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GLOBAL CENTRAL LIMIT THEOREMS
FOR STATIONARY MARKOV CHAINS

Michael Lin

The XVIII Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. Let P be a Markov operator on a general state space (S,Σ) with an
invariant probability measure m, assumed to be ergodic. We study conditions
which yield that for every centered non-zero f ∈ L2(m) a non-degenerate
annealed CLT and an L2-normalized CLT hold.

1. Introduction

Let P = P (x,A) be a Markov transition probability function on a gen-
eral state space (S,Σ), with invariant probability measure m (i.e. m(·) =∫
S
P (x, ·)dm(x)). Let Ω := SN be the space of trajectories with σ-algebra

A := Σ⊗N, and let Px be the probability measure on A governing the chain
with transition probability function P and initial distribution δx. The prob-
ability of the chain with initial distribution m is then Pm =

∫
S
Pxdm(x). By

invariance of m, Pm is shift invariant on (Ω,A). Let Xn be the projection of Ω
on the nth coordinate. Then (Xn) on (Ω,A,Pm) is a stationary Markov chain
with state space S.

For 1 ≤ p < ∞ we denote by Lp(m) the Banach space {f : S → R :∫
S
|f |pdm < ∞}, and put Lp

0(m) = {f ∈ Lp(m) :
∫
S
f dm = 0}.
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We assume m ergodic for P , which means (by one of the equivalent def-
initions) that if f ∈ L2(m) satisfies f(x) =

∫
S
f(y)P (x, dy) m-a.e., then f

is constant a.e. Then the chain is ergodic too, i.e. the shift θ on (Ω,A,Pm),
defined by θ(Xn)n∈N = (Xn+1)n∈N, is ergodic.

We say that a real centered f ∈ L2
0(m) satisfies the annealed CLT if in

(Ω,Pm) we have

1√
n

n∑
k=1

f(Xk)
D→ N (0, σ2), where N (0, 0) := δ0.

We say that a real centered f ∈ L2
0(m) satisfies the L2-normalized CLT if

1

σn(f)

n∑
k=1

f(Xk)
D→ N (0, 1),

provided σn(f) := ∥
∑n

k=1 f(Xk)∥L2(Pm) > 0 for sufficiently large n ∈ N.
We denote by P also the Markov operator defined as

Pf(x) :=

∫
S

f(y)P (x, dy)

for every bounded measurable f and every x ∈ S. By invariance of m, P
extends to all L1(m) functions, and is a contraction of all Lp(m) spaces,
1 ≤ p ≤ ∞, meaning that it does not increase the norm of functions in these
spaces. As previously mentioned, ergodicity implies that Pf = f ∈ Lp holds
only for f constant. We denote by Pn the n-fold composition of the operator
P , and by Ef :=

∫
S
f dm the expectation (with respect to the probability

measure m) of f ∈ Lp(m), p ≥ 1.
Following the early work of Doeblin, many efforts were made to identify

conditions on an ergodic Markov operator P with invariant measure m which
would ensure that every centered f ∈ L2(m) satisfies the annealed CLT – an
L2-global annealed CLT for the chain.

2. History

Nagaev ([21]) used the following condition of Dobrushin: there exist k ∈ N
and δ < 1 such that

sup
x,y∈S

|P k(x,A)− P k(y,A)| < δ, ∀A ∈ Σ.

This condition implies uniform geometric ergodicity: supx ∥Pn(x, ·)−m∥TV ≤
Mρn for some M > 0 and 0 < ρ < 1. But the latter condition implies
∥Pn − E∥∞ → 0, which turns out to be equivalent to Doeblin’s condition;
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see [24, p. 213]. Ibragimov ([18]) used a strong mixing condition (φ-mixing),
which also turns out to imply Doeblin’s condition. Davydov ([9], [10]) con-
structed a positive recurrent aperiodic chain with countable state space such
that the CLT fails for some centered f ∈ L2(m).

