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ON (k1A1, k2A2, k3A3)-EDGE COLOURINGS IN GRAPHS
AND GENERALIZED JACOBSTHAL NUMBERS

Krzysztof Piejko, Lucyna Trojnar-Spelina

Abstract. In this paper we introduce a new kind of generalized Jacobsthal
numbers in a distance sense. We give the identities and matrix representations
for them and their connections with the Fibonacci and the Pell numbers. We
also describe the interpretations of these numbers in terms of some kind of
(k1A1, k2A2, k3A3)-edge colouring and quasi colouring.

1. Introduction and preliminary results

We use the standard definitions and notations of the graph theory, see [4]
and [6]. Let us recall definitions of several very important sequences in the
numbers theory. The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1
and Fn = Fn−1 + Fn−2, for n ≥ 2. The Pell sequence (Pn) is also defined by
recurrence relation Pn = 2Pn−1 + Pn−2, for n ≥ 2 with the initial conditions
P0 = 0, P1 = 1. The Jacobsthal sequence (Jn) is defined recursively as follows
Jn = Jn−1 + 2Jn−2, for n ≥ 2 with the initial conditions J0 = 0, J1 = 1.
The first few Fibonacci, Pell and Jacobsthal numbers are 0, 1, 1, 2, 3, 5, 8, . . . ,
0, 1, 2, 5, 12, 29, 70, . . . and 0, 1, 1, 3, 5, 11, 21, . . . , respectively.

In recent years many interesting generalizations of above mentioned clas-
sical sequences appeared in the mathematical literature. For example gener-
alizations of the Pell numbers were introduced and studied in [8]–[10], and
in [13], [15]–[18], [20]. Moreover in [16] generalized Jacobsthal numbers were
considered.

In this paper we study a new kind of generalization of Jacobsthal numbers
in the distance sense, i.e., generalization by the k -th order linear recurrence
relation. This concept of generalization of Jacobsthal numbers is inspired by
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results given in [1]–[3], [5], [15], [17] and [19] where generalizations of Fibonacci
numbers, Lucas numbers and Pell numbers were introduced.

For fixed integers k ≥ 1 and n ≥ 0 by J (i)(k, n) we denote the (2, k)-
distance Jacobsthal numbers of the i-th kind, i = 1, 2, i.e., numbers defined as
follows

(1) J (i)(k, n) = J (i)(k, n− k) + 2J (i)(k, n− 2) for n ≥ k + 1

with initial conditions J (i)(k, 0) = 0, J (i)(k, 1) = 1 and for 2 ≤ n ≤ k:

J (1)(k, n) =

{
0 if n is even,
2

n−1
2 if n is odd,

J (2)(k, n) = 2⌊
n−1
2 ⌋.

In the following tables, we present several initial terms of the (2, k)-distance
Jacobsthal sequences J (i)(k, n), i = 1, 2, for special values of k and n.

Table 1. The (2, k)-distance Jacobsthal numbers of the first kind J(1)(k, n)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J(1)(1, n) 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923

J(1)(2, n) 0 1 0 3 0 9 0 27 0 81 0 243 0 729 0 2187

J(1)(3, n) 0 1 0 2 1 4 4 9 12 22 33 56 88 145 232 378

J(1)(4, n) 0 1 0 2 0 5 0 12 0 29 0 70 0 169 0 408

J(1)(5, n) 0 1 0 2 0 4 1 8 4 16 12 33 32 70 80 152

J(1)(6, n) 0 1 0 2 0 4 0 9 0 20 0 44 0 97 0 214

J(1)(7, n) 0 1 0 2 0 4 0 8 1 16 4 32 12 64 32 129

Table 2. The (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J(2)(1, n) 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923

J(2)(2, n) 0 1 1 3 3 9 9 27 27 81 81 243 243 729 729 2187

J(2)(3, n) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

J(2)(4, n) 0 1 1 2 2 5 5 12 12 29 29 70 70 169 169 408

J(2)(5, n) 0 1 1 2 2 4 5 9 12 20 28 45 65 102 150 232

J(2)(6, n) 0 1 1 2 2 4 4 9 9 20 20 44 44 97 97 214

J(2)(7, n) 0 1 1 2 2 4 4 8 9 17 20 36 44 76 96 161

From the definition of the (2, k)-distance Jacobsthal numbers it follows
immediately that J (1)(1, n) = J (2)(1, n) = Jn. The numbers J (i)(2, n), i =

1, 2, are the elements of geometrical sequence, namely J (1)(2, n) = 3
n−1
2 for

odd n and J (2)(2, n) = 3⌊
n−1
2 ⌋. Moreover if k is even and n is odd then

J (2)(k, n) = J (2)(k, n+ 1).
For k = 3 we have the following relationships between J (1)(k, n), J (2)(k, n)

and the Fibonacci numbers Fn while for k = 4 we have their connections with
the Pell numbers Pn.
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Theorem 1. Let n be an integer. Then
(i) J (1)(3, n) = Fn−1 − (−1)n for n ≥ 1,
(ii) J (2)(3, n) = Fn for n ≥ 0,
(iii) J (1)(4, 2n− 1) = Pn for n ≥ 1,
(iv) J (2)(4, 2n− 1) = J (2)(4, 2n) = Pn for n ≥ 1.

