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ALMOST EVERYWHERE CONVERGENCE OF VARYING
PARAMETER SETTING CESARO MEANS OF FOURIER
SERIES WITH RESPECT TO WALSH-KACZMARZ SYSTEM

ANTENEH TILAHUN ADIMASU

Abstract. In this paper, the almost everywhere convergence of Cesaro means
of Walsh-Kaczmarz—Fourier series in a varying parameter setting is investi-
gated. In particular, we define subsequence N, 4 of natural numbers and
prove that the maximal operator

sup  |op," f]
n ENan,q

is of strong type (H!, L), where H! is a Hardy space.

1. Introduction

Let N denote the set of the positive integers, N := N, U{0} and R denote
the set of real numbers. In this paper, C denote absolute positive constants
and C, denote positive constants depending at most on ¢ although not always
the same in different occurrences.
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The Walsh—Paley system (the detail briefs can be obtained in the books
of [17] and [19]) is a special product generated by the so-called Rademacher
functions r,, (n € N). For the definition let r be the function given on the

interval [0, 1) by
1, f0<z<i,
r(z) = e 1 ;
1, if 5 <w <1,

and extended to the whole real line R periodically by 1.
Now, define r,(z) := r(2"z) (z € [0,1),n € N). Then the usual product
system (wy,,n € N) of 7, s is obtained in the following way:

oo
wp () = H ref, neN,
k=0

where n = Y72 ni2¥ is the binary decomposition of n, i.e. nj € {0,1} (k €

N). It is well-known (for details see the book [19]) that (w,, n € N) is a

complete orthonormal system with respect to the Lebesgue measure of [0, 1).
Then a basic property of the Walsh—Dirichlet Kernel is

W Do (o) o if0<x <2
. n|\T) =
2 0, if2"<z<l

This interval [0,1) can be treated as the so called dyadic group, i.e. the
set of all sequences (x, k € N) where z; = 0V 1. The group operation + is
the coordinate-wise addition modulo 2, i.e. if z = (2, k € N), y = (yx, k € N)
then = + y := zx ® yx, k € N, where a & b denotes the addition modulo 2
of a, b € N. For example the Rademacher functions can be computed in this
sense 7, (z) = (—=1)* (x € [0,1),n € N). Furthermore, Don = 2"xI,, (n € N)
where I, is the set of all (zx, k € N) such that xg =2, =--- =x,_1 =0 and
x I, is its characteristic function.

In this work, we focus on summability methods of Walsh—-Kaczmarz—
Fourier series. For any n = 2% + Zz;é np2F, where 0 < n € N, s € N,
the so-called Kaczmarz rearrangement (¢,,,n € N) (called Walsh-Kaczmarz
system) of Walsh—Paley system is defined in the following way

s—1

Py— n Pp—
Py =T H re¥e_q and Py = wo,
k=0

and is called Walsh—-Kaczmarz system. We commonly use the following no-
tations. Let |n| := max{k € N:ny # 0} (that is, 2"l < n < 2"*1) and
n() = S50 g2k
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If f € L0, 1), then we can define the Fourier coefficients, the partial sums
of the Fourier series, the Dirichlet kernels with respect to the Walsh—Kaczmarz
system in the usual manner:

f (k) = f¢kdﬂa ke N7
[0,1)

n—1 .

Snf - f(k)qu}kv n€N+> SOf _07
k=0
n—1

Dp:=> ¢, neN,.

k=0

It is known that (for details see [21]) v is a complete orthonormal system,
thom = wam =Ty,

and

{p k=27 2" 1} ={wy: k=2",..,2"" -1}, meN.
Moreover, if we define

Ts(T) = (Ts—1,Ts—2, o0y T1, X0, Ts, Tst1,---), X € [0,1),
then
(1.2) Un(x) = wn(75(2)) = rs(z)wn—20(7s(x))
and
Dy (1j(2)) = Das(x),  j €N,z e[0,1).

