
Annales Mathematicae Silesianae 39 (2025), no. 2, 269–280
DOI: 10.2478/amsil-2025-0010

DERIVATION PAIRS ON RINGS AND RNGS

Bruce Ebanks

Abstract. We generalize a classical result about derivation pairs on function
algebras. Specifically, we describe the forms of derivation pairs on rings and
rngs (non-unital rings) which are not assumed to be commutative. The proofs
are based on knowledge of the solutions of the sine addition formula on a
semigroup. Examples are given to illustrate the results.

1. Introduction

Motivation for this article comes from a classical result in the theory of
function algebras. Let A be an associative unital algebra over the field C of
complex numbers. A derivation pair on A is defined to be a pair of linear
functionals f, g : A → C satisfying

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ A.(1.1)

Let Â denote the set of multiplicative linear functionals m : A → C such that
m ̸= 0. If g ∈ Â and (f, g) is a derivation pair, then f is called a point
derivation on A at g. The following result seems to have been found first by
Glaeser [2] for commutative A. It was later rediscovered by Zalcman [4], and
Stetkær [3, Theorem 4.10] noted that the commutativity assumption on A
can be deleted.

Proposition 1.1. Let A be a complex associative unital algebra. Any pair
f, g of linear functionals satisfying (1.2) on A with f ̸= 0 has one of the forms
(a) f = γm and g = m/2,
(b) f = γ(m2 −m1) and g = (m1 +m2)/2, or
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(c) f is a point derivation at m and g = m,
where γ ∈ C \ {0} and m,m1,m2 ∈ Â with m1 ̸= m2.

Our goal is to prove results similar to Proposition 1.1 on more general
algebraic structures which need not possess a vector space structure.

R is rng (or non-unital ring) if (R,+) is an Abelian group, (R, ·) is a semi-
group, and multiplication distributes (on both sides) over addition. If R has a
multiplicative identity element then R is a ring. We denote the multiplicative
identity by 1 (or 1R if there is more than one ring in the picture). We do not
assume that (R, ·) is commutative.

If R and R′ are rngs, we say that a function f : R → R′ is additive if
f(x + y) = f(x) + f(y) for all x, y ∈ R. A function f : R → R′ is multi-
plicative if f(xy) = f(x)f(y) for all x, y ∈ R. If f : R → R′ is both additive
and multiplicative, then f is a rng homomorphism (so we include the trivial
rng homomorphism f = 0). Let Hom(R,R′) denote the set of all rng homo-
morphisms of R into R′, and let Ĥom(R,R′) denote the set of non-trivial
homomorphisms.

If R and R′ are rings, then f : R → R′ is a ring homomorphism provided
f is a rng homomorphism and f(1R) = 1R′ . For consistency of notation we
let Ĥom(R,R′) denote the set of all ring homomorphisms of R into R′, since
the zero mapping is excluded.

Let f, g : R → R′ where R,R′ are rngs. Generalizing the definition used in
the theory of function algebras, we say that (f, g) is a derivation pair (from
R into R′) if f is additive and

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ R.(1.2)

Obviously this equation is identical to (1.1) except for the domain and co-
domain of the functions. If ϕ ∈ Hom(R,R′) and (f, ϕ) is a derivation pair,
then we say that f : R → R′ is a point derivation at ϕ.

We observe that if R′ is a ring, R is a sub-ring of R′, and f is a point deriva-
tion (from R into R′) at the identity function, then f is simply a derivation
from R into R′.

Equation (1.2) is known in the functional equations literature as the sine
addition formula on the semigroup (R, ·). Here we use different terminology
since R also has an additive structure and f is also assumed to be additive.

We do not assume that a rng is equipped with a vector space structure,
nor do we assume anything about the function g other than (1.2) (i.e. we
do not assume that g is additive). Our main results are Theorem 3.2 and
Corollary 3.3, which generalize Proposition 1.1 to the setting of rngs and
rings, respectively. We illustrate the application of these results with some
examples on rngs and rings in the final section of the paper.
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2. Preliminaries

If X is a topological space and R is a topological rng, let C(X,R) denote
the algebra of continuous functions mapping X into R. Let C(X) = C(X,C).

