) = αk and

ϱ(θ) =
t√
π
cos(kθ) + o(|t|),

which, together with (2.2), proves Theorem 2.2.

3. Subcritical behaviour of the parachute of gas balloon

In the previous section, using the Crandall–Rabinowitz theorem, we proved
the existence of a family of non-radially symmetric solutions of the equation
(1.2) at the point (Rαk

, αk), parameterized by a real parameter t ∈ (−ε, ε).
As the next step, our goal is to parameterize the non-radially symmetric

branches of solutions of the equation (1.2) using the bifurcation parameter
α. To achieve this, we will apply the Lyapunov–Schmidt finite-dimensional
reduction and Sapronov’s key function method. For the convenience of the
reader, we state this theorem.
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Assume that the assumptions of Theorem 2.3 are satisfied. Let us consider
the equation

(3.1) F (x, α) + (ξ − (x, e)H)e = 0,

where x ∈ Xδ(0), α ∈ Rδ(α0) and ξ ∈ R. By the implicit function theorem
there are open sets S ⊂ R × Rδ(α0) and U ⊂ Xδ(0) and there exists a Cr-
smooth function x̃ : S → U such that the solution set of (3.1) in a neighbour-
hood of (0, 0, α0) ∈ Xδ(0)× R× Rδ(α0) is the graph of x̃ and x̃(0, α0) = 0.

Define Φ: S → R by

Φ(ξ, α) = −E(x̃(ξ, α), α) +
1

2
(ξ − (x̃(ξ, α), e)H)

2
.

Φ is called the key function. It is known that (0, α0) ∈ X ×R is a bifurcation
point of (2.1) if and only if (0, α0) ∈ R × R is a bifurcation point of the
equation Φξ(ξ, α) = 0 (see [9], Proposition 2.3).

Theorem 3.1 (The key function method, [13]). Under the conditions stat-
ed above:

(i) If Φ′′′
ξξα(0, α0) ̸= 0 then (0, α0) ∈ X × R is a bifurcation point of the

equation (2.1) and the solution set of (2.1) in a small neighbourhood of
(0, α0) is a union of two branches: Γ1 = {(0, α) : α ∈ Rδ(α0)} and a
Cr−2-curve Γ2, intersecting only at (0, α0).

(ii) If Φ′′′
ξξα(0, α0) ̸= 0 and Φ′′′

ξξξ(0, α0) ̸= 0 then (0, α0) ∈ X × R is said
to be a transcritical bifurcation point of (2.1), and the curve Γ2 can be
parametrized as follows:

Γ2 : x(α) = C(α− α0)e+ o(|α− α0|), α ∈ (α0 − η, α0 + η),

where

C = −2
Φ′′′

ξξα(0, α0)

Φ′′′
ξξξ(0, α0)

and 0 < η ≤ δ (see Fig. 2(a)).
(iii) Let

Φ′′′
ξξα(0, α0) ̸= 0,

Φ′′′
ξξξ(0, α0) = 0,

Φ′′′′
ξξξξ(0, α0) ̸= 0.

Set

D = −6
Φ′′′

ξξα(0, α0)

Φ′′′′
ξξξξ(0, α0)

.
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(a) (b) (c)

Figure 2. Transcritical, subcritical and postcritical bifurcation diagrams

If D < 0 then (0, α0) ∈ X × R is said to be a subcritical bifurcation
point of (2.1), and the curve Γ2 can be parametrized as follows:

Γ2 : x±(α) = ±
√
|D|(α0 − α)

1
2 e+ o(|α− α0|

1
2 ), τ ∈ (α0 − η, α0],

where 0 < η ≤ δ (see Fig. 2(b)).
If D > 0 then (0, α0) ∈ X × R is said to be a postcritical bifurcation

point of (2.1), and the curve Γ2 can be parametrized as follows:

Γ2 : x±(α) = ±
√
D(α− α0)

1
2 e+ o(|α− α0|

1
2 ), α ∈ [α0, α0 + η),

where 0 < η ≤ δ (see Fig. 2(c)).

