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ON (k1A1,ksAs, k3As3)-EDGE COLOURINGS IN GRAPHS
AND GENERALIZED JACOBSTHAL NUMBERS

KRrzyszTor PIEJKO, LUCYNA TROJNAR-SPELINA

Abstract. In this paper we introduce a new kind of generalized Jacobsthal
numbers in a distance sense. We give the identities and matrix representations
for them and their connections with the Fibonacci and the Pell numbers. We
also describe the interpretations of these numbers in terms of some kind of
(k1A1, ka2Aa, k3 As)-edge colouring and quasi colouring.

1. Introduction and preliminary results

We use the standard definitions and notations of the graph theory, see [4]
and [6]. Let us recall definitions of several very important sequences in the
numbers theory. The Fibonacci sequence (F},) is defined by Fy = 0, F; =1
and F,, = F,,_1 + F,_o, for n > 2. The Pell sequence (P,) is also defined by
recurrence relation P, = 2P, _1 + P,,_s, for n > 2 with the initial conditions
Py =0, P, = 1. The Jacobsthal sequence (J,,) is defined recursively as follows
Jn = Jp_1 + 2J,_9, for n > 2 with the initial conditions Jy = 0, J; = 1.
The first few Fibonacci, Pell and Jacobsthal numbers are 0,1,1,2,3,5,8,...,

0,1,2,5,12,29,70,... and 0,1,1,3,5,11,21, ..., respectively.

In recent years many interesting generalizations of above mentioned clas-
sical sequences appeared in the mathematical literature. For example gener-
alizations of the Pell numbers were introduced and studied in [§]-[10], and
in [I3], [I5]-[18], [20]. Moreover in |I6] generalized Jacobsthal numbers were

considered.

In this paper we study a new kind of generalization of Jacobsthal numbers
in the distance sense, i.e., generalization by the k-th order linear recurrence
relation. This concept of generalization of Jacobsthal numbers is inspired by
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results given in [I]-[3], [5], [15], [I7] and [I9] where generalizations of Fibonacci
numbers, Lucas numbers and Pell numbers were introduced.

For fixed integers k¥ > 1 and n > 0 by J@(k,n) we denote the (2,k)-
distance Jacobsthal numbers of the i-th kind, i = 1,2, i.e., numbers defined as
follows

(1) JO(k,n) =JD(k,n— k) +2JD(k,n—2) for n>k+1

with initial conditions J@ (k,0) = 0, J@(k,1) = 1 and for 2 < n < k:

0 if n is even, no1
J(l)(]g’ n) = { 0™51 it i odd J(2)(k,n) —ol™5 1,

In the following tables, we present several initial terms of the (2, k)-distance
Jacobsthal sequences J @ (k,n), i = 1,2, for special values of k and n.

Table 1. The (2, k)-distance Jacobsthal numbers of the first kind J™ (k, n)

n 0|1 [2[3[4a][5]6] 7] 8] 9 [10] 11 | 12 | 13 | 14 15
JO@my| o1 |1|3|5|11]21|43 |85 |171|341 | 683 | 1365 | 2731 | 5461 | 10923
JW@n)y|o|1|o|3|0o|9|0|27| 0|8 | 0 |243] 0 |729]| 0 | 2187
JM@,n)|lo|1|o|2|1|4a|4|9|12|22|33| 56 | 88 | 145 | 232 | 378
JM@,n)y|lo|1]|o|2lo|5|0|12]0 |20 0 | 70 0 | 169 | 0 408
JMGBe)ylo|1]{o|2|ofl4a| 1|8 ] 4 |16|12| 33| 32| 70 | 80 | 152
JM@6,n)|lo|1]|o|2(0ol4]|0| 9|0 |20]| 01| 44| o0 97 0 214
JO@7ylo|1|o|2|0o|4]|0]| 8|1 |16] 4 | 32| 12 | 64 | 32 | 129
Table 2. The (2, k)-distance Jacobsthal numbers of the second kind J® (k,n)
n 0o[1[2[3[4a][5]6] 7] 8] 9 [10] 11 | 12 | 13 | 14 15
J®,n)|o|1|1|3|5|11]21|43 |85 | 171|341 | 683 | 1365 | 2731 | 5461 | 10923
J®@nylo|1|1(3|3|9]|9|27|27| 8 | 81 |243 | 243 | 729 | 729 | 2187
J®@nylo|1|1|2|3|5|8|13|21| 34 | 55| 8 | 144 | 233 | 377 | 610
JP@ny|lo|1|1]|2|2|5]|5|12|12| 29 | 29| 70 | 70 | 169 | 169 | 408
J®GBmylo|1 1224|5912 20 | 28| 45 | 65 | 102 | 150 | 232
J®@Gmn)|lo|1|1|22|4a|4| 9] 9| 20|20 44 | 44 | 97 | 97 | 214
J®D@n)y|lo|1|1|2|2|a|4| 8| 9|17 |20 36 | 44 | 76 | 96 | 161