For any rng R let R∗ := R \ {0}.
For any semigroup S define S2 := {xy | x, y ∈ S}.
A domain is a rng in which ab = 0 implies that a = 0 or b = 0.
We use a basic result about the sine addition formula on a semigroup S.

A function m : S → C is multiplicative if m(xy) = m(x)m(y) for all x, y ∈ S.
The following result is a corollary of [3, Theorem 4.1].

Proposition 2.1. Let S be a semigroup, and suppose f, g : S → C satisfy
the sine addition formula

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ S,

with f ̸= 0. Then one of the following three cases holds, where m,m1,m2 : S →
C are multiplicative functions with m1 ̸= m2 and m ̸= 0.
(a) There exists α ∈ C∗ such that f = α(m1 −m2) and g = (m1 +m2)/2.
(b) g = m and f is a (nonzero) solution of f(xy) = f(x)m(y)+m(x)f(y) for

all x, y ∈ S.
(c) S ̸= S2, g = 0, f(xy) = 0 for all x, y ∈ S, and there exists x0 ∈ S \ S2

such that f(x0) ̸= 0.
Cases (a), (b), and (c) are mutually exclusive.
Furthermore, if S is a topological semigroup and f ∈ C(S), then g, m1,

m2, m ∈ C(S).

Note that case (c) cannot occur if S has an identity element, since S2 = S
in that event.

The form of f in case (b) is described in detail in [1, Theorem 3.1], but
the description is rather complicated and Proposition 2.1 is sufficient for the
present needs.

3. Main results

We start with a simple lemma.

Lemma 3.1. Let R,R′ be rngs, and suppose f, g : R → R′ is derivation
pair with f ̸= 0. If R′ is a domain then g is additive.
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Proof. By (1.2), the additivity of f , and the distributive law in R, we
have (

f(x)g(y) + g(x)f(y)
)
+

(
f(x)g(z) + g(x)f(z)

)
= f(xy) + f(xz) = f(xy + xz)

= f(x(y + z))

= f(x)g(y + z) + g(x)f(y + z)

= f(x)g(y + z) + g(x)
(
f(y) + f(z)

)
for all x, y, z ∈ R. Hence

f(x)
(
g(y) + g(z)− g(y + z)

)
= 0, x, y, z ∈ R.

Since f ̸= 0 we see that g is additive. □

Our first main result is the following.

Theorem 3.2. Let R be a rng. Any derivation pair (f, g) on R into C
with f ̸= 0 has one of the forms below, where ϕ ∈ Ĥom(R,C) and ϕ1, ϕ2 ∈
Hom(R,C) with ϕ1 ̸= ϕ2.

(i) There exists γ ∈ C∗ such that f = γ(ϕ1 − ϕ2) and g = (ϕ1 + ϕ2)/2.
(ii) g = ϕ and f is a (nonzero) point derivation at ϕ.
(iii) For R ̸= R2 we have g = 0, f is a point derivation at 0, and there exists

x0 ∈ R \R2 such that f(x0) ̸= 0.
Conversely, in each case (f, g) is a derivation pair with f ̸= 0.
Cases (i), (ii), and (iii) are mutually exclusive.
Furthermore, if R is a topological rng and f ∈ C(R), then g, ϕ1, ϕ2,

ϕ ∈ C(R).

Proof. Suppose f, g : R → C is a derivation pair with f ̸= 0. By
Lemma 3.1 we see that g is additive. Applying Proposition 2.1 on the semi-
group (R, ·), we have three cases to consider.

In case (a) we have f = γ(m1−m2) and g = (m1+m2)/2 for some γ ∈ C∗

and multiplicative functions m1,m2 : R → C with m1 ̸= m2. Since f and g
are both additive we see that m1 = g + f/(2γ) and m2 = g − f/(2γ) are also
additive. Therefore m1,m2 ∈ Hom(R,C). Defining ϕj := mj we have solution
class (i).

In case (b) since g is multiplicative, additive, and nonzero we have g ∈
Ĥom(R,C). Thus we are in solution class (ii).