Theorem 1 (M. Rosenblatt, [24]). If ∥Pn−E∥2 → 0, then every centered
f ∈ L2(m) satisfies the annealed CLT.

Rosenblatt proved that his condition is equivalent to ρ-mixing of the chain,
and gave examples that it yields neither ∥Pn−E∥∞ → 0 nor ∥Pn−E∥1 → 0,
although each of these conditions implies it; but ∥Pn − E∥2 → 0 if and only
if ∥Pn − E∥p → 0 for some (every) 1 < p < ∞. Importantly, Rosenblatt’s
condition does not necessarily imply Harris recurrence, see an example below.

Example (Random walks on the unit circle T). Let µ be a probabil-
ity measure on T, and define the convolution operator Pf = µ ∗ f , f ∈
L1(T,m), m the normalized Haar (Lebesgue) measure. It is shown in [11]
that if lim|k|→∞ µ̂(k) = 0, that is, the Fourier transform of µ vanishes at
infinity (i.e. µ is Rajchman), then ∥Pn − E∥2 → 0. When µ is Rajchman
with all its powers singular with respect to Lebesgue measure, P is not Harris
recurrent.

A contraction T on a Banach space X is called uniformly ergodic if
1
n

∑n
k=1 T

k converges in the operator norm. The limit is a projection onto
Fix(T ) := {f ∈ X : Tf = f} corresponding to the decomposition X =

Fix(T )⊕(I − T )X . A contraction T is uniformly ergodic if and only if (I−T )X
is closed in X ([20]).

When P is uniformly ergodic in L2(m), we have L2
0(m) = (I−P )L2(m) =

(I − P )L2
0(m). (Recall that L2

0(m) := {f ∈ L2 : Ef = 0}). If ∥Pn −
E∥2 → 0, then P is uniformly ergodic on L2(m); moreover, the spectral radius
r(P|L2

0(m)) < 1, meaning P has a spectral gap in the complex L2
0(m).

Theorem 2 (Gordin-Lifshits, [15]). Let P be a Markov operator with in-
variant probability measure m, and assume that P is ergodic.

If f ∈ (I − P )L2(m), then f satisfies the annealed CLT, with

σ2 = σ2
f := lim

n→∞

1

n
∥

n∑
k=1

f(Xk)∥22 = ∥g∥2 − ∥Pg∥2,

where f = (I − P )g with g ∈ L2
0(m).

When σ2
f > 0 (which is the case when P ∗P is ergodic), f satisfies also the

L2-normalized CLT, which follows from a theorem of Slutsky ([25]) (see [8,
p. 254]).

By [7], f ∈ (I − P )L2(m) if and only if supn ∥
∑n

k=1 P
kf∥2 < ∞.

Theorem 1 now follows from Corollary 3 below.
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Corollary 3. Let P be a Markov operator with invariant probability mea-
sure m, and assume that P is uniformly ergodic in L2(m) with limit equal to E.
Then every f ∈ L2

0(m) satisfies the annealed CLT.

Note that uniform ergodicity does not necessarily imply Harris recurrence.

Problem 1. Let P be a Markov operator with invariant probability mea-
sure m, and assume that P is ergodic. If every f ∈ L2

0(m) satisfies the annealed
CLT, does it follow that P is uniformly ergodic in L2(m)?

3. Some ergodic properties

Theorem 4 (Derriennic-Lin, [11]). Let P be a Markov operator with in-
variant probability measure m, and assume P is ergodic. Then the following
conditions are equivalent:

(i) P is uniformly ergodic in L2(m).
(ii) For every f ∈ L2

0(m) we have supn≥1 ∥ 1
n

∑n
k=1 f(Xk)∥2L2(Pm) < ∞.

(iii) For every f ∈ L2
0(m) we have supn≥1 ∥ 1√

n

∑n
k=1 P

kf∥2 < ∞.
(iv) For every f ∈ L2

0(m) we have supn≥1 |
∑n

k=1⟨P kf, f⟩| < ∞.