Proof. In the proof of formula (i) we use the induction on n. For n = 1
or n = 2 the result follows immediately by the definitions of J (1)(k, n) and
the Fibonacci numbers Fn.

Assume now that formula (i) is true for t = 1, 2, . . . , n with arbitrary
n ≥ 2. We will prove that J (1)(3, n + 1) = Fn − (−1)n+1. By the induction
hypothesis and the definitions of J (1)(k, n) and Fn, we have

J (1)(3, n+ 1) = J (1)(3, n− 2) + 2J (1)(3, n− 1)

= Fn−3 − (−1)n−2 + 2(Fn−2 − (−1)n−1)

= 2Fn−2 + Fn−3 + (−1)n = Fn−2 + Fn−1 + (−1n)

= Fn − (−1)n+1,

which ends the proof of (i). To prove (ii)–(iv) we can use the same method. □

The following theorem shows the relation between numbers J (i)(k, n) for
i = 1, 2.

Theorem 2. Let k ≥ 2, n ≥ 1 be integers. Then
(i) J (2)(k, n) = J (1)(k, n) + J (1)(k, n− 1),

(ii) J (1)(k, n) =
n∑

i=0

(−1)iJ (2)(k, n− i).

Proof. In the proof of formula (i) we use the induction on n. Let n =
1, 2, . . . , k − 1. For k = 2 the result is obvious. If k ≥ 3 then we have (i) from
initial conditions for J (1)(k, n) and J (2)(k, n). Assume now that n ≥ k−1 and
that the equality (i) holds for all integers k ≤ t ≤ n. We shall prove that it
is true for the integer t = n + 1. Using (1) and the induction hypothesis, we
obtain that

J (2)(k, n+ 1) = J (2)(k, n+ 1− k) + 2J (2)(k, n− 1)

= J (1)(k, n+ 1− k) + J (1)(k, n− k) + 2
(
J (1)(k, n− 1) + J (1)(k, n− 2)

)
= J (1)(k, n+ 1− k) + 2J (1)(k, n− 1) + J (1)(k, n− k) + 2J (1)(k, n− 2)

= J (1)(k, n+ 1) + J (1)(k, n),

which ends the proof of (i). The equality (ii) can be proved in the same
manner. □
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In this paper we give the graph interpretations of considered two types of
the (2, k)-distance Jacobsthal numbers with respect to a special edge colouring
of a graph. Next, using these interpretations, we obtain several identities and
direct formulas for them. We also give matrix representations for J (i)(k, n),
i = 1, 2.

2. Graph interpretations

Let us consider an edge coloured graph G where the set of colours is
{A1, A2, A3}. For α ∈ {A1, A2, A3} a subgraph of G will be said α-monochro-
matic if all its edges are coloured by colour α. We will write α(xy) if the edge
xy of the graph has the colour α.

In [17], Trojnar-Spelina and Włoch defined so called (k1A1, k2A2, k3A3)-
edge colouring by monochromatic paths in a graph G where ki ≥ 1, i = 1, 2, 3,
are integers, as a generalization of the edge-colouring introduced and studied
by Piejko and Włoch in [15]. Let us recall that the (k1A1, k2A2, k3A3)-edge
colouring by monochromatic paths in a graph G is defined in such a way that
every maximal, with respect to the set inclusion, Ai-monochromatic subgraph
of G, can be partitioned into edge-disjoint paths of the length ki, i = 1, 2, 3
(see [17]). Many interesting properties of (k1A1, k2A2, k3A3)-edge colouring
by monochromatic paths were given in [17]. For example, it was proved that
the number of (kA1, kA2, 2A3)-edge colourings by monochromatic paths is
closely related to (2, k)-distance Pell numbers of the i-th kind, i = 1, 2, defined
recursively as follows

P (i)(k, n) = 2P (i)(k, n− k) + P (i)(k, n− 2) for n ≥ k

with initial conditions P (i)(k, 0) = 0, P (i)(k, 1) = 1 and for 2 ≤ n ≤ k − 1:

P (1)(k, n) =

{
0 if n is even
1 if n is odd

and P (2)(k, n) = 1.

In this section, we give graph interpretations for the (2, k)-distance Ja-
cobsthal numbers J (i)(k, n) in terms of (k1A1, k2A2, k3A3)-edge colouring by
monochromatic paths with k1 = k, k ≥ 1 and k2 = k3 = 2. We will use
standard notation Pn for a path with n vertices.

Theorem 3. Let k ≥ 1, n ≥ 2 be integers. The number of all (kA1, 2A2,
2A3)-edge colourings by monochromatic paths of the graph Pn is equal to
J (1)(k, n).