Case (c) immediately gives solution class (iii).
The converse is easily verified, and the mutual exclusivity and topological

statements follow from Proposition 2.1. □
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For rings we have the following corollary. (Recall that the zero map is not
a ring homomorphism.)

Corollary 3.3. Let R be a ring. Any derivation pair (f, g) on R into
C with f ̸= 0 has one of the forms below, where ϕ, ϕ1, ϕ2 ∈ Ĥom(R,C) with
ϕ1 ̸= ϕ2, and γ ∈ C∗.
(a) f = γ(ϕ1 − ϕ2) and g = (ϕ1 + ϕ2)/2.
(b) f = γϕ and g = ϕ/2.
(c) f is a (nonzero) point derivation at ϕ and g = ϕ.

Conversely, in each case (f, g) is a derivation pair with f ̸= 0.
The cases are mutually exclusive.
Moreover, if R is a topological ring and f ∈ C(R), then g, ϕ1, ϕ2, ϕ ∈ C(R).

Proof. By Theorem 3.2 we have three solution classes to consider.
In class (i), if ϕ1, ϕ2 ∈ Ĥom(R,C) then we are in case (a). If on the other

hand one of ϕ1, ϕ2 is in Ĥom(R,C) while the other one is 0, then we are in
case (b).

Class (ii) carries over as our case (c).
Class (iii) is eliminated since R has a multiplicative identity, thus R = R2.
The rest follows from Theorem 3.2. □

The results above leave open the question of what forms the point deriva-
tions take. The answer to that question depends heavily on the rng or ring.
For that reason we give some examples in the next section.

4. Examples

In this section we illustrate the application of Theorem 3.2 and Corol-
lary 3.3 to some rngs and rings which are not covered by Proposition 1.1 since
they are not algebras over C.

Our first two examples deal with sub-rng U and sub-ring T of M(2,Z),
where

(4.1) U :=

{(
a b
0 0

)
| a, b ∈ Z

}
, T :=

{(
a b
0 c

)
| a, b, c ∈ Z

}
under the usual addition and multiplication. The rng U does not have a two-

sided identity but it has left identity
(
1 0
0 0

)
.

First we identify the homomorphisms and point derivations of U and T
into C. If f : T → C, let f |U denote the restriction of f to U .



274 Bruce Ebanks

Lemma 4.1. Define h1, h2 : T → C by

h1

(
a b
0 c

)
:= a, h2

(
a b
0 c

)
:= c

for all a, b, c ∈ Z. We have the following.
(a) Ĥom(U,C) = {h1|U}.
(b) Ĥom(T,C) = {h1, h2}.
(c) If f : U → C is a point derivation at h1|U , then f = 0.
(d) If f : T → C is a point derivation at h1 or h2, then f = 0.
(e) If f : U → C is a point derivation at 0, then f = 0.

Proof. We combine the proofs of (a) and (b). First suppose that
ϕ ∈ Ĥom(T,C). Since ϕ is additive we have

ϕ

(
a b
0 c

)
= ϕ

[(
a 0
0 0

)
+

(
0 b
0 0

)
+

(
0 0
0 c

)]
= aϕ

(
1 0
0 0

)
+ bϕ

(
0 1
0 0

)
+ cϕ

(
0 0
0 1

)
= aα+ bβ + cγ

for all a, b, c ∈ Z, where α, β, γ ∈ C. Then by multiplicativity we get for all
a, b, c, a′, b′, c′ ∈ Z that

aa′α+ (ab′ + bc′)β + cc′γ = ϕ

(
aa′ ab′ + bc′

0 cc′

)
= ϕ

(
a b
0 c

)
ϕ

(
a′ b′

0 c′

)
= (aα+ bβ + cγ)(a′α+ b′β + c′γ).

It follows that α = α2, αγ = 0, β = 0, and γ = γ2. Since ϕ ̸= 0 we have
(α, γ) ∈ {(1, 0), (0, 1)}, thus ϕ ∈ {h1, h2} and we have part (b). By restriction
to U , the same calculations (with c = c′ = 0 and γ non-existent) prove
part (a).