From the definition of the (2, k)-distance Jacobsthal numbers it follows
immediately that JM)(1,n) = J®(1,n) = J,. The numbers J@(2,n), i =
1,2, are the elements of geometrical sequence, namely J(l)(2,n) = 3" for
odd n and J®(2,n) = 3"z}, Moreover if k is even and n is odd then
J®(k,n) = JD(k,n+1).

For k = 3 we have the following relationships between JM (k, n), J? (k,n)
and the Fibonacci numbers F,, while for k£ = 4 we have their connections with
the Pell numbers P, .
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THEOREM 1. Let n be an integer. Then
(i) J(l)(g n)=F,_1 —(=1)" forn >1,
(ii) J@(3,n) = F, forn >0,
(iii) J(l)(4 2n—1)=P, forn >1,
(iv) J@(4,2n —1) = J?(4,2n) = P, forn > 1.

PROOF. In the proof of formula (i) we use the induction on n. For n = 1
or n = 2 the result follows immediately by the definitions of JM)(k,n) and
the Fibonacci numbers F,.

Assume now that formula (i) is true for ¢ = 1,2,...,n with arbitrary
n > 2. We will prove that J®(3,n + 1) = F, — (—1)"*!. By the induction
hypothesis and the definitions of J) (k,n) and F,, we have

JBBn+1)=JY3,n-2)+270(3,n—1)
= 4fn-3 7 (_1)7172 + 2(Fn72 - (_1)7171)
= 2Fn72 + Fn73 + (_1)n =I'p-2+ anl + (_1n)
— Fn o (_1)n+1’

which ends the proof of . To prove f we can use the same method. [J

The following theorem shows the relation between numbers J® (k,n) for
i=1,2.

THEOREM 2. Let k> 2, n > 1 be integers. Then
(1) J@(k,n) = JD(k,n) +JD(k,n - 1),
(i) JO (k,n) = 2 (~1)1 T (kyn — i).
i=0

PROOF. In the proof of formula we use the induction on n. Let n =
1,2,...,k — 1. For k = 2 the result is obvious. If £ > 3 then we have (jil) from
initial conditions for J) (k,n) and J®) (k,n). Assume now that n > k—1 and
that the equality holds for all integers k < ¢t < n. We shall prove that it
is true for the integer t = n + 1. Using and the induction hypothesis, we
obtain that

JP(k,n+1)=JPD(kn+1-k) +2JP(k,n—1)
=IO (kn+1—k) +JD(k,n — k) +2 (J(l)(k,n 1)+ TV (kyn — 2))
=JD(Ekn+1 k) +2JD(k,n—1) + JD(k,n — k) + 2T (k,n — 2)
=JDVk,n+1)+ JY(k,n),

which ends the proof of . The equality can be proved in the same
manner. O
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In this paper we give the graph interpretations of considered two types of
the (2, k)-distance Jacobsthal numbers with respect to a special edge colouring
of a graph. Next, using these interpretations, we obtain several identities and
direct formulas for them. We also give matrix representations for J® (k, n),
i=1,2.

2. Graph interpretations

Let us consider an edge coloured graph G where the set of colours is
{A1, Az, As}. For a € {A1, Ay, A3} a subgraph of G will be said a-monochro-
matic if all its edges are coloured by colour a. We will write a(xy) if the edge
xy of the graph has the colour a.

In [I7], Trojnar-Spelina and Wtoch defined so called (k1 A1, koAs, k3As)-
edge colouring by monochromatic paths in a graph G where k; > 1, i = 1,2, 3,
are integers, as a generalization of the edge-colouring introduced and studied
by Piejko and Wtoch in [I5]. Let us recall that the (k1A1,koAsg, k3As)-edge
colouring by monochromatic paths in a graph G is defined in such a way that
every maximal, with respect to the set inclusion, A;-monochromatic subgraph
of G, can be partitioned into edge-disjoint paths of the length k;, i = 1,2,3
(see [I7]). Many interesting properties of (k1 Aj, kaAs, ksAs)-edge colouring
by monochromatic paths were given in [I7]. For example, it was proved that
the number of (kA;,kAs,2A3)-edge colourings by monochromatic paths is
closely related to (2, k)-distance Pell numbers of the i-th kind, ¢ = 1, 2, defined
recursively as follows

P(i)(kan):2P(i)(k’,n—k)+P(i)(k:,n—2) for n>k

with initial conditions P (k,0) =0, P()(k,1) =1 and for 2 <n < k — 1:

PO ={ ] frlod ol PO =1

In this section, we give graph interpretations for the (2, k)-distance Ja-
cobsthal numbers J*) (k,n) in terms of (ky Ay, koA, k3 As)-edge colouring by
monochromatic paths with k&1 = k, £ > 1 and ks = k3 = 2. We will use
standard notation P, for a path with n vertices.