Proof. Let k ≥ 1, n ≥ 2 be integers and let V (Pn) = {x1, x2, . . . , xn}
with the numbering of vertices in the natural fashion. Then E(Pn) =
{x1x2, x2x3, . . . , xn−1xn}. The number of all (kA1, 2A2, 2A3)-edge colourings
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by monochromatic paths of the graph Pn will be denoted by σ(k, n). One can
easy verify that σ(k, n) = J (1)(k, n) for n = 2, . . . , k + 2.

Assume now that n ≥ k + 3. Denote by σA1(k, n), σA2(k, n), σA3(k, n),
the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of
the graph Pn in which the colour of the last edge is determined respectively
as follows: A1(xn−1xn), A2(xn−1xn), A3(xn−1xn). It is clear that σA1(k, n) is
equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic
paths of the graph Pn−k and σA2

(k, n), σA3
(k, n) are equal to the number

of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph
Pn−2. In other words σA1

(k, n) = σ(k, n − k), σA2
(k, n) = σ(k, n − 2) and

σA3
(k, n) = σ(k, n− 2). From the above we have

σ(k, n) = σA1
(k, n) + σA2

(k, n) + σA3
(k, n) = σ(k, n− k) + 2σ(k, n− 2).

Taking into account the initial conditions we obtain that σ(k, n) = J (1)(k, n)
for all n ≥ 2. The proof of Theorem 3 is completed. □

Hence we obtain the following graph interpretation of Jacobsthal numbers.

Corollary 1. Let n ≥ 2 be an integer. The number of all (A1, 2A2, 2A3)-
edge colourings of the graph Pn is equal to Jn.

Before we give the graph interpretation for the (2, k)-distance Jacobsthal
numbers of the second kind J (2)(k, n) we introduce a quasi (k1A1, k2A2, k3A3)-
edge colouring by monochromatic paths in a graph Pn. Let E(Pn) = {e1, e2,
. . . , en−1} be numbered in the natural fashion. We say that the graph Pn is a
quasi (k1A1, k2A2, k3A3)-edge coloured by monochromatic paths if the last r
edges of Pn are uncoloured where 0 ≤ r ≤ t − 1, t = min{k1, k2, k3} and the
subpath P∗ ⊂ Pn induced by {e1, e2, . . . , en−r−1} is (k1A1, k2A2, k3A3)-edge
coloured by monochromatic paths.

From above immediately follows that (k1A1, k2A2, k3A3)-edge coloured Pn

is also quasi (k1A1, k2A2, k3A3)-edge coloured.
Using the same manner as that in the proof of Theorem 3 we can prove that

the number of all quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic
paths of the graph Pn closely corresponds to the (2, k)-distance Jacobsthal
numbers of the second kind J (2)(k, n). Namely we have

Theorem 4. Let k ≥ 1, n ≥ 2 be integers. The number of all quasi
(kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph Pn is
equal to J (2)(k, n).

These graph interpretations will be used to derive the direct formulas for
the (2, k)-distance Jacobsthal numbers J (i)(k, n), i = 1, 2.

Before that, we need to deduce certain preliminary results. Let k ≥ 1,
n ≥ 2 and 0 ≤ t ≤ ⌊n−1

2 ⌋ be integers. Let pk(n, t) denote the number of
(kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph Pn such



336 Krzysztof Piejko, Lucyna Trojnar-Spelina

that there are exactly t monochromatic paths of the length 2 coloured by A2

or A3. This means that in such edge colouring 2t1 edges have colour A2, 2t2
edges have colour A3 where t1 + t2 = t and other n − 1 − 2t edges have
colour A1.

Theorem 5. Let n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers. Then

p1(n, t) =

(
n− 1− t

t

)
2t.

Proof. Let us consider the graph Pn with the (A1, 2A2, 2A3)-edge colour-
ing by monochromatic paths in which there are exactly t monochromatic paths
of the length 2 coloured by the colour A2 or A3. This edge colouring is related
to a certain partition of the set E(Pn) into t edge-disjoint Ai monochromatic
paths of the length 2 for i = 2, 3 and n− 1− 2t monochromatic paths of the
length 1 for i = 1. We denote a number of all such partitions by δ(n, t). It
is easy to observe that δ(n, t) equals to the number of all permutations with
repetitions of n − 1 − t elements that are equal to 1 or 2 where the number
1 is repeated n − 1 − t times and the number 2 is repeated t times. There-
fore, δ(n, t) = P t,n−1−2t

n−1−t , where the symbol Pn1,n2
n denotes the number of all

permutations with repetitions of the length n of two elements, where first
of these elements is repeated n1 times, the second is repeated n2 times and
n1 + n2 = n. Consequently we have

δ(n, t) =
(n− 1− t)!

t!(n− 1− 2t)!
=

(
n− 1− t

t

)
.

Every of this partitions generates 2t (A1, 2A2, 2A3)-edge colourings by
monochromatic paths. Therefore, the desired result follows. □

Theorem 6. Let k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers and let

n−1−2t
k ∈ N ∪ {0}. Then for s = 0, 1, . . . , n− 1 we have

pk(n, t) = pk−s

(
n− s(n− 1− 2t)

k
, t
)
.