We also combine the proofs of (c) and (d). Let f : T → C be a point
derivation at h1. Since f is additive, we find as above that

f

(
a b
0 c

)
= aδ1 + bδ2 + cδ3
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for all a, b, c ∈ Z, where δ1, δ2, δ3 ∈ C. Using this form in (1.2) with g = h1 we
have

aa′δ1 + (ab′ + bc′)δ2 + cc′δ3 = f

[(
a b
0 c

)(
a′ b′

0 c′

)]
= f

(
a b
0 c

)
a′ + af

(
a′ b′

0 c′

)
= (aδ1 + bδ2 + cδ3)a

′ + a(a′δ1 + b′δ2 + c′δ3)

for all a, b, c, a′, b′, c′ ∈ Z. It follows that δ1 = δ2 = δ3 = 0, so f = 0. By
restriction to U , the appropriately modified calculations prove part (c).

Similar calculations show that the point derivation f : T → C at h2 is
f = 0, thus we have part (d).

To prove (e) suppose f : U → C is a point derivation at 0. By (1.2) with

g = 0 and x =

(
1 0
0 0

)
we get

0 = f

(
1 0
0 0

)
· 0 + 0 · f(y) = f

[(
1 0
0 0

)
y

]
= f(y)

for all y ∈ U . □

With those preliminaries we now have the following.

Example 4.2. With U as defined in (4.1) we get the forms of non-
trivial (i.e. f ̸= 0) derivation pairs on U into C by using the results of
Lemma 4.1(a),(c),(e) in Theorem 3.2. Classes (ii) and (iii) are eliminated since
f = 0 there. Thus we are left with only class (i), which yields the solutions

f

(
a b
0 0

)
= γa, g

(
a b
0 0

)
=

a

2

for all a, b ∈ Z, where γ ∈ C∗.

Example 4.3. With T as defined in (4.1) we get the forms of non-trivial
derivation pairs on T into C by using the results of Lemma 4.1(b),(d) in
Corollary 3.3. Class (c) is eliminated since f = 0 there. In class (a) we have
the solutions

f

(
a b
0 c

)
= γ(a− c), g

(
a b
0 c

)
=

1

2
(a+ c), for all a, b, c ∈ Z.

In class (b) the solutions have the form

f

(
a b
0 c

)
= γa, g

(
a b
0 c

)
=

1

2
a, for all a, b, c ∈ Z,
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or

f

(
a b
0 c

)
= γc, g

(
a b
0 c

)
=

1

2
c, for all a, b, c ∈ Z.

In each case γ ∈ C∗.

Another rng example is the following. (It is not a ring since we exclude the
empty word.) Consider the free Z-module with basis B consisting of all non-
empty words over the alphabet L = {ℓ1, . . . , ℓn} for some positive integer n.
This Z-module becomes a Z-algebra by defining the multiplication as follows.
The product of two basis elements is defined by concatenation, for example
(ℓ21ℓ2) ·(ℓ22ℓ3ℓ1) = ℓ21ℓ

3
2ℓ3ℓ1. The product of two arbitrary Z-module elements is

then uniquely determined by the bilinearity of multiplication. Let Z⟨ℓ1, . . . , ℓn⟩
denote the Z-algebra (which is a rng) so defined. For any word w ∈ B and
letter ℓ ∈ L, let Nℓ(w) denote the number of times ℓ appears in w counting
multiplicity (so for w = ℓ21ℓ

3
2ℓ3ℓ1 we have Nℓ1(w) = 3).

In the example we choose n = 2 for simplicity, but it extends to a general
positive integer n in the obvious way.

Example 4.4. Let L = {p, q} and let Z⟨p, q⟩ be the Z-algebra defined
as above. First we calculate the forms of rng homomorphisms from Z⟨p, q⟩
into C. Each ϕ ∈ Hom(Z⟨p, q⟩,C) is uniquely determined by the values of
ϕ(p) and ϕ(q), which can be chosen to be arbitrary complex numbers. Let
α := ϕ(p) ∈ C and β := ϕ(q) ∈ C. Each element x ∈ Z⟨p, q⟩ has the form
x =

∑n
j=1 ajwj for some n, a1, . . . , an ∈ N and basis elements w1, . . . , wn ∈ B.

Then we have

ϕ(x) =

n∑
j=1

ajϕ(wj) =

n∑
j=1

ajα
Np(wj)βNq(wj).