The Fejér means and kernels with respect to the Walsh-Kaczmarz system
are defined in the usual manner:

1 n
onf =~ ;Skf, n €N,

n—1

K, ::i;Dk:ZO—i)wk, n € Ny.

k=0
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Let K, := 0. The next estimation with respect to K, (see [2I]) will be
used often in this work: if x € [0,1), 0 < n € N then

S

(1.3) |Kn(2)] <Y 277571 (Doi() + Dy (z +27771),  2° <m < 2°H,
Jj=0 j

i=j
From this it follows by (1.1 the uniform L;— boundedness of K, in which

(14) sup | K |, < oe.
n

Let 0 < a < 1,k € N, and f € L'[0,1). Then, the n'* (C,a) Walsh—
Kaczmarz Kernels and (C, o) Walsh-Kaczmarz means with respect to 1 will
be defined respectively as follows

n—1
1
@Z‘ = Ve ZAg_k_ﬁﬁka
n—1 =0

1
% (z) ::/O FOOX (@ +t)dt, z€[0,1),m €N,

where

k .
a':HOé—FZ
k i

i=1

It is well-known that (see [24])

and
Ay — A | = Ag_l and Ay ~n®.

a may also be a sequence o = (v,). In this case we have sequence of (C, a,).
The maximal operator of (C, a,) means is defined as

o . f =suplo;fl.
n
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Here, we give also the most important concepts with respect to the dyadic
Hardy spaces. Let the maximal function of f € L[0,1) be given by

f*(@) = sup2” L ze).

/ @)

+1n

Then, Hardy space on [0, 1) is defined as

H'0,1) = {f : | fll g, = lf*l, < o0}

A function a € L*°[0,1) is called a 1-atom if either a is identically equal to
1 or there exists a dyadic interval I = z 4 I for some N € N, z € [0,1)
such that

suppa C I, |al| <2V
and fol a = 0. We shall say that a is supported on I.
DEFINITION 1.1 ([I9]). A sublinear operator T' which maps H'[0, 1) into

the collection of measurable functions defined on [0, 1) is called 1-quasi-local
if there exists a constant C' such that

/ |Ta| <C
[0, 1)\

for every p-atom a supported on I.

LEMMA 1.2. Let 1-quasi-local operator T is L°°-bounded, i.e.,

ITflloe < Cllflloo -

Then T is bounded from H'[0,1) to L'[0,1).

DEFINITION 1.3. It is already defined in [2] that

P(n,a) := Znﬂm forn e Nya e R.
i=0

For example P(n,1) = n.

Moreover, for the set of sequences o = (a,) and positive real number ¢,
we consider the following subset of natural numbers:

(1.5) Ng, ¢ = {n eN: P(Lfén) < q}.

nOé



Almost everywhere convergence... 195

The first result on the a.e. convergence of the (C,1) means of Walsh—
Fourier series is due to Fine [8] and Schipp [I8], if the Walsh functions are
considered by Paley’s ordering. The analogical result in the case of Walsh—
Kaczmarz system was also investigated by many authors. One of the Kaczmarz
analogue of Schipp’s [18] results was given by Gat [10]. Besides, he proved
also an (H', L')-like inequality for the maximal operator of Fejér means with
respect to Walsh-Kaczmarz system

|suploirl| < el ren
keN 1

Convergence and summability of Cesadro means of the one and two dimen-
sional cases in Lebesgue and martingale Hardy spaces were studied by a lot of
authors. We mention Akhobadze [3], Blahota, Persson and Tephnadze [5], Bla-
hota, Tephnadze and Toledo [7], Blahota, Tephnadze [6], Fridli [9], Gat [12],
Nagy [15} [16], Simon [20], Weisz [23].

In 2007, Akhobadze [4] introduced the notion of Cesaro means of trigono-
metric Fourier series with variable parameter setting. The varying parameter
settings of the (C, ) means of the Walsh-Paley—Fourier series for different
situation were investigated in [I], [2], [13] and with respect to the character
systems of the group of 2-adic integers in [22] (for the more general orthonor-
mal system, i.e., with respect to Vilenkin system, in [14]). However, these
problems with respect to Walsh—Kaczmarz orthonormal system have not been
investigated yet.

Thus, in this paper, it is going to be proved that the maximal operator
of Cesaro means of Walsh-Kaczmarz-Fourier series is of weak type (L', L').
Moreover, the almost everywhere convergence of Cesaro means with varying
parameter setting of integrable functions (i.e. o0 f — f, as n — o0) is proved,
for f € L', for every sequence a = (a,,n € N) where 0 < o, < 1.