Fact 3.2 (see [10]). The first few terms of the Taylor series of the key
function Φ(ξ, α) at the point (0, α0) are given by the following formulae:

Φ(0, α0) = −E(0, α0),

Φ′
ξ(0, α0) = 0,

Φ′′
ξξ(0, α0) = 0,

Φ
(1+k)
ξα...α(0, α0) = 0 for all k = 1, 2, . . . ,

Φ′′′
ξξα(0, α0) = −E′′′

xxα(0, α0)ee,

Φ′′′
ξξξ(0, α0) = −E′′′

xxx(0, α0)eee,

Φ′′′′
ξξξξ(0, α0) = −E′′′′

xxxx(0, α0)eeee− 3E′′′
xxx(0, α0)eeh,

where h is a unique solution of the equation

F ′
x(0, α0)h− (h, e)H e = −F ′′

xx(0, α0)ee.

Theorem 3.3. Let αk = k2 − 1, k ≥ 2 be a critical value of bifurcation
parameter α ∈ R+. Then (0, αk) ∈ X × R+ is a subcritical bifurcation point
of the equation (2.3).
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Proof. Fix k ≥ 2. Consider the key function corresponding to the equa-
tion (2.3) in a neighbourhood of (0, αk). According to Theorem 3.1 we have to
show that Φ′′′

ξξξ(0, αk) = 0 and Φ′′′
ξξα(0, αk) ·Φ′′′′

ξξξξ(0, αk) > 0. For this purpose
we will use Fact 3.2. From the previous section, we have

Ê′′′
ϱϱα(0, αk, β)ekek = −π

β
k2 < 0.

Using Fact 3.2 it follows that

Φ′′′
ξξα(0, αk) =

π

β
k2 > 0.

A straightforward calculation gives

F̂ ′′
ϱϱ(0, αk, β)ekek =

k2

R2
αk

(
1

π
sin2(kθ)− 2

π
cos2(kθ) +

1

π

)
.

According to Lemma 2.4, we obtain

Ê′′′
ϱϱϱ(0, αk, β)ekekek =

〈
F̂ ′′
ϱϱ(0, αk, β)ekek, ek

〉
= 0.

Combining this with Fact 3.2, we conclude that Φ′′′
ξξξ(0, αk) = 0. We check at

once that

hk(θ) =
1

Rαk
π
cos2(kθ)− 1

Rαk
π

is a unique solution of the equation

F̂ ′
ϱ(0, αk, β)h− ⟨h, ek⟩ek = −F̂ ′′

ϱϱ(0, αk, β)ekek.

It follows that

Ê′′′
ϱϱϱ(0, αk, β)ekekhk =

〈
F̂ ′′
ϱϱ(0, αk, β)ekek, hk

〉
= − 7k2

4R3
αk

π
.

Finally, we obtain

Ê′′′′
ϱϱϱϱ(0, αk, β)ekekekek = − 9k4

4R3
αk

π
,

and as a result, using Fact 3.2, we get

Φ′′′′
ξξξξ(0, αk) =

k2

4R3
αk

π
(9k2 + 21) > 0.

Hence

D = −6
Φ′′′

ξξα(0, αk)

Φ′′′′
ξξξξ(0, αk)

= −
8R3

αk
π2

β(3k2 + 7)
< 0.
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According to Theorem 3.1 we conclude that (0, αk) is a subcritical bifurcation
point of the equation (2.3). Furthermore, in a small neighbourhood of this
point, the solution set consists of the trivial branch Γ̂β and a C∞-curve Γ̂β

2 ,
which is parametrized as follows:

Γ̂β
2 : ϱ±(α) = ±

√
|D|(αk − α)

1
2 ek + o(|α− αk|

1
2 ) for α ∈ (αk − η, αk],

where 0 < η ≤ δ. □

4. Graphical representation of the parachute of gas balloon
in the neighbourhood of bifurcation points

We have shown that for the elasticity parameter values αk = k2 − 1,
k ∈ N, k ≥ 2, non-radially symmetric solutions (r(t), α(t)) of our problem
appear. Using the simplified formula

r(t)(θ) ≈ Rαk
+ t · 1√

π
cos (kθ)

and the Mathematica software, we present below how the top rim of a parachute
may behave for k = 3, 4, 7, 8, 9, 12.

Figure 3. k = 2, β = 18,
t = −0.05

Figure 4. k = 4, β = 30,
t = −0.05

Figure 5. k = 7, β = 80,
t = −0.05

Figure 6. k = 8, β = 100,
t = −0.05



A note on bifurcation of equilibrium forms of a gas balloon parachute 379

Figure 7. k = 9, β = 100,
t = −0.05

Figure 8. k = 12, β = 200,
t = −0.05
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