Proof. Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic
paths of the graph Pn in which there are exactly t monochromatic paths of
the length 2 coloured by the colour A2 or A3. Consequently, there are exactly
n−1−2t

k monochromatic paths of the length k coloured by A1 in this edge
colouring. If every of these paths is shorted to the A1-monochromatic paths
of the length k − s, then we obtain a ((k − s)A1, 2A2, 2A3)-edge colouring
by monochromatic paths of the graph Pn−sn−1−2t

k
, in which there are n−1−2t

k

monochromatic paths of the length k − s coloured by A1 and the number of
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monochromatic paths of the length 2 coloured by Ai, i = 2, 3, remains the
same as in the starting edge colouring. Therefore the proof is completed. □

Putting s = k−1 in Theorem 6 we have pk(n, t) = p1
(
n− (k−1)(n−1−2t)

k , t
)

and so using Theorem 5 we obtain the following

Corollary 2. Let k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers and let

n−1−2t
k ∈ N ∪ {0}. Then

pk(n, t) =

( 1
k [n− 1 + t(k − 2)]

t

)
2t.

Let us consider again such (kA1, 2A2, 2A3)-edge colouring by monochro-
matic paths of the graph Pn, that there are exactly t monochromatic paths of
the length 2 coloured by A2 or A3, i.e., in such edge colouring 2t1 edges have
colour A2, 2t2 edges have colour A3 where t1+t2 = t and other n−1−2t edges
have colour A1. We can observe that such (kA1, 2A2, 2A3)-edge colouring by
monochromatic paths of the graph Pn exists if and only if a number n−1−2t

k
is nonnegative integer. For given k ≥ 1 and n ≥ 2 we introduce the following
notation:

Ink =
{
t ∈ N ∪ {0} :

n− 1− 2t

k
∈ N ∪ {0}

}
.

Note that for example: I310 = {0, 3}, I414 = ∅ and In1 = {0, 1, 2, . . . , ⌊n−1
2 ⌋} for

all positive integers n. Moreover, if Ink ̸= ∅ then pk(n, t) ̸= 0 for all t ∈ Ink and
otherwise pk(n, t) = 0 for all t ≥ 0.

Now we are able to present the following direct formula for the numbers
J (1)(k, n).

Theorem 7. Let k ≥ 1, n ≥ 1 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers. Then

J (1)(k, n) =
∑
t∈In

k

( 1
k [n− 1 + t(k − 2)]

t

)
2t if Ink ̸= ∅

and

J (1)(k, n) = 0 if Ink = ∅.

Proof. Using Theorem 3 we have that J (1)(k, n) is equal to the number
of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph
Pn. Therefore for given k ≥ 1, n ≥ 1 it can be expressed as follows

J (1)(k, n) =
∑
t∈In

k

pk(n, t).
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Let us recall that if Ink = ∅ then pk(n, t) = 0 for all t ≥ 0 and therefore in this
case the result follows. Otherwise, we have pk(n, t) ̸= 0 for all t ∈ Ink , so an
application of Corollary 2 enables us to deduce the desired equality. □

Putting k = 1 in Theorem 7, we obtain the following well-known direct
formula for Jacobsthal numbers.

Corollary 3. Let n ≥ 1 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers. Then

Jn =

⌊n−1
2 ⌋∑

t=1

(
n− 1− t

t

)
2t.

To derive the direct formula for J (2)(k, n) we need new notations. Let
k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1

2 ⌋ be integers. By qk(n, t) we denote the number
of quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph
Pn such that exactly t monochromatic paths are coloured by A2 or A3. Let
us note that in this edge colouring the number of A1-monochromatic paths
is equal to ⌊n−1−2t

k ⌋ and consequently q1(n, t) = p1(n, t) so by Theorem 5 we
have

(2) q1(n, t) =

(
n− 1− t

t

)
2t.

Theorem 8. Let k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers and s ∈ N .

Then

qk(n, t) = qs

(
1 + 2t+

⌊n− 1− 2t

k

⌋
s, t

)
.

Proof. Let us consider the quasi (kA1, 2A2, 2A3)-edge colouring by
monochromatic paths of the graph Pn in which exactly t monochromatic
paths of the length 2 have colour A2 or A3. Therefore there are

⌊
n−1−2t

k

⌋
A1-

monochromatic paths of the length k in this edge-colouring. If, for a given
positive integer n, every of these paths is replaced by A1-monochromatic
paths of the length s, then we obtain a quasi (sA1, 2A2, 2A3)-edge colour-
ing by monochromatic paths of the graph P⌊n−1−2t

k ⌋s in which the number
of monochromatic paths of the length 2 coloured by Ai, i = 2, 3 remains the
same as in the starting edge colouring. The proof is completed. □

Putting s = 1 in Theorem 8 and using the relation (2) we obtain the
following result

Corollary 4. Let k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers. Then

qk(n, t) =

(
t+

⌊
n−1−2t

k

⌋
t

)
2t.
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Let us note that quasi (kA1, 2A2, 2A3)-edge colouring by monochromatic
paths of the graph Pn, such that exactly t monochromatic paths are coloured
by A2 or A3, exists if and only if one of the numbers n−1−2t

k or n−2−2t
k

is nonnegative integer. In order to deduce a direct formula for the (2, k)-
distance Jacobsthal numbers of the second kind we introduce the following
new notation:

Tn
k =

{
t ∈ N ∪ {0} :

n− 1− 2t

k
∈ N ∪ {0} or

n− 2− 2t

k
∈ N ∪ {0}

}
.