THEOREM 3. Let k > 1, n > 2 be integers. The number of all (kA1,2As,
2A3)-edge colourings by monochromatic paths of the graph P, is equal to
JO(k,n).

PROOF. Let k > 1, n > 2 be integers and let V(P,) = {x1,z2,...,2,}
with the numbering of vertices in the natural fashion. Then E(P,) =
{z129, 2223, ..., Tpn_12,}. The number of all (kA;,245,2A3)-edge colourings
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by monochromatic paths of the graph P,, will be denoted by o(k,n). One can
easy verify that o(k,n) = JV (k,n) forn =2,... k+ 2.

Assume now that n > k + 3. Denote by o4, (k,n), oa,(k,n), oa,(k,n),
the number of (kAj,2As,2A3)-edge colourings by monochromatic paths of
the graph P,, in which the colour of the last edge is determined respectively
as follows: Ay (zp—12y), Ao(xn_12,), As(Tp_12,). It is clear that o, (k,n) is
equal to the number of all (kA;,2A5,2A3)-edge colourings by monochromatic
paths of the graph P, _; and oa,(k,n), 0a,(k,n) are equal to the number
of all (kAy,2A5,2A3)-edge colourings by monochromatic paths of the graph
Pp—2. In other words o4, (k,n) = o(k,n — k), oa,(k,n) = o(k,n — 2) and
oa,(k,n) = o(k,n —2). From the above we have

o(k,n) =0a,(k,n) +0a,(k,n) +0a,(k,n) =0(k,n—k)+20(k,n—2).

Taking into account the initial conditions we obtain that o(k,n) = JM (k,n)
for all n > 2. The proof of Theorem [3|is completed. O

Hence we obtain the following graph interpretation of Jacobsthal numbers.

COROLLARY 1. Letn > 2 be an integer. The number of all (A1,2A5,2A3)-
edge colourings of the graph P, is equal to J,.

Before we give the graph interpretation for the (2, k)-distance Jacobsthal
numbers of the second kind J ) (k, n) we introduce a quasi (k1 A1, ky Ay, k3 As)-
edge colouring by monochromatic paths in a graph P,,. Let E(P,,) = {eq, ea,
...,€en—1} be numbered in the natural fashion. We say that the graph P, is a
quasi (k1 A1, ko As, k3 As)-edge coloured by monochromatic paths if the last r
edges of P,, are uncoloured where 0 < r <t — 1, t = min{ky, ko, k3} and the
subpath P* C P, induced by {e1,e2,...,en_r_1} is (k1 A1, koAs, k3 As)-edge
coloured by monochromatic paths.

From above immediately follows that (k; Aq, ko Az, k3 As)-edge coloured P,
is also quasi (k1 A1, ko As, k3 As)-edge coloured.

Using the same manner as that in the proof of Theorem [3]we can prove that
the number of all quasi (kA;,2A45,2A3)-edge colourings by monochromatic
paths of the graph P,, closely corresponds to the (2, k)-distance Jacobsthal
numbers of the second kind J)(k, n). Namely we have

THEOREM 4. Let k > 1, n > 2 be integers. The number of all quasi
(kA1,2A5,2A3)-edge colourings by monochromatic paths of the graph P, is
equal to JP (k,n).

These graph interpretations will be used to derive the direct formulas for
the (2, k)-distance Jacobsthal numbers J®) (k,n), i = 1, 2.

Before that, we need to deduce certain preliminary results. Let k& > 1,
n>2and 0 <t < L”T_lj be integers. Let pg(n,t) denote the number of
(kA1,2A5,2A3)-edge colourings by monochromatic paths of the graph P, such



336 Krzysztof Piejko, Lucyna Trojnar-Spelina

that there are exactly ¢ monochromatic paths of the length 2 coloured by As
or As. This means that in such edge colouring 2t; edges have colour As, 2t9
edges have colour Az where t; + to = ¢t and other n — 1 — 2¢ edges have
colour A;.

THEOREM 5. Letn >2 and 0 <t < L"T_lj be integers. Then

pr(n,t) = (” ’tl - t>2t.