If f is a point derivation at ϕ ∈ Hom(Z⟨p, q⟩,C), then f is uniquely
determined by the values of f(p) and f(q) (which are again arbitrary complex
numbers), together with ϕ(p) and ϕ(q). This statement follows from (1.2) and
the additivity of f . Let γ := f(p), δ := f(q) ∈ C. Then for any basis element
w = p1 · · · pn (with pj ∈ {p, q} for each j) we get from (1.2) that

f(w) = f(p1 · · · pn)
= f(p1)ϕ(p2 · · · pn) + ϕ(p1)f(p2 · · · pn)

= f(p1)ϕ(p2) · · ·ϕ(pn) + ϕ(p1)[f(p2)ϕ(p3 · · · pn) + ϕ(p2)f(p3 · · · pn)]
= · · ·

=

n∑
j=1

f(pj)
∏

i∈{1,...,n}\{j}

ϕ(pi)

= Np(w)γα
Np(w)−1βNq(w) +Nq(w)δα

Np(w)βNq(w)−1.
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Then for x =
∑k

j=1 ajwj ∈ Z⟨p, q⟩ we get by additivity that

f(x) =

k∑
j=1

ajf(wj),

where each f(wj) is computed as above.
For ϕ ̸= 0 these formulas for f and ϕ yield the forms of derivation pairs

from Z⟨p, q⟩ into C in classes (i) and (ii) of Theorem 3.2.
For ϕ = 0 the formulas above yield f(w) = 0 for any basis element w of

length at least 2. So for a point derivation f at 0 satisfying f ̸= 0 we have

f(w) =


γ if w = p

δ if w = q

0 otherwise

with (γ, δ) ̸= (0, 0). This is the form of point derivations at 0 in class (iii) of
Theorem 3.2.

For the next example we start with another lemma.

Lemma 4.5. Consider the ring Z[
√
2] = {a + b

√
2 | a, b ∈ Z}, and let

R′ be a ring containing Z[
√
2]. Then there are exactly two elements h1, h2 ∈

Hom(Z[
√
2], R′), namely

h1(a+ b
√
2) := a+ b

√
2, and h2(a+ b

√
2) := a− b

√
2, a, b ∈ Z.

Furthermore, if f : Z[
√
2] → R′ is a point derivation at either h1 or h2, then

f = 0.

Proof. Suppose ϕ ∈ Ĥom(Z[
√
2], R′). Defining γ := ϕ(

√
2), we get by

additivity that ϕ(a + b
√
2) = aϕ(1) + bϕ(

√
2) = a + bγ for all a, b ∈ Z, since

ϕ(1) = 1. Since ϕ is multiplicative we have for all a, b, c, d ∈ Z that

ac+ 2bd+ (bc+ ad)γ =ϕ((a+ b
√
2)(c+ d

√
2))

=ϕ(a+ b
√
2)ϕ(c+ d

√
2)

=(a+ bγ)(c+ dγ)

=ac+ (bc+ ad)γ + bdγ2.

Thus γ2 = 2, so we have ϕ ∈ {h1, h2}.
Now suppose f : Z[

√
2] → R′ is a point derivation at h1. By additivity

we see that f(a + b
√
2) = af(1) + bf(

√
2) = aα + bβ for all a, b ∈ Z, where
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α := f(1) and β := f(
√
2). Thus by (1.2) we have

(ac+ 2bd)α+ (bc+ ad)β =f((a+ b
√
2)(c+ d

√
2))

=f(a+ b
√
2)(c+ d

√
2) + (a+ b

√
2)f(c+ d

√
2)

=(aα+ bβ)(c+ d
√
2) + (a+ b

√
2)(cα+ dβ)

=2acα+ (bc+ ad)(β + α
√
2) + 2bdβ

√
2,

for all a, b, c, d ∈ Z. Therefore α = β = 0, so f = 0. A similar calculation
shows that 0 is the only point derivation at h2. □

Example 4.6. Let R = Z[
√
2]. By Corollary 3.3 and Lemma 4.5 we find

that the derivation pairs (f, g) on R into C with f ̸= 0 have one of the following
forms for all a, b ∈ Z, where γ ∈ C∗.
(a) f(a+ b

√
2) = γb and g(a+ b

√
2) = a.