Observe that for example T 20
7 = {2, 6, 9} and Tn

1 = Tn
2 = {0, 1, 2, . . . , ⌊n−1

2 ⌋}
for all positive integers n. Moreover, Tn

k ̸= ∅ for all positive integers k and
n ≥ 2.

Now we can state the analogue of Theorem 7 for the numbers J (2)(k, n).

Theorem 9. Let k ≥ 1, n ≥ 2 and 0 ≤ t ≤ ⌊n−1
2 ⌋ be integers. Then

J (2)(k, n) =
∑
t∈Tn

k

(
t+

⌊
n−1−2t

k

⌋
t

)
2t.

Proof. As an immediate consequence of the graph interpretation of the
numbers J (2)(k, n), given in Theorem 3, we obtain the following equality for
k ≥ 1 and n ≥ 2:

J (2)(k, n) =
∑
t∈Tn

k

qk(k, n).

Corollary 4 makes it obvious that the desired formula holds. □

3. Identities

In this part we give the identities for the (2, k)-distance Jacobsthal num-
bers. For special values of parameters we can reduce them to the well-known
identities for the classical Jacobsthal numbers.

Theorem 10. Let k ≥ 1, m ≥ 1, n ≥ 0 be integers and let n+ k − 2 ≥ 0.
Then for i = 1, 2 we have

(i) J (i)(k, n) + 2
m∑
i=1

J (i)(k, n− 2 + ik) = J (i)(k, n+mk),

(ii) 2mJ (i)(k, n) +
m∑
i=1

2m−iJ (i)(k, n− k + 2i) = J (i)(k, n+ 2m).

Proof. In the proof of the part (i) we use the induction on m. If m =
1 then the equation is obvious. Assume that formula in (i) is true for an
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arbitrary m ≥ 1. We will prove that

J (i)(k, n) + 2

m+1∑
i=1

J (i)(k, n− 2 + ik) = J (i)(k, n+ (m+ 1)k).

By the induction hypothesis and the definition of J (i)(k, n), we have

J (i)(k, n) + 2
m+1∑
i=1

J (i)(k, n− 2 + ik)

= J (i)(k, n) + 2

m∑
i=1

J (i)(k, n− 2 + ik) + 2J (i)(k, n− 2 + (m+ 1)k)

= J (i)(k, n+mk) + 2J (i)(k, n− 2 + (m+ 1)k) = J (i)(k, n+ (m+ 1)k),

which ends the proof of (i). The identity (ii) can be proved by the same
method. □

Putting n = 1 in identity (i) of Theorem 10 we obtain

Corollary 5. Let k, n be positive integers and let i = 1, 2. Then

1 + 2

m∑
i=1

J (i)(k, ik − 1) = J (i)(k,mk + 1).

For k = 1 we obtain the well-known identity for the classical Jacobsthal
numbers:

1 + 2

m∑
i=1

Ji−1 = Jm+1.

Putting k = 1 and n = 0 or n = 1 respectively in Theorem 10, we obtain
the well-known identities for the classical Jacobsthal numbers

m∑
i=1

2m−iJ2i−1 = J2m, 2m +
m∑
i=1

2m−iJ2i = J2m+1.

We can use the (kA1, 2A2, 2A3)-edge colouring of the path Pn to obtain the
following identity for the (2, k)-distance Jacobsthal numbers of the first kind.

Theorem 11. Let k ≥ 1, m ≥ k and n ≥ k be integers. Then

J (1)(k,m+ n) = 2J (1)(k,m)J (1)(k, n− 1) + 2J (1)(k,m− 1)J (1)(k, n)

+

k∑
i=1

J (1)(k,m+ 1− i)J (1)(k, n− k + i).
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Proof. Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic
paths of the graph Pm+n. Let

V (Pm+n) = {x1, x2, . . . , xm, xm+1, . . . , xm+n}

be the set of vertices of this graph with the numbering in the natural fashion.
Then

E(Pm+n) = {x1x2, x2x3, . . . , xmxm+1, . . . , xm+n−1xm+n}.

By ρ(k,m + n) we denote the number of all (kA1, 2A2, 2A3)-edge colourings
by monochromatic paths of the graph Pm+n. Let ρA1

(k,m+n), ρA2
(k,m+n)

and ρA3
(k,m + n) denote the number of (kA1, 2A2, 2A3)-edge colourings by

monochromatic paths of the graph Pm+n, with A1(xmxm+1), A2(xmxm+1)
and A3(xmxm+1), respectively. In the case A1(xmxm+1) we have k possibilities
of the position in the graph Pm+n of the A1-monochromatic path that includes
an edge xmxm+1. It may be each of the following paths

xm+1−ixm+2−i . . . xm+k+1−i, i = 0, 1, . . . k.