PROOF. Let us consider the graph P,, with the (A;, 245, 2A3)-edge colour-
ing by monochromatic paths in which there are exactly ¢ monochromatic paths
of the length 2 coloured by the colour Ay or As. This edge colouring is related
to a certain partition of the set E(P,,) into ¢ edge-disjoint A; monochromatic
paths of the length 2 for i = 2,3 and n — 1 — 2¢ monochromatic paths of the
length 1 for @ = 1. We denote a number of all such partitions by d(n,t). It
is easy to observe that d(n,t) equals to the number of all permutations with
repetitions of n — 1 — ¢ elements that are equal to 1 or 2 where the number
1 is repeated n — 1 — ¢t times and the number 2 is repeated ¢ times. There-
fore, d(n,t) = P""7 172 where the symbol P2 denotes the number of all
permutations with repetitions of the length n of two elements, where first
of these elements is repeated n; times, the second is repeated no times and
n1 + ne = n. Consequently we have

o (n—=1-t)!  m—-1-t
5(n’t)_t!(n—1—2t)!_< : >

Every of this partitions generates 2¢ (A;,2As,2A3)-edge colourings by
monochromatic paths. Therefore, the desired result follows. O

THEOREM 6. Letk > 1, n > 2 and 0 <t < L”T_IJ be integers and let

%ENU{O}. Then for s=0,1,...,n — 1 we have

s(n—1—2t)?t).

Pr(n,t) = pr—s (n - A

PRrOOF. Consider the (kA;,2A45,2A3)-edge colouring by monochromatic
paths of the graph P, in which there are exactly ¢ monochromatic paths of
the length 2 coloured by the colour Ay or As. Consequently, there are exactly
% monochromatic paths of the length k£ coloured by A; in this edge
colouring. If every of these paths is shorted to the A;-monochromatic paths
of the length k — s, then we obtain a ((k — s)A1,245,2A3)-edge colouring
by monochromatic paths of the graph Pn_snftfﬂ, in which there are %

monochromatic paths of the length & — s coloured by A; and the number of
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monochromatic paths of the length 2 coloured by A;, i = 2,3, remains the
same as in the starting edge colouring. Therefore the proof is completed. [

Putting s =k—11in Theorem@we have pi(n,t) = p1 (n— (k_l)("%_%), t)
and so using Theorem [5| we obtain the following

COROLLARY 2. Let k> 1, n>2and 0 <t < L%‘lj be integers and let
n=1=2t ¢ NU{0}. Then

Lin—1+t(k—2

pr(n,t) = (’f I t ( )]>2t.

Let us consider again such (kA;,2A4s,2A3)-edge colouring by monochro-
matic paths of the graph P,,, that there are exactly ¢ monochromatic paths of
the length 2 coloured by As or As, i.e., in such edge colouring 2¢; edges have
colour As, 2t, edges have colour Az where t1 +ty = t and other n—1—2¢ edges
have colour A;. We can observe that such (kA;,2A5,2A3)-edge colouring by
monochromatic paths of the graph P, exists if and only if a number 2=1=2¢
is nonnegative integer. For given k > 1 and n > 2 we introduce the following
notation:

1

IQ:{teNU{O}:WT%ENU{O}}.

Note that for example: I3, = {0,3}, I{, =0 and I = {0,1,2,..., | 251 ]} for
all positive integers n. Moreover, if I]' # () then py(n,t) # 0 for all ¢ € I} and
otherwise p(n,t) = 0 for all ¢t > 0.

Now we are able to present the following direct formula for the numbers

JO(k,n).
THEOREM 7. Letk>1,n>1and 0 <t < L%J be integers. Then
Lin—1+tk-2)] P
J(l)(k’n) — Z <k ¢ )Qt Zf Ik‘ #@
telr
and

JD(k,n)=0 if I =0.

PRrOOF. Using Theorem [3| we have that J()(k,n) is equal to the number
of all (kAy,2A45,2A3)-edge colourings by monochromatic paths of the graph
P,.. Therefore for given k£ > 1, n > 1 it can be expressed as follows

TV (k,n) =" pr(n,t).

telp
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Let us recall that if I}> = () then py(n,t) = 0 for all ¢ > 0 and therefore in this
case the result follows. Otherwise, we have pi(n,t) # 0 for all ¢t € I}, so an
application of Corollary [2] enables us to deduce the desired equality. [l

Putting £ = 1 in Theorem [7] we obtain the following well-known direct
formula for Jacobsthal numbers.