Note that P is a contraction also of each complex Lp(m) space, 1 ≤ p ≤ ∞,
and it is uniformly ergodic in the complex Lp(m) iff it is uniformly ergodic in
the real Lp(m). A similar statement holds also for norm convergence of Pn.

Theorem 5. Let P be a Markov operator with invariant probability mea-
sure m. If P is uniformly ergodic on Lp(m), 1 ≤ p < ∞, and is weakly
mixing on the complex Lp(m) (the only unimodular eigenvalue of P is 1),
then ∥Pn − E∥p → 0.

The proof primarily relies on positivity and ergodicity.

Lemma 6. If P ∗P is ergodic, then for every f ∈ L2
0(m) we have Pnf → 0

weakly in L2(m); thus the shift θ on (Ω,A,Pm) is weakly mixing, hence totally
ergodic (all powers θk are ergodic). Moreover, ∥(P ∗P )nf∥2 → 0 for every
f ∈ L2

0(m) if and only if P ∗P is ergodic.

Proof. We assume that P ∗P is ergodic. Let K be the unitary space of P :

K := {g ∈ L2(m) : ∥Png∥2 = ∥P ∗ng∥2 = ∥g∥2 for every n ≥ 1}.

Clearly ∥Pg∥22 = ∥g∥22 if and only if ⟨P ∗Pg, g⟩ = ∥g∥22. Hence, by the Cauchy-
Schwarz inequality, g ∈ K implies P ∗Pg = g, and the ergodicity of P ∗P
implies that K contains only the constant functions. Any f centered is there-
fore orthogonal to K, and by [13] both Pnf → 0 and P ∗nf → 0 weakly in
L2(m). Thus P is weakly mixing.
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The weak mixing of P implies that the shift θ is weakly mixing; see [1,
Section 2].

The operator P ∗P is symmetric positive semi-definite in the complex
L2(m), so its spectrum is a subset of [0, 1]. If P ∗P is ergodic, then for centered
f ∈ L2(m) we have ∥(P ∗P )nf∥2 → 0 by the spectral theorem.

Conversely, if ∥(P ∗P )nf∥2 → 0 for every centered f ∈ L2(m), then obvi-
ously P ∗P is ergodic. □

Lemma 7. Let the shift θ be totally ergodic on (Ω,A,Pm), which is the
case when P ∗P is ergodic. If f ̸= 0 belongs to L2

0(m), then σn(f) > 0 for
every n ≥ 1.

Proof. By stationarity of the chain (Xn), σn(f) = 0 implies

∥
n−1∑
k=0

f(Xk)∥L2(Pm) = 0,

so

f(X0) ◦ θn − f(X0) = f(Xn) +
[ n−1∑
k=0

f(Xk)
]
− f(X0)

=

n∑
k=1

f(Xk) =
[ n−1∑
k=0

f(Xk)
]
◦ θ = 0.

By ergodicity of θn, f(X0) is a constant, which is zero since f is centered. □

4. Global central limit theorems

Theorem 8. Let P be a Markov operator with invariant probability mea-
sure m. If P ∗P is ergodic and P is uniformly ergodic, then ∥Pn − E∥2 → 0,
and every centered 0 ̸= f ∈ L2(m) satisfies a non-degenerate annealed CLT
and the L2-normalized CLT.

Moreover, if 0 ̸= f ∈ L3(m) is centered, then

(1) sup
t∈R

∣∣∣Pm

{∑n
k=1 f(Xk)

σf
√
n

≤ t
}
− 1√

2π

∫ t

−∞
e−x2/2dx

∣∣∣ = O
( 1√

n

)
.