2. Main results

LEMMA 2.1. Let 0 < ap, < 1, n € N. Then,

6
o =" B,
t=1

where

1 77,171

Bri= 1+ —a— D AT, (Do (@) = Dus()),

n—1 j:0
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1 ny— 1
Bz = Z warer_y (15(2)) (20— AT, Koo (5(2)),
1 ni—1 272
63 = Aan Z Woji+1_1 7_] Z kAan]2+1+k+1 (Tj(x)),
n—1 j_g

64: Aan an n(k) —1 Tn1(x)) (k 1) _ 1D2"’< (Tnl(x)>

Bs = — Aan an 6 —1(Tny (T ))Aa&_{) (2™ = 1) Komi 1 (70, (%)),

n—1p_o
1 q 2™k —2
-2
e e Do ) 3 A K
n—Li g=2

PRrOOF. Consider the binary expansion of 0 < n € N, where np € N, k =
1,...,qand ng > ngy1, k=1,...,q — 1. Then,

1 n—1 1 2™1 1
Of = o Y AN, k= o Z A Wk + o Z ACm
An—l k=0 An An 1 p_9onq

. Qp, «
=0, + O,

Let x € [0,1), thus by applying (1.2)) we get

ni—127-1

Ac Z Z A2717(2J+1717k)¢2j+1717k(m)

n=l j=0 k=0

o0 () =1+

n1—129-1

N A w1 (7 (@)

”_jOk:O

ny— 12 71
noi1 Wt —1 (75 (2))wi (7(2))
—+ j=0 k=0
ny— 1

z Woj+1_1 T] ))

291

( Z An 2J+1+k(Dk+1(Tj($)) - Dk(Tj((L‘))>.
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Applying Abel’s transformation, we get the following
ny— 1

On =1+ @ Z Wai+1_1(7;(x))

291

(ZAn piti 1 Dr(75(2 ZA?' 2541 4k (j(@))

7’1,11

- ; EzwwlﬂﬂﬂmnleMU@»

n11 271

Aan ZwW“ 1(75( )(ZAn 2514 k—1 Az"2J+1+k)Dk(Tj($))

n11

Z Waj+1_1 TJ ))An 2i 1D2j(7_j(x))

ni—1 271

Z w2]+1 1 7—] ) Z Azn 23+1+ka(Tj(x))

=0, + 5.
By considering

Dk:k‘Kk*(kifl)kal, 0<keN,

o
we can transform ©,? as follows:
ni—1 27 1
QAn,2 __ an—1
oOpm? = E waj+1_1(7j(x)) E Anr i,

x(MQ@ﬂ@%%k—UKmdw@D)

ny1—1 291

Z Woi+1_1 T] (CC)) Z Azngjl+1+kkKk(Tj(x))
n k=1

ni—1 271

Aa” Z Woji+1_1 T](ZB ) Z Az"gﬁ_urk ].)kal(Tj(l'))
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ni—1 291

1 o
=g, > wyrn (1 Z AL K (Ti()
7=0

ni—1 292
ocn Z Waoji+1_1 TJ )) Z Azngj2+1+kkKk(Tj(l‘))
At §=0 k=0

ny— 1

Z w11 (75(2))(2 = DA Kai o (75(x))

n1—1 292
Z Wai+1_1 (7(x Z KA 2 K((2)
=: B2 + fs.
If 1o = ... = ;1 = 0, note that wyj+1_1(7;(x)) = r;(x), then by
we get
Wi+t _1(7;()) Das () = 7j(x) Dai () = Dajtr(x) — Daj ().
Thus,
1 ny— 1
et =1+ T“”l Z Antoi 4 <D2J‘+1($) — Dy ($)> =: f1.
n— jZO

For x € [0, 1), the situation for ©57 (x) becomes

g—12m14. 42"k+171

@g;? = Z An k— 177016 Aan Z Z Aan] 1¢J(x)

n 1 k=271 n—1 k=1 ] =2"1 4 42"k
1 q— 12nk+1 1
(629

Aan § E A 11— (2n1+ 42" k41 1 — J)anlJ,» 42T R+ ] — ](x)
n—1lg=1 j=0

1 q—1 2"k+1 1

= Aan U)2n1+ 42Mk+1_1 Tnl ) E An (2m1 +.. +2n,€+1)+]w](Tnl (.CE))
n—1 1
2"k—1
Aa" E War1 ... 42"k —1 Tm E An (271 +.. +2”k)+jw](7—n1(‘r))
n—1 k=2
2"k —1

Aan an n(k) — 1(7_711(x) Z An(k)Jrij Tnl( ))

n1k2
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Using Abel’s transformation, where n*) := ZZ pe1 2" k=1,...,q, we get