COROLLARY 3. Letn>1and 0 <t < L"T_IJ be integers. Then

n—1
25 J<n_1_t>2t'
t=1 ¢

To derive the direct formula for J®)(k,n) we need new notations. Let
k>1, n>2and0 <t < |251] be integers. By gx(n,t) we denote the number
of quasi (kA1,2As,2A3)-edge colourings by monochromatic paths of the graph
P, such that exactly ¢ monochromatic paths are coloured by Ay or As. Let
us note that in this edge colouring the number of A;-monochromatic paths
is equal to [ 2==2t] and consequently g;(n,t) = p1(n,t) so by Theorem [5| we
have

(2) a1 (nt) = <”_1_t>2f.

t

In =

(]

THEOREM 8. Letk>1,n>2 and 0 <t < L%‘lj be integers and s € N.
Then

qr(n,t) = qs (1 + 2t + {%%J s,t).

PROOF. Let us consider the quasi (kA;,2A45,2A43)-edge colouring by
monochromatic paths of the graph P, in which exactly ¢ monochromatic
paths of the length 2 have colour A, or Asz. Therefore there are L%_%J Aq-
monochromatic paths of the length &k in this edge-colouring. If, for a given
positive integer n, every of these paths is replaced by Aj-monochromatic
paths of the length s, then we obtain a quasi (sA;,2A45,2A43)-edge colour-
ing by monochromatic paths of the graph P otz in which the number

of monochromatic paths of the length 2 coloured by A;, i = 2,3 remains the
same as in the starting edge colouring. The proof is completed. ([l

Putting s = 1 in Theorem [§] and using the relation we obtain the
following result

COROLLARY 4. Letk>1,n>2 and 0 <t < L"T_lj be integers. Then

gr(n,t) = (” Ln_}fﬂ)zt.

t
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Let us note that quasi (kA;,2As,2A3)-edge colouring by monochromatic
paths of the graph P,,, such that exactly ¢t monochromatic paths are coloured
by A or Ags, exists if and only if one of the numbers ”_}C_Qt or n=2-2t
is nonnegative integer. In order to deduce a direct formula for the (2,k)-
distance Jacobsthal numbers of the second kind we introduce the following

new notation:

—1-2t —2-2t
T = {te NU{0}: HT e NU{0} or ”T e NU{0}}.
Observe that for example T2° = {2,6,9} and T7" = T3 = {0,1,2,..., [ 251 ]}
for all positive integers n. Moreover, T;* # () for all positive integers k and
n > 2.

Now we can state the analogue of Theorem [7| for the numbers J?) (k, n).

THEOREM 9. Let k>1,n>2 and 0 <t < L"T_lj be integers. Then

IO (k)= Y <f+ L”_}J%J>2t'

t
teTy

PROOF. As an immediate consequence of the graph interpretation of the
numbers J (2)(l€, n), given in Theorem [3| we obtain the following equality for
k>1and n > 2:

TP (k,n) =" qulk,n).

teTy

Corollary 4] makes it obvious that the desired formula holds. 0

3. Identities

In this part we give the identities for the (2, k)-distance Jacobsthal num-
bers. For special values of parameters we can reduce them to the well-known
identities for the classical Jacobsthal numbers.

THEOREM 10. Let k> 1, m > 1, n > 0 be integers and let n+k — 2 > 0.
Then for i = 1,2 we have

(1) JD(kyn) +23 JD(kyn — 2 +ik) = JO(k,n + mk),
1=1

(i) 2m T (k,n) + 32 2™ T (k,n — k + 2i) = JO (k,n 4+ 2m).
=1

PROOF. In the proof of the part we use the induction on m. If m =
1 then the equation is obvious. Assume that formula in is true for an
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arbitrary m > 1. We will prove that

m—+1
T (k,n) +2) T (k,n =2+ ik) = JD(k,n + (m + 1)k).

i=1
By the induction hypothesis and the definition of J*) (k,n), we have

m—+1
T (k,n) +2Y JD(k,n -2+ ik)

i=1

= JD(k,n) +2) TP (k,n -2+ ik) + 279 (k,n — 2+ (m + 1)k)
i=1
= JO(k,n +mk) +2J9(k,n — 2+ (m+ Dk) = JD(k,n+ (m + 1)k),
which ends the proof of . The identity can be proved by the same
method. ([

Putting n = 1 in identity (i) of Theorem |10 we obtain

COROLLARY 5. Let k,n be positive integers and let i = 1,2. Then

142> JO(k, ik — 1) = JO(k,mk + 1).

=1

For k£ = 1 we obtain the well-known identity for the classical Jacobsthal
numbers:

142> Jig = Ty
1=1

Putting K = 1 and n = 0 or n = 1 respectively in Theorem [I0] we obtain
the well-known identities for the classical Jacobsthal numbers

Z 2" Jyi 1 = Jom, 2™+ ZQm*iJ% = Jom+1-
i=1 i=1

We can use the (kA1,2A5,2A3)-edge colouring of the path P, to obtain the
following identity for the (2, k)-distance Jacobsthal numbers of the first kind.