Proof. Ergodicity of P ∗P implies ergodicity of P , by Lemma 6. The
assumption of uniform ergodicity implies that every f ∈ L2

0(m) is of the form
f = (I − P )g with g ∈ L2(m) centered.
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Fix 0 ̸= f = (I − P )g with g ∈ L2(m) centered. By the Gordin-Lifshits
CLT, the annealed CLT holds for f , with variance of the limit expressed as

σ2 = σ2
f = lim

n→∞

∥∥∥ 1√
n

n∑
k=1

f(Xk)
∥∥∥2
L2(Pm)

= ∥g∥22 − ∥Pg∥22, g ∈ L2
0(m).

Hence σf = 0 if and only if P ∗Pg = g. If σf = 0, then g is constant by the
ergodicity of P ∗P . Since g is centered, σf = 0 implies g = 0, so f = 0.

By Lemma 6 the shift is totally ergodic, so Lemma 7 yields σn(f) > 0
for n ≥ 1. Thus, for centered f ̸= 0 we have n−1/2σn(f) → σf > 0, so the
annealed CLT implies the L2-normalized CLT, by Slutsky’s theorem [25].

Ergodicity of P ∗P implies weak mixing of P (Lemma 6), so uniform er-
godicity yields ∥Pn − E∥2 → 0 (by Theorem 5). For 0 ̸= f ∈ L3(m) centered
σf > 0 as shown above, and (1) holds by [17]. □

Corollary 9. Let P be a Markov operator with invariant probability mea-
sure m, and assume that P is ergodic and uniformly ergodic. Every centered
0 ̸= f ∈ L2(m) satisfies a non-degenerate annealed CLT if and only if P ∗P is
ergodic.

Proof. When P ∗P is ergodic Theorem 8 applies. For the converse, if
P ∗Pg = g for non-constant g ∈ L2(m), then P ∗P (g − Eg) = g − Eg, and
f = (I − P )(g − Eg) ̸= 0 satisfies the CLT with σf = 0. □

Proposition 10. Let P be a Markov operator with invariant probability
measure m, and assume that P is normal in L2(m), i.e. P ∗P = PP ∗. If
∥Pn − E∥2 → 0, then P ∗P is ergodic, and Theorem 8 applies.

Proof. Let P ∗Pg = g ∈ L2(m). Since P ∗E = E, normality yields ∥g −
Eg∥2 = ∥(P ∗P )ng − Eg∥2 = ∥P ∗nPng − P ∗nEg∥2 ≤ ∥Png − Eg∥2 → 0. □

Example. In general, ∥Pn−E∥2 → 0 does not imply that P ∗P is ergodic.
Let us define P on S := {1, 2, 3} by the matrix

[
1
2

1
2 0 ∥ 0 0 1 ∥ 1

2
1
2 0

]
.

The invariant probability vector is (13 ,
1
3 ,

1
3), and P ∗ is given by the adjoint

matrix. P has no non-trivial invariant sets, its only unimodular eigenvalue is
1, but P ∗P is not ergodic.

Problem 2. If a Markov operator P is ergodic, and every centered non-
zero f ∈ L2(m) satisfies a non-degenerate annealed CLT, does ∥Pn−E∥2 → 0?

Note that P ∗P is ergodic (proof of Corollary 9), so P is weakly mixing.
Below we present a sufficient “moment improving” condition for uniform er-

godicity (called hyperboundedness); this condition is sometimes easy to check.
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Theorem 11 (Glück, [14]). Let P be a Markov operator with invariant
probability measure m, assumed to be ergodic. Assume that for some 1 ≤ s <
r < ∞ we have P Ls(m) ⊂ Lr(m). Then P is uniformly ergodic in all Lp(m)
spaces, 1 < p < ∞ (i.e.

∥∥ 1
n

∑n
k=1 P

k − E
∥∥
p
→ 0); hence (by Corollary 3)

every centered f ∈ L2(m) satisfies the annealed CLT.