2"k —1
@g;( ) Aan an nk) —1 Tnl ZAn(k)+J (DJ-‘rl(Tnl( ))_DJ(Tnl(‘r)))
n—lp—o 7=0
Aan an n(k) — l(Tnl( ))
n=l =2
2™k 2"k —1

{ZAWHJ 1D (7, (7)) = Z Ao 4D (T (2 ))]

= Ao an n(k)—1 Tn1( ))(Az(nk)+2nk 1D2"k(7—n1('r))

nlkz

2"k —1

- X AP ))

Aa" an n(k) — l(Tnl( ))Az(nk 1) 1D2"k’ (Tnl(m))

1 q—1 2"k —1
Aa” an nk) —1 Tnl ZAQ&TL ]K Tn1(x)) (j_l)Kj—l(Tnl(x)))
n—1p_o

= an an n(k)—1 Tnl( ))Aa(nk 1) _ 1D2"k(7—n1(x))

n1k2

Aan an n(k) — 1(7—711( ))AZEZ 1) 1(2nk 71)K2nk*1(7_711(x>)

n— lk 2
2™k —2
ap—2
Aa" an n(k) — 1(7_711 (l‘)) Z An(k)+]+1.7Kj(Tn1 (33))
n—1 =9 j=1
=: B4 + B5 + Be-
Hence, the theorem follows. (Il

Define the maximal operator

isi= s fopsi= s | [ S A ]
»q

neNanvq neNan n—1 k=0
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LEMMA 2.2. Let o = (e, n € N) where 0 < oy, < 1. Then, the mazimal
operator o'y, f is quasi-local.

PROOF. By the definition of quasi-locality, let f € L[0,1) be such that
supp f C In(u), / fdu=0
IN(H)

for some dyadic interval Iy (u). Then,

/0 sup‘/N(u) o ZAn”k Ui (x +y)f($)dﬂ(y)‘dﬂ(l‘)

D\ I (u) nEN n=1 o

<c sup / 109 (2 4 )| 1 (@)] du(y)du(x)
[0,1)\In(u) n€EN J In(u)

e sup / (02 (2 + )| | ()] dpu(y)da(z)
In(u)

[0,1)\ I v () neN

= a1 + as.
Since for n € N, n < 2V and = € Iy (u) we have o2 f = 0, thus

odn f = sup loom fl.

o n>2N neNy, 4
From the proof of Lemma 2.1} we have the decomposition
oprf =+ oS,
where
1
5 1) = [ O+ o) f(e)duta),
0
1
5 f) = [ €5 (a ) (@)du(a),
0

Again, from the proof of Lemma we have

- / Bl + 9) (@) d(z)

/ﬂzx+y /ﬁ3x+y 2)du(x)

=IT+II+1I1.
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If z €]0,1)\ In then by (1.1)), we get

/0 (@) Duly + 2)dp(z) = 0

for all ¢t = 0,...,2™. From the proof of Lemma we have I = 0. By
Lemma 2.1 in [II], IT = 0. The situation for III: with respect to x and for
any 0 < j < 2V, we have that the Fejér kernel K;(y + z) depends only on the
coordinates xg, x1, ..., £ny_1. This implies that,

/ f(@) |K;(y + )| du(z) = |Kj(y)|/ f(@)dp(z) =
In In

Thus, we can re-write

[ swl [ syt ) @) duty
0,)\In(u) keN ' JIn(u)

-/ sw | [ gty o) f@)duo)|duty).
(0, D\In () In(w)

u) k>2N  keN

So, using Lemma 3 in [I1], we get

/ sw | [ gl o) @du(o)]duty
[0, D)\ In () k>2N, keN | J Iy (u)

ni 29-2

§C/ |f(x)] sup k‘|KkT y+x) |d,u
In(u) [0, 1)\ I (u) JZO kz;N k>2N !
<C |f(@)|dp(z) < CIfll; -
IN(’U.)

Hence,

[ sl [ (e B+ ) @) duly) < C 11

(0,D\In (u) kEN T J Iy (u)
Note that
/ sw | [ s+ o) f@du(o)]duty) =0
[0,)\ I (u) k>2N, keN ' J Iy (u)

since f * Dan, = 0 for n; < ng < nj because of the A,, measurablity of Dan;
and [ f = 0. Moreover, Doni (y +2) =0 for ng > ny, y +x ¢ In.