THEOREM 11. Let k> 1, m > k and n > k be integers. Then

JD (k,m+n) = 2T (k,m)JD (k,n — 1) + 2T (k,m — 1)JD (k, n)

k
+ ) T (km+1 =) I (k0 — k +4).

=1
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PRrOOF. Consider the (kA;,2A45,2A3)-edge colouring by monochromatic
paths of the graph P,,4+,. Let

V(Pm+n) - {mlax27 o s Ty Tm41y e - - 7xm+n}

be the set of vertices of this graph with the numbering in the natural fashion.
Then

E(Pmin) = {2122, 2223, .. ., TnTni1, -+ s Tonn—1Tmpn }-

By p(k,m + n) we denote the number of all (kA;,2A,,2A3)-edge colourings
by monochromatic paths of the graph Py, 1. Let pa, (k,m+n), pa,(k,m+n)
and pa,(k,m + n) denote the number of (kA;,2As,2A3)-edge colourings by
monochromatic paths of the graph Py, in, with A1 (zmTmt1), A2(TmTmy1)
and A3 (2, Tm41), respectively. In the case Aq (2, 2m+1) we have k possibilities
of the position in the graph P, of the A;-monochromatic path that includes
an edge T, Tm41. It may be each of the following paths

Tm+1—ilm4+2—i -+ - Tm+k+1—1i; 1= 07 1, .k

For a fixed ¢ = 0,1,...%, the number of all (kA;,2A5,2A3)-edge colour-
ings by monochromatic paths of the graph P,,+, equals to the product of
the number of all (kA;,2As,2A3)-edge colourings by monochromatic paths
of the graph P,,+1—; and the number of all (kA;,2A5,2A3)-edge colourings
by monochromatic paths of the graph P, _ji;. Therefore pa,(k,m + n) is
equal to the sum of this products. In both cases As(ZZm11) or Az(TmTm+1)
there are two possibilities of the position in the graph P,,., of the A;-
monochromatic path, ¢ = 1,2, that includes an edge z,,x,;,+1. It can be any
of the paths: ., 1ZmTm+1 O Ty Tm41Tm+2. Consequently pa,(k,m+n) and
pas(k, m+n) both are equal to the number of all (kA;,2A5,2A3)-edge colour-
ings by monochromatic paths of the graph P,, multiplied by the number of all
(kA1,2A2,2A3)-edge colourings by monochromatic paths of the graph P,
plus the number of all (kA;,2A2,2A35)-edge colourings by monochromatic
paths of the graph P,,_; multiplied by the number of all (kA;,2A5,2A3)-
edge colourings by monochromatic paths of the graph P,.
Thus from Theorem [3] we have

,0A2(k77 m + TZ) = pA3(k7 m + TZ)
= JVk,m) IV (k,n—1) + JD(k,m —1)JD (k,n)

and

k
pay(kym+n) =TV (km+1—i)JD(k,n—k+i).
i=1
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Since p(k,m +n) = JV (k,m 4+ n) and
p(kum+n) = pAl(kvm-}_n) +pA2(k7m+n) +pA3(k:,m+n),

then the assertion follows. O

Putting £ = 1 in Theorem we obtain the well-known formula for
the classical Jacobsthal numbers J,+n = 2Jpdn—1 + 2Jm—1Jn + Indn =
JmJn+1 + 2Jm—1Jn-

The following identity for the (2, k)-distance Jacobsthal numbers of the
second kind can be deduced by Theorem [2] and Theorem [I1]

COROLLARY 6. Let k> 1, m >k and n > k be integers. Then
m—1 '
T (k,m +n) = 2( S (-1 TP (kym — 1 - j))J(2)(k, n)
j=0

+ 2(%(—1)%2)(/@, m — j))J(z)(k, n—1)

§=0
k m—+1—1 ‘
(D IO m =i = )T k0~ k4.
i=1 = j=0

4. Matrix representations

Matrix representations of sequences give the possibility of deducing some
properties of the terms of these sequences. For matrix generators of the Fi-
bonacci numbers and the like, see [7] and [11].

In this section, we give matrix representations for the (2, k)-distance Ja-
cobsthal numbers. Using these representations we obtain among other things
Cassini-like formulas and some interesting identities for these numbers.