Example (A hyperbounded Markov operator). Let (S,m) be the unit
circle with normalized Lebesgue measure. Let 0 ≤ g ∈ L2(m) with

∫
g dm = 1,

and define P by Pf = g ∗ f . Then m is invariant, P is ergodic and normal in
L2(m). Since ∥Pf∥2 = ∥g ∗ f∥2 ≤ ∥g∥2∥f∥1 for f ∈ L1(m), P maps L1(m)
into L2(m).

Proposition 12 (Becker, [2])). A power-bounded operator T (i.e.
supn≥0 ∥Tn∥ < ∞) on a Banach space X is uniformly ergodic if and only
if for every f ∈ (I − T )X the series

∑
n≥1 n

−1Tnf converges in X .

Proposition 13. Let P be a Markov operator with invariant probability
measure m, assumed to be ergodic. Then the following conditions are equiva-
lent:

(i) The Markov chain is ρ-mixing1.
(ii) ∥Pn − E∥2 → 0.
(iii) For every f ∈ L2

0(m) the series
∑∞

k=1⟨P kf, f⟩ converges.
(iv) For every f ∈ L2

0(m) we have
∑∞

n=1 ∥Pnf∥22 < ∞.
(v) There exists 1 ≤ p < ∞ such that for every f ∈ Lp

0(m) there exists r > 1
with

∑∞
n=1 ∥Pnf∥rp < ∞.

If either of the above conditions holds, then the annealed CLT holds for
every f ∈ L2

0(m). The variance of the limiting normal distribution is

σ2
f = ∥f∥22 + 2

∞∑
k=1

⟨P kf, f⟩.

Proof. The equivalence of (i) and (ii) is by [24, p. 207].
By [11, Proposition 3.1], condition (ii) is equivalent to the existence of

ρ < 1 and M > 0 such that ∥Pn − E∥2 ≤ Mρn for n ≥ 1. This yields (iii)
and (iv).

(iii) implies uniform ergodicity, by Theorem 4. By [13, Lemma 2.1], (iii) im-
plies Pnf → 0 weakly in L2(m) for every f ∈ L2

0(m); hence P is weakly
mixing. Now (ii) holds by Theorem 5.

Obviously (iv) implies (v) with p = 2.

1 See definition, as “asymptotically uncorrelated”, in [24, pp. 206–207].
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If (v) holds, then for every centered f ∈ Lp(m), Hölder’s inequality, applied
with s = r/(r − 1), yields

∞∑
n=1

∥Pnf∥p
n

≤
( ∞∑

n=1

1

ns

) 1
s
( ∞∑

n=1

∥Pnf∥rp
) 1

r

< ∞.

Hence the series
∑∞

n=1
Pnf
n is convergent in Lp-norm when f ∈ Lp(m) is

centered. By Becker’s Proposition 12, P is then uniformly ergodic in Lp(m).
Since condition (v) implies that P has no unimodular eigenvalues, we have
∥Pn − E∥p → 0 (by Theorem 5), and by [24, Theorem VII.4.1] (ii) holds.

Finally, (ii) implies the CLT statement by Theorem 1. By Theorem 2 the
variance of the limit is limn→∞ σn(f)

2/n. □

Proposition 14. Let P be a Markov operator with invariant probability
measure m. If every 0 ̸= f ∈ L2

0(m) satisfies the L2-normalized CLT, then
P ∗P is ergodic. Consequently (Lemma 6 and Theorem 5), if P is uniformly
ergodic, then ∥Pn − E∥2 → 0.

5. α-mixing

Rosenblatt in [24] introduced a certain “strong mixing” condition, now
called α-mixing, and proved that for the stationary chain generated by P
with invariant probability measure m, α-mixing is equivalent to

4α(n) := sup∫
f dm=0

∥Pnf∥1
∥f∥∞

→ 0 as n → ∞.