(b) f(a+ b
√
2) = γ(a+ b

√
2) and g(a+ b

√
2) = 1

2(a+ b
√
2).

(c) f(a+ b
√
2) = γ(a− b

√
2) and g(a+ b

√
2) = 1

2(a− b
√
2).

Finally, let Z[X1, . . . , Xn] denote the polynomial ring in indeterminates
X1, . . . , Xn over Z. A product of the form Xp1

1 · · ·Xpn
n with p1, . . . , pn ∈ N ∪

{0} is called a monomial. Here we refer to the n-tuple (p1, . . . , pn) as the
exponent vector. A polynomial is a finite linear combination of monomials
with coefficients in Z.

As was the case with Example 4.4 the next result is stated for the case
n = 2, but it is easily extended to any positive integer n. (Here 00 := 1 by
convention.)

Lemma 4.7. Let R = Z[X1, X2].

(i) ϕ ∈ Ĥom(R,C) if and only if there exist α, β ∈ C with (α, β) ̸= (0, 0)
such that

ϕ
(∑
p∈I

cpX
p1

1 Xp2

2

)
=

∑
p∈I

cpα
p1βp2

for each nonempty finite set I of exponent vectors p = (p1, p2) and cp ∈
Z. Let hα,β denote the homomorphism so defined.

(ii) If f : R → C is a point derivation at hα,β, then there exist γ, δ ∈ C such
that

f
(∑
p∈I

cpX
p1

1 Xp2

2

)
=

∑
p∈I

cp
(
p1γα

p1−1βp2 + p2δα
p1βp2−1

)
(4.2)

for each nonempty finite set I of exponent vectors p = (p1, p2) and cp ∈
Z. Conversely, the function fγ,δ,α,β defined by (4.2) is a point derivation
at hα,β.
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Proof. Part (i) is straightforward, so we omit the proof.
To prove (ii) suppose f is a point derivation at g = hα,β. We begin by

finding the forms of f(Xj
1) and f(Xk

2 ). By (1.2) we have

f(Xj
1) = f(Xj−1

1 )hα,β(X1) + hα,β(X
j−1
1 )f(X1)

= f(Xj−1
1 )α+ αj−1f(X1)

=
(
f(Xj−2

1 )hα,β(X1) + hα,β(X
j−2
1 )f(X1)

)
α+ αj−1f(X1)

= f(Xj−2
1 )α2 + 2αj−1f(X1)

= · · ·
= f(X1)α

j−1 + (j − 1)αj−1f(X1)

= γjαj−1,

where we have defined γ := f(X1) ∈ C. By a similar calculation we get
f(Xk

2 ) = δkβk−1, where δ := f(X2) ∈ C.
Now by (1.2) we have

f(Xj
1X

k
2 ) = f(Xj

1)hα,β(X
k
2 ) + hα,β(X

j
1)f(X

k
2 )

= jγαj−1βk + kδαjβk−1

for all j, k ∈ N ∪ {0}. By the additivity of f we arrive at (4.2). □

Thus we have the following.

Example 4.8. We get the forms of derivation pairs (f, g) on the ring
Z[X1, X2] into C by substituting the forms of homomorphisms and point
derivations given in Lemma 4.7 into the formulas of Corollary 3.3.

It is interesting to note the strong similarity between the results in Ex-
amples 4.4 and 4.7, even though the former is a non-commutative rng (and
not a ring) while the latter is a commutative ring. (In fact the results become
isomorphic if we add the empty word to Z⟨p, q⟩ so that it becomes a ring.) The
reason for this is that if either f ∈ Ĥom(R,C) or f is a point derivation at
ϕ ∈ Ĥom(R,C), then f is what is termed an Abelian function, meaning that
f(x1 · · ·xn) = f(xπ(1) · · ·xπ(n)) for all n ∈ N, x1, . . . , xn ∈ R, and permuta-
tions π on {1, . . . , n}. This follows from (1.2), the definition of multiplicative
function, and the commutativity of multiplication in the co-domain.
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