202 Anteneh Tilahun Adimasu

From Lemma 1.1 of [I4] (see also [4]), we have

an—1 -\ v
Avto i (n™ + j) -1 Mk 1, k=2 g—1
ALty T (m)an ; SRR

Thus, by the fact that n € N, 4, we have (see(1.5)))

q—12"k — Aa 2 q—1ng,— 12t 1 (k:)_|_
2, 2 LIS y I,
=2 k=2 t=0 j=2! n) "
qg—1ng—1 (k) + 2[ 2H’ -1 2]604”
< CZ Z (n )an Z ] < CZ o = Cq.
k=2 t=0 j=21 k=2

Consequently, using ([1.4]), we can estimate

/ sup
[0,D)\In(u) 7

Hence, the lemma is proved. [l

[ [+ Aty ) @l duts) < 171

LEMMA 2.3. Let o = (ap, n € N), where 0 < a,, < 1 satisfy condi-

tion (1.5)). Then:

D O3, < Cy,

(IT) there exists an absolute constant Cy such that ||o8 fl; < Cqllfll1,
(III) the mazimal operator og'y, is of type (L>°, L>°).

PRrOOF. To prove (I) we use Lemma and estimation ((1.3). That is,

ny j—1 25-1

Bl < O e SN 3 |Angh

]1511251

s—1 3
XY > 2™ (Dayi(r51)(@) + Dai(rj-1)(x + em))
=0 m=0
ny j—2 j—1 25-1

scn—anAan 12 z; > (n -2 41y

j=13i=01 1]=2s—-1

X 2™ (Dai (Tj—1)(x) + Dai (1j—1)(x + €m))

m=0
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’I’Llj %

2
=Cn % —— Aan — Vij 22 (D2’L Tj— 1)($)+D2z‘(7'j_1)($+6m))
j=11i=0 m=0

ny j—2 i

<Cn™“¢ AO‘” — Z (7112 Dyi(1j—1)(z) + Z 2™ Dai(1j-1)(z + em)),
j=11i=0 m=0

where e, :==2"""1 = (0,...,0,1,0,...) and

j—1 2°-1

. i1 ‘ ‘
= Z Z (n—27 412 < C’/ (n—27 +2)* 2dpu(z) < €211,
2i

1=1+1]=2s-1

With a similar computation we show that the same estimation can be obtained
for By. Thus, ©,7*(x) can be estimated as

Onr2(x) = B2+ B3

Zzzwan )(2'Das (771 (x) + S 2" Dy, D@+ em))-
j=1i=0 m=0

Applying (1.1)), the previous estimation implies for ||32 + B3| that

ny Jj—2 ny j—2
182 + Bsll, < Cnmon Yy "2fenmlal < Opmon Y N "2t <
j=11i=0 7j=11=0

Analogically, it can also be obtained for the L!'-norm estimation of 3;. Con-

sider that wyj+1_1(7j(z)) = r;j(z) when xo = ... = z;_1 = 0. Then by (L.1)
we get

wai+1 _1(75()) Das () = 7j(2) Das (x) = Dajr(w) — Das (),

that is
1 ni—1
Br=14 o D AT (Do (0) = D)
n=1 =g
1 ny—1
1t (A D)~ X A%, Do)
n=l "= §=0
4 A% Do (@) — A
Agzl n—2"1—1 Azil n—2
1 ni—1
+Azn1 Z (Aznzafl L~ AR 1)D2J(I)
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From this and (1.1)) we get

||ﬁ1|| < Cq + fp}nnlz_:l (Aznw 1-1 Af{"za 1)
S Nt
<C,+ Ao‘ (Aa"QJ 11 AZT_LQJ'_J < (.

Let us deal now with the situation ||34||; , ||85]|; and ||Bs]|; as follows:

q q

1Bally < Coqn™n ZAQ& H_g S Cgn= Z(n(k_l))a"
k=2 k=2
q
S an_an Z anan S Cq-
k=2

Similarly,

q
185] < Cqn=o Y 2™ (D)2 [ Kgm |y
k=2

q
< Cgnon Y 2 (2lenmm) <

k=2

From (1.4)), ||Bs||; can be estimated as follows:

ro 20k —2
IBsll, < Cn™ Z Z An(k)+]+1j 1551,
k=2 j=1
r np— 12ttt 1
< Cn~"n n() 4 j)an=2j
L g=2 1=0 j=2
r nep—1 2’+1—1
<Cn~ O‘"ZZ (ntk) 4 2tyon= Z]
k=2 1=0 j=2l
r np—1
< COn~%n Z Z (n(k) + 2[)(1”7222[
k=2 1=0
r np—1
<Cn~en )y oy 2l < opmen 22‘1’“ < C,.
k=2 1=0 k=2