The above supremum is bounded by ∥Pn−E∥2, so ρ-mixing implies α-mixing.
Clearly α-mixing implies ∥Png − Eg∥2 → 0 for every g ∈ L2(m), hence total
ergodicity of the shift θ.

A stationary Markov chain which is Harris recurrent and aperiodic is α-
mixing; see [4, Section 3.2].

Theorem 15. Let P be a Markov operator with invariant probability mea-
sure m, and assume that the chain is α-mixing. If every 0 ̸= f ∈ L2

0(m)
satisfies the L2-normalized CLT, then P ∗P is ergodic, every 0 ̸= f ∈ L2

0(m)
satisfies a non-degenerate annealed CLT, and ∥Pn − E∥2 → 0.

Proof. By Proposition 14 P ∗P is ergodic, so the shift is totally ergodic.
Hence for 0 ̸= f ∈ L2

0(m), σn(f) > 0 for every n ≥ 1, by Lemma 7.
Let γ ∈ (0, 1) be fixed. Fix 0 ̸= f ∈ L2

0(m), and put σn = σn(f). Since
the chain is α-mixing, the stationary sequence {f(Xj)} is also α-mixing. By
a result in [19], the L2-normalized CLT implies that there exists a function
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L(t), t > 0, slowly varying at ∞, such that σ2
n = nL(n). By a property of

slowly varying functions, we obtain n−(γ+1)σ2
n = n−γL(n) → 0. Then

1

n(γ+1)/2

∥∥ n∑
k=1

P kf
∥∥
2
≤ 1

n(γ+1)/2

∥∥ n∑
k=1

f(Xk)
∥∥
L2(Pm)

= n−(γ+1)/2σn → 0.

The above convergence holds for every f ∈ L2
0(m). Denoting ϵ = (1 − γ)/2,

we apply it to f = g − Eg, g ∈ L2(m), to obtain

nϵ
∥∥ 1
n

n∑
k=1

P kg − Eg
∥∥
2
=

1

n(γ+1)/2

∥∥ n∑
k=1

P k(g − Eg)
∥∥
2
≤ Cg ∀n (g ∈ L2(m)).

By the Banach-Steinhaus theorem, the norms
{
nϵ
∥∥ 1
n

∑n
k=1 P

k − E
∥∥
2

}
are

bounded, so
∥∥ 1
n

∑n
k=1 P

k − E
∥∥
2
≤ K

nϵ → 0. Thus P is uniformly ergodic.
Theorem 8 yields ∥Pn − E∥2 → 0 and the non-degenerate annealed CLT for
every 0 ̸= f ∈ L2

0(m). □

Theorem 16. Let P be an ergodic Markov operator with invariant prob-
ability measure m. Then the following conditions are equivalent:

(i) ∥Pn − E∥2 → 0 and P ∗P is ergodic.
(ii) The chain is α-mixing and every 0 ̸= f ∈ L2

0(m) satisfies the L2-
normalized CLT.

(iii) Every 0 ̸= f ∈ L2
0(m) satisfies a non-degenerate annealed CLT and the

L2-normalized CLT.

Proof. (i) implies (ii) follows from Theorem 8 and the fact that ρ-mixing
implies α-mixing (combined with Proposition 13).

(ii) implies (i): Indeed, P ∗P is ergodic by Proposition 14, and ∥Pn−E∥2 →
0 by Theorem 15.

(i) implies (iii) by Theorem 8.
(iii) implies (i): First of all, P ∗P is ergodic by Proposition 14. Further, fix

0 ̸= f ∈ L2
0(m). We shall prove that {σn(f)/

√
n} is bounded. For the sake of

contradiction, suppose it is not bounded. Then there is an increasing sequence
{nk}k∈N such that

√
nk/σnk

(f) converges to zero, whence

(2)
1

σnk
(f)

nk∑
j=1

f(Xj) =

√
nk

σnk
(f)

· 1
√
nk

nk∑
j=1

f(Xj).