For a fixed i = 0, 1, . . . k, the number of all (kA1, 2A2, 2A3)-edge colour-
ings by monochromatic paths of the graph Pm+n equals to the product of
the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths
of the graph Pm+1−i and the number of all (kA1, 2A2, 2A3)-edge colourings
by monochromatic paths of the graph Pn−k+i. Therefore ρA1(k,m + n) is
equal to the sum of this products. In both cases A2(xmxm+1) or A3(xmxm+1)
there are two possibilities of the position in the graph Pm+n of the Ai-
monochromatic path, i = 1, 2, that includes an edge xmxm+1. It can be any
of the paths: xm−1xmxm+1 or xmxm+1xm+2. Consequently ρA2(k,m+n) and
ρA3(k,m+n) both are equal to the number of all (kA1, 2A2, 2A3)-edge colour-
ings by monochromatic paths of the graph Pm multiplied by the number of all
(kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph Pn−1

plus the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic
paths of the graph Pm−1 multiplied by the number of all (kA1, 2A2, 2A3)-
edge colourings by monochromatic paths of the graph Pn.

Thus from Theorem 3 we have

ρA2(k,m+ n) = ρA3(k,m+ n)

= J (1)(k,m)J (1)(k, n− 1) + J (1)(k,m− 1)J (1)(k, n)

and

ρA1
(k,m+ n) =

k∑
i=1

J (1)(k,m+ 1− i)J (1)(k, n− k + i).
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Since ρ(k,m+ n) = J (1)(k,m+ n) and

ρ(k,m+ n) = ρA1(k,m+ n) + ρA2(k,m+ n) + ρA3(k,m+ n),

then the assertion follows. □

Putting k = 1 in Theorem 11 we obtain the well-known formula for
the classical Jacobsthal numbers Jm+n = 2JmJn−1 + 2Jm−1Jn + JmJn =
JmJn+1 + 2Jm−1Jn.

The following identity for the (2, k)-distance Jacobsthal numbers of the
second kind can be deduced by Theorem 2 and Theorem 11.

Corollary 6. Let k ≥ 1, m ≥ k and n ≥ k be integers. Then

J (2)(k,m+ n) = 2
(m−1∑

j=0

(−1)jJ (2)(k,m− 1− j)
)
J (2)(k, n)

+ 2
( m∑

j=0

(−1)jJ (2)(k,m− j)
)
J (2)(k, n− 1)

+

k∑
i=1

(m+1−i∑
j=0

(−1)jJ (2)(k,m+ 1− i− j)
)
J (2)(k, n− k + i).

4. Matrix representations

Matrix representations of sequences give the possibility of deducing some
properties of the terms of these sequences. For matrix generators of the Fi-
bonacci numbers and the like, see [7] and [11].

In this section, we give matrix representations for the (2, k)-distance Ja-
cobsthal numbers. Using these representations we obtain among other things
Cassini-like formulas and some interesting identities for these numbers.

At the beginning, basing on the method used in [3], we introduce the
matrix generator Mk for the numbers J (i)(k, n), i = 1, 2 where k ≥ 2. Let us
recall the recurrence relation for these numbers:

J (i)(k, n) = J (i)(k, n− k) + 2J (i)(k, n− 2) for n ≥ k + 1.

Let for a positive integer k ≥ 2, Mk be the matrix of the form [mlj ]k×k where
for a fixed 1 ≤ j ≤ k, a number m1j is the coefficient of J (i)(k, n − j) in the
above recurrence formula. Moreover, for 2 ≤ s ≤ k we have

msj =

{
1 if j = l − 1,
0 otherwise.
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According to this definition we obtain the following matrices for k = 2, 3, 4, . . .

M2 =

[
0 3
1 0

]
, M3 =

 0 2 1
1 0 0
0 1 0

 , M4 =

 0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , . . . ,

and in general

Mk =



0 2 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0
0 0 0 . . . 1 0

 .

Now, for a fixed integer k ≥ 2, we introduce the matrix A
(i)
k of initial

conditions. It is the following matrix of order k:

A
(i)
k =


J (i)(k, 2k − 2) J (i)(k, 2k − 3) . . . J (i)(k, k) J (i)(k, k − 1)
J (i)(k, 2k − 3) J (i)(k, 2k − 4) . . . J (i)(k, k − 1) J (i)(k, k − 2)

...
...

...
...

J (i)(k, k) J (i)(k, k − 1) . . . J (i)(k, 2) J (i)(k, 1)
J (i)(k, k − 1) J (i)(k, k − 2) . . . J (i)(k, 1) J (i)(k, 0)

 ,

where i = 1, 2, k ≥ 2.
Using the same method as in [3], we obtain the following result.

Theorem 12. Let k ≥ 2, n ≥ 1 be integers. Then for i = 1, 2 we have

(Mk)
n ·A(i)

k

=


J (i)(k, n+ 2k − 2) J (i)(k, n+ 2k − 3) . . . J (i)(k, n+ k) J (i)(k, n+ k − 1)
J (i)(k, n+ 2k − 3) J (i)(k, n+ 2k − 4) . . . J (i)(k, n+ k − 1) J (i)(k, n+ k − 2)

...
...