At the beginning, basing on the method used in [3], we introduce the
matrix generator M, for the numbers J (k,n), i = 1,2 where k > 2. Let us
recall the recurrence relation for these numbers:

JO(k,n) = JD(kyn — k) +2JD(k,n—2) for n>k+1

Let for a positive integer & > 2, M}, be the matrix of the form [my;]x < where
for a fixed 1 < j < k, a number m;; is the coefficient of J(k,n — j) in the
above recurrence formula. Moreover, for 2 < s < k we have

)1 ifj=1-1,
Msj =3 0 otherwise.
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According to this definition we obtain the following matrices for k = 2, 3,4, ...

0 2 01
0 3 0 21 1 0 00
MZZ ) M3: 100 ) M4: ; )
1 0 01 0 01 00
0 010
and in general
0 2 0 0 17
1 00 0 0
010 00
My, = . .
0 00 0
L0 0 0 1 0 |

Now, for a fixed integer k > 2, we introduce the matrix Ag) of initial
conditions. It is the following matrix of order k:

JO(k,2k —2) JO(k,2k=3) ... JO(kk)  JO(kk—1)
JO(k,2k =3) JO(k,2k—4) ... JO(kEk—=1) JO(kk—2)
47 = ; 5 5 5 |
JO(k k) JO(kk=1) ... JO(k2)  JO(k,1)
JOkk—1) JO(kk-2) ...  JOk1) JO(k,0)

where i = 1,2, k > 2.
Using the same method as in [3], we obtain the following result.

THEOREM 12. Let k > 2, n > 1 be integers. Then for i = 1,2 we have

(My)" - A
JN(kn4+2k—2) JD(k,n+2k—-3) ... JOUkn+k) JO(kn+k-—1)
JD(kyn+2k—3) JD(k,n42k—4) ... JD(k,n4+k—1) JD(k,n + k — 2)

JD(kn+k)  JAEn+k-1) ... JOkn+2)  JO(kn+1)
JNEkn+k-1) JVEn+k—-2) ... JOkmn+1) J®(k,n)

Two next theorems will be helpful in formulating Cassini-like formulas for
the (2, k)-distance Jacobsthal numbers J) (k, n).

THEOREM 13. For all integers k > 2 the following equality holds

-3 for k=2,

det My, =
ok {(_1)k+1 for k> 3.
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PROOF. It is easy to see that det My = ‘ (1) g = —3. For k£ > 3 we

calculate the determinant | M} | using the Laplace expansion by the last column
of the matrix Mj. This expansion gives

020 ... 01
100 ... 00 10 0
010 ... 00 01 ... 0
det My =| . . . =D = (=)
0 0 0 00 0 00 1
0 00 1 0
Thus the theorem is proved. O

THEOREM 14. Let k > 2 be an integer. Then

(3) det AV = (—1)"5
and

-1 for k=2,
(4) det AP ={ 0 for odd k,

2(—1)z%  for even k > 2.

PROOF. Let k > 2 be an integer. In the proof of equality the auxiliary
sequence Jg)(k‘, n) will be very helpful. We define it as follows

Ik 0) = TPk )= =TIV (ke k—2) =0, JP(kk—1)=1
and
(5) JD (k) =TV (kyn —2) + 20D (kyn — k) for n>k.

Now we define a matrix B,(;) of order k, k > 2, whose elements are the terms

of the sequence Jg)(k‘, n):

Pk 2k—2) TPk 2k-3) .. JP k) TP (R E—1) ]
JD (k2 —3) TPk 2k—4) o JP(kk—1) TV (kk—2)
By = z z z z
JPkk) TPk k-1 . TV (k,2) I (k,1)
IV k-1 TPk k-2 .. TPk 1) I (k,0)
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From the definition of the sequence Jg)(k‘, n) it follows that

IO (k2k—2) TS (k2k-3) . TS (koK) 1]
Jg)(k,Qk’—g) Jg)(k,Qk—él) 1 0
B,El) = : : : :
I 1 0 R 0 0 i

Using k£ — 1 times the Laplace expansion by the last column we can calculate
the determinant of the matrix B,(Cl) as follows

det BV = (—1)FH . (—1)F . (1)

L e

k(k—1)
2

= (—1)F2E=D) — ()

Using the recurrence formula and definitions of matrices Ag) and B,(;)

one can prove that for k > 2 the equality A,(gl) = B,(Cl) (M L )k_2 holds where
M denotes the transpose of the matrix Mj,. Therefore by properties of de-
terminants we obtain

det A = det B! - (det (M]))"* .