Thus, (I) follows. The results in (II) and (III) are a direct consequence of (I).
Hence, the theorem follows. ([
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THEOREM 2.4. Let a = (a, n € N), where 0 < a, < 1 and f € L'[0,1).
Then:

(I) the maximal operator sup,cy,  |og™ f| is of weak type (L', LY),
(IT) p{lesmf — f| >0} =0 as n — oo where n € Ny, 4,
where constant C, depends on q indicated in equation (1.5) above.

PROOF. To prove (I) of this theorem, we apply the Calderon-Zygmund
decomposition Lemma [I1]. That is, let f € L'[0,1) and ||f]l1 < &. Then
there is a decomposition:

F=fo+> f
=1
such that

[follee <C6, [lfoll < C[f[lx

and [0,1)7 = Iy, (u?) are disjoint intervals for which
supp f; C ij(uj), / fidu=0, w €0,1),k; €N, jeN,,

and

C > ‘
|F| < ”f”l, where F' = U I, (u?).
i=1

By the o-sublinearity of the maximal operator with an appropriate con-
stant C; we have

p( sup fop f| >2C46) < p( sup  |opm fol > Cyd)
n€Ny 4 n€Nq,, ¢

+pu( sup |opnfi| > Cyd) =1 A+ B.

TlGNan,q

Since sup,en,  o5"] is of type (L, L*), we have

| supJonfol ||, < Callfolloo < Coo.

n€Nay, ,q

Then we have A = 0. The case for B becomes,

B=u( sup |oi"fj| > Cyd) < |F|+u(F N[ sup

n€Nq, , q n€Nq, , ¢

a"Zf]‘>05



206 Anteneh Tilahun Adimasu

CHf||1 / Cllfl | Co
—|—— sup oo fildp =: + —= N,
g [0,)\ I, (ud 7"l J ;2

ud) N€Nq,, ¢ i—1

where

N; = sup |on" fil dp.
[0\ i, (u?) n€Na,, g

From Lemma [2.2] we get

N; < / sup ’ / )05 (y + x)dp(x) |du(y)
[0, )\, (u?) n€Na,, o | /I, (uf)
< Cyllfill-

Finally, we have

p( sup oo f] > 2C,0) < C'qu:SHl.

n€Na,, q

This shows that the maximal operator sup,,cy, , lon"|is of weak type (L', LY.

Now, we prove (II). Let t > 2*. Then we have S;p = p, where p is a
Walsh—Kaczmarz polynomial which can be given by

2k_1

=) Ciilx)
=0

This implies the statement o;,»p — p holds everywhere not only for n € Ny, 4.
Now, fix n,e > 0, f € L'[0,1). Let p be a one dimensional Walsh—
Kaczmarz polynomial such that

If = »ll, <n.

| Qn

Since from (I) the maximal operator sup,,cy,, |0
we get

is of weak type (L', L1),

T T €
p(ime,, , |05 f = 11> ) < p(fmnen,,, oo (f = p)| > 5)

T € T
,u(hmneNan)q ]az‘"p —p[ > 5) + u(hmneNa,q |p - f\ >

Cy
.

€
)

« € 3
<u(_swp lor(f =Pl > 5) 0+ 2lp— £l < Callp— £l 2 <

neNO‘nA,q

This is true for all n > 0.
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Thus, we get

N(mneNan,q |Ug"f - f| > 6) = Oa

for an arbitrary € > 0. As a result, we have

p(limpen, , loon f— f| > 0) =0.

Finally, for all n € Ny, 4,

pilogmf — fI>0}=0.
Hence, the theorem follows. ([l

THEOREM 2.5. The maximal operator sup,, €N, 4 lo&n f| is of strong type
(H', LY) and (L, LP), for all 1 < p < co.

PROOF. By combining Lemma [2:4] and Marcinkiewicz interpolation the-
orem of [I3], it is possible to get that operator sup,, ¢ \ lo&n f| is of type

(LP,LP)forall1 < p < co. Moreover, by the o-sublinearity of sup,, ¢y, oo |

and since o is Aj, measurable for n < 2% we prove that it is of type

(H',LY). 0
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