...
...

J (i)(k, n+ k) J (i)(k, n+ k − 1) . . . J (i)(k, n+ 2) J (i)(k, n+ 1)
J (i)(k, n+ k − 1) J (i)(k, n+ k − 2) . . . J (i)(k, n+ 1) J (i)(k, n)

 .

Two next theorems will be helpful in formulating Cassini-like formulas for
the (2, k)-distance Jacobsthal numbers J (i)(k, n).

Theorem 13. For all integers k ≥ 2 the following equality holds

detMk =

{ −3 for k = 2,

(−1)k+1 for k ≥ 3.
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Proof. It is easy to see that detM2 =
∣∣∣ 0 3
1 0

∣∣∣ = −3. For k ≥ 3 we

calculate the determinant |Mk| using the Laplace expansion by the last column
of the matrix Mk. This expansion gives

detMk =

∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0
0 0 0 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)k+1 ·

∣∣∣∣∣∣∣∣
1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 0 . . . 1

∣∣∣∣∣∣∣∣ = (−1)k+1.

Thus the theorem is proved. □

Theorem 14. Let k ≥ 2 be an integer. Then

(3) detA
(1)
k = (−1)

k(k−1)
2

and

(4) detA
(2)
k =


−1 for k = 2,
0 for odd k,

2(−1)
1
2k for even k > 2.

Proof. Let k ≥ 2 be an integer. In the proof of equality (3) the auxiliary
sequence J

(1)
B (k, n) will be very helpful. We define it as follows

J
(1)
B (k, 0) = J

(1)
B (k, 1) = · · · = J

(1)
B (k, k − 2) = 0, J

(1)
B (k, k − 1) = 1

and

(5) J
(1)
B (k, n) = J

(1)
B (k, n− 2) + 2J

(1)
B (k, n− k) for n ≥ k.

Now we define a matrix B
(1)
k of order k, k ≥ 2, whose elements are the terms

of the sequence J
(1)
B (k, n):

B
(1)
k =


J
(1)
B (k, 2k − 2) J

(1)
B (k, 2k − 3) . . . J

(1)
B (k, k) J

(1)
B (k, k − 1)

J
(1)
B (k, 2k − 3) J

(1)
B (k, 2k − 4) . . . J

(1)
B (k, k − 1) J

(1)
B (k, k − 2)

...
...

...
...

J
(1)
B (k, k) J

(1)
B (k, k − 1) . . . J

(1)
B (k, 2) J

(1)
B (k, 1)

J
(1)
B (k, k − 1) J

(1)
B (k, k − 2) . . . J

(1)
B (k, 1) J

(1)
B (k, 0)

 .
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From the definition of the sequence J
(1)
B (k, n) it follows that

B
(1)
k =


J
(1)
B (k, 2k − 2) J

(1)
B (k, 2k − 3) . . . J

(1)
B (k, k) 1

J
(1)
B (k, 2k − 3) J

(1)
B (k, 2k − 4) . . . 1 0

...
...

...
...

J
(1)
B (k, k) 1 . . . 0 0

1 0 . . . 0 0

 .

Using k− 1 times the Laplace expansion by the last column we can calculate
the determinant of the matrix B

(1)
k as follows

detB
(1)
k = (−1)k+1 · (−1)k · · · · · (−1)3

= (−1)k−1 · (−1)k−2 · · · · · (−1)

= (−1)1+2+···+(k−1) = (−1)
k(k−1)

2 .

Using the recurrence formula (5) and definitions of matrices A
(1)
k and B

(1)
k

one can prove that for k ≥ 2 the equality A
(1)
k = B

(1)
k

(
MT

k

)k−2 holds where
MT

k denotes the transpose of the matrix Mk. Therefore by properties of de-
terminants we obtain

detA
(1)
k = detB

(1)
k ·

(
det

(
MT

k

))k−2
.

Consequently, for k = 2 we have detA
(1)
k = −1 and for k ≥ 2 by Theorem 13

we get

detA
(1)
k = (−1)

k(k−1)
2 · (−1)(k+1)(k−2).

Note that the expression (k + 1)(k − 2) is even for all integers k ≥ 3, hence

detA
(1)
k = (−1)

k(k−1)
2

which completes the proof of (3). For the proof of the equalities (4) we define
a new sequence J

(2)
B (k, n):

J
(2)
B (k, 0) = J

(2)
B (k, k − 1) = 1,

J
(2)
B (k, 1) = J

(2)
B (k, 2) = · · · = J

(2)
B (k, k − 2) = 0,

J
(2)
B (k, n) = J

(2)
B (k, n− k) + 2J

(2)
B (k, n− 2) for k > 2, n ≥ k,(6)
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and an auxiliary matrix B
(2)
k of order k:

B
(2)
k =


J
(2)
B (k, 2k − 2) J

(2)
B (k, 2k − 3) . . . J

(2)
B (k, k) J

(2)
B (k, k − 1)

J
(2)
B (k, 2k − 3) J

(2)
B (k, 2k − 4) . . . J

(2)
B (k, k − 1) J

(2)
B (k, k − 2)

...
...