Consequently, for £ = 2 we have det Ag) = —1 and for k > 2 by Theorem
we get

k(k—1)

det A;ﬁl) =(-1)"=z - (_1)(k+1)(k:—2)'

Note that the expression (k + 1)(k — 2) is even for all integers k > 3, hence

k(k—1)
2

det ALY = (—1)
which completes the proof of . For the proof of the equalities we define
a new sequence J](32)(k, n):
TS (k,0) = I (k k= 1) =1,
JD (1) = TP (k,2) = = TP (k,k—2) =0,
6) JP(kn)=TDUkn—k) +2JP(k,n—2) for k>2 n>k
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and an auxiliary matrix B,(f) of order k:

[ ID (ke 2k—2) JPk2k—-3) ... JDkk) TPk k—1)]
JP 2k —3) TPk 2k—a) .. TP k-1) TP (k k- 2)
B _ : . . :
k . . : :
I k) TP k-1 ... JP(k2) JP (k1)
L IP k-1 JPkk—-2) ... TP (k1) I3 (k,0)
[ Ik 2k—2) TPk 2k-3) ... TPk k) 1]
JP(k, 2k —3) JP(k,2k—4) ... 1 0
I (k, k) 1 0 0
I 1 0 0 1

By definitions of matrices Agf) and B ,(f) and by the recurrence formula @ we
can deduce the following relationship between Agf) and B,(f)

2 2 k—2
(7) AP = BE (M)
Using basic properties of determinants one can prove that
@ [0 for odd k,
det B = { 2(—1)2% for even k.

From this and from the formula it follows immediately that det A,(f) =0
for odd k. For even k > 2 by applying Theorem 13 we get

det Aff) = 2(_1)%k(_1)(k+1)(k—2) _ 2(_1)%;6.

Moreover we can see that for k = 2 we have det AEf) = [ i (1) ] = —1, thus
the proof is completed. ([l

As a consequence of Theorem [I3] and Theorem [I4] we obtain Cassini-like
formulas for the (2, k)-distance Jacobsthal numbers.

COROLLARY 7. Let k> 2, n > 2 be integers and let © = 1,2. Then
(—1)ntign for k=2,
i) det [(Mi)" - AL] = .
(1) € ( k) k (_1)n(k+1)+ k(k2 ) fO?" k > 3’
—(=3)" for k=2,

(ii) det [(Mk)” : A,(f)] ~{0 for odd k,
2(=1)2%*1 for even k > 2.
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THEOREM 15. Let k > 3 and n > 2k — 4 be integers. Then (My)" is of
the form

JDk,n+1)  JVkn+2) JVkn—-k+3)... JD(kn)
JD (k,n) JV(Ekn+1) JD(kn—-k+2)... JD(kn-1)

JVEn—k+3) JD(k,n—k+4) JD(k,n—2k+5)... JD(k,n -k +2)
TV (kon —k+2) JD(kyn—k+3) JD(kyn —2k+4)... JD(k,n—k+1)

PROOF. (By induction on n.) Let k > 3 be a fixed integer. For n = 2k — 4
we can check the equation by inspection. Assume that the equation is true
for all integers 2k — 3,2k — 2,...,n. To show that it is true also for n + 1
it is enough to use the induction hypothesis, definition of JM) (k,n) and the
equation (My)" Tt = (My)" M. O O

By Theorem [13] and Theorem [15] we obtain new Cassini-like formulas for
the (2, k)-distance Jacobsthal numbers of the first kind J™M (k, n).

COROLLARY 8. For all positive integers k,n, we have

w [ (=3)" ifk=2andn>1,
det(Mp)" = { (—1)k+Dif k>3 and n > 2k — 4.

Note that from Corollary [§] it follows that for all integers n > 2k — 4 the
determinant of the matrix (My)™ can be expressed as follows

n —1)™ if k is even,
®) aeany = { 70 R

For example putting £ = 3 in we obtain the following identity for the
numbers J M (k, n).

COROLLARY 9. For every integer n > 2 we have
(JOEB,n+ 1) TV 3,0 —2) + (JD(3,n))°

+ (JVB,n=1)2IDE,n+2) —2JD3,n - 1)JD(3,0)JV(3,n+1)
—JV3,n—2)JD3,n)JV(3,n+2) = 1.

5. Concluding remarks

The interpretation of the (2, k)-distance Jacobsthal numbers with respect
to the number of (kA;,2A5,2A3)-edge colourings by monochromatic paths of
some graphs gives the motivation for studying different kinds of (a1 A1, azAs,
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azAs)-edge colourings of special graphs. For an arbitrary positive integer k
some interesting results connected with the number of (A1, Az, kA3)-edge
colourings, ((k — 1)A1,(k — 1)As, kAs)-edge colourings and (kA;, kAs,2A3)-
edge colourings of some trees are recently obtained in [12]-[14] and [17].
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