...
...

J
(2)
B (k, k) J

(2)
B (k, k − 1) . . . J

(2)
B (k, 2) J

(2)
B (k, 1)

J
(2)
B (k, k − 1) J

(2)
B (k, k − 2) . . . J

(2)
B (k, 1) J

(2)
B (k, 0)



=


J
(2)
B (k, 2k − 2) J

(2)
B (k, 2k − 3) . . . J

(2)
B (k, k) 1

J
(2)
B (k, 2k − 3) J

(2)
B (k, 2k − 4) . . . 1 0

...
...

...
...

J
(2)
B (k, k) 1 . . . 0 0

1 0 . . . 0 1

 .

By definitions of matrices A(2)
k and B

(2)
k and by the recurrence formula (6) we

can deduce the following relationship between A
(2)
k and B

(2)
k

(7) A
(2)
k = B

(2)
k

(
MT

k

)k−2
.

Using basic properties of determinants one can prove that

detB
(2)
k =

{
0 for odd k,

2(−1)
1
2k for even k.

From this and from the formula (7) it follows immediately that detA
(2)
k = 0

for odd k. For even k > 2 by applying Theorem 13 we get

detA
(2)
k = 2(−1)

1
2k(−1)(k+1)(k−2) = 2(−1)

1
2k.

Moreover we can see that for k = 2 we have detA
(2)
k =

[
1 1
1 0

]
= −1, thus

the proof is completed. □

As a consequence of Theorem 13 and Theorem 14 we obtain Cassini-like
formulas for the (2, k)-distance Jacobsthal numbers.

Corollary 7. Let k ≥ 2, n ≥ 2 be integers and let i = 1, 2. Then

(i) det
[
(Mk)

n ·A(1)
k

]
=

{
(−1)n+13n for k = 2,

(−1)n(k+1)+
k(k−1)

2 for k ≥ 3,

(ii) det
[
(Mk)

n ·A(2)
k

]
=


−(−3)n for k = 2,

0 for odd k,

2(−1)
3
2k+1 for even k > 2.
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Theorem 15. Let k ≥ 3 and n ≥ 2k − 4 be integers. Then (Mk)
n is of

the form
J (1)(k, n+ 1) J (1)(k, n+ 2) J (1)(k, n− k + 3) . . . J (1)(k, n)
J (1)(k, n) J (1)(k, n+ 1) J (1)(k, n− k + 2) . . . J (i)(k, n− 1)

...
...

...
...

J (1)(k, n− k + 3) J (1)(k, n− k + 4) J (1)(k, n− 2k + 5) . . . J (i)(k, n− k + 2)
J (1)(k, n− k + 2) J (1)(k, n− k + 3) J (1)(k, n− 2k + 4) . . . J (i)(k, n− k + 1)

.

Proof. (By induction on n.) Let k ≥ 3 be a fixed integer. For n = 2k− 4
we can check the equation by inspection. Assume that the equation is true
for all integers 2k − 3, 2k − 2, . . . , n. To show that it is true also for n + 1
it is enough to use the induction hypothesis, definition of J (1)(k, n) and the
equation (Mk)

n+1 = (Mk)
nMk. □ □

By Theorem 13 and Theorem 15 we obtain new Cassini-like formulas for
the (2, k)-distance Jacobsthal numbers of the first kind J (1)(k, n).

Corollary 8. For all positive integers k, n, we have

det(Mk)
n =

{
(−3)n if k = 2 and n ≥ 1,
(−1)n(k+1) if k ≥ 3 and n ≥ 2k − 4.

Note that from Corollary 8 it follows that for all integers n ≥ 2k − 4 the
determinant of the matrix (Mk)

n can be expressed as follows

(8) det(Mk)
n =

{
(−1)n if k is even,
1 if k is odd.

For example putting k = 3 in (8) we obtain the following identity for the
numbers J (1)(k, n).

Corollary 9. For every integer n ≥ 2 we have(
J (1)(3, n+ 1)

)2
J (1)(3, n− 2) +

(
J (1)(3, n)

)3
+

(
J (1)(3, n− 1)

)2
J (1)(3, n+ 2)− 2J (1)(3, n− 1)J (1)(3, n)J (1)(3, n+ 1)

− J (1)(3, n− 2)J (1)(3, n)J (1)(3, n+ 2) = 1.

5. Concluding remarks

The interpretation of the (2, k)-distance Jacobsthal numbers with respect
to the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of
some graphs gives the motivation for studying different kinds of (a1A1, a2A2,
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a3A3)-edge colourings of special graphs. For an arbitrary positive integer k
some interesting results connected with the number of (A1, A2, kA3)-edge
colourings, ((k − 1)A1, (k − 1)A2, kA3)-edge colourings and (kA1, kA2, 2A3)-
edge colourings of some trees are recently obtained in [12]–[14] and [17].
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