The left-hand side of (2) converges in distribution to N (0, 1) by the assump-
tion of the L2-normalized CLT for f ; the right-hand side converges to N (0, 0),
by the assumed annealed CLT for f and Slutsky’s theorem, leading to a con-
tradiction. Hence {σn(f)/

√
n} is bounded for every f ∈ L2

0(m). By Theorem
4, P is uniformly ergodic. By Proposition 14, P ∗P is ergodic, so P is weakly
mixing by Lemma 6, and then ∥Pn − E∥2 → 0 by Theorem 5. □
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Problem 3. Assume that P is a Makov operator with invariant probability
measure m such that

lim
n→∞

∥Png − Eg∥2 = lim
n

∥P ∗ng − Eg∥2 = 0 for every g ∈ L2(m),

and assume that every non-zero f ∈ L2
0(m) satisfies the L2-normalized CLT.

Does it follow that P is uniformly ergodic in L2(m)?

If yes, then ∥Pn − E∥2 → 0 by Theorem 5, since P is weakly mixing by
the strong convergence of Pn. Note that the assumption implies that P ∗P is
ergodic, by Proposition 14.

By Theorem 15, the answer is yes for P which is Harris recurrent and
aperiodic.

Example (P not uniformly ergodic with (P ∗P ) ergodic). Let Q be ergodic
with invariant probability measure m which is not uniformly ergodic. For
ε ∈ (0, 1) define P = Pε := εI+(1− ε)Q. We shall prove that P ∗P is ergodic.
Clearly m is invariant also for P and for P ∗P . For A ∈ Σ we have

P ∗P1A = ε21A + ε(1− ε)(Q∗1A +Q1A) + (1− ε)2Q∗Q1A.

If P ∗P1A = 1A a.e., then for almost every x /∈ A the above summands are
zero, so in particular Q1A ≤ 1A a.e. Since m is invariant, Q1A = 1A, and A
is trivial by the ergodicity of Q. By definition (I −P )L2(m) = (I −Q)L2(m),
so when Q is not uniformly ergodic (I − P )L2(m) is not closed; hence P is
not uniformly ergodic.

6. Geometric ergodicity

Definition. A Markov operator P with invariant probability measure m
is called geometrically ergodic if, for some ρ < 1,

Mx := sup
n

ρ−n∥Pn(x, ·)−m∥TV < ∞ a.e.

Geometric ergodicity implies aperiodic Harris recurrence and α-mixing,
with the α-mixing coefficients α(n) converging to 0 exponentially fast; see [4,
Section 3.2].

Theorem 17 (Doukhan-Massart-Rio, [12]). Let Σ be countably generated
and let P be a geometrically ergodic Markov operator. Then any centered f
with

∫
|f |2 log+ |f | dm < ∞ satisfies the annealed CLT.

Theorem 18 (Roberts-Tweedie, [23]). Let Σ be countably generated, and
let P be a Harris positive recurrent Markov chain. If ∥Pn −E∥2 → 0, then P
is geometrically ergodic.
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Note that ∥Pn − E∥2 → 0 does not necessarily imply Harris recurrence;
therefore Harris recurrrence must be assumed.

Note. The converse may fail – in [3] and [16] are examples of P geo-
metrically ergodic with some centered f ∈ L2(m) which does not satisfy the
annealed CLT, so limn→∞ ∥Pn − E∥2 > 0.

Theorem 19. Let P be a Markov operator with invariant probability mea-
sure m, and assume that P is normal in L2(m). Then ∥Pn−E∥2 → 0 if (and
only if) the α-mixing coefficients converge to zero (at least) exponentially fast.

Bradley ([5]) proved the theorem when P is symmetric.
In general, if P is geometrically ergodic, then P is Harris aperiodic and

the α-mixing coefficients converge to zero exponentially fast. We do not know
if a Harris aperiodic P whose α–mixing coefficients converge to zero exponen-
tially fast is geometrically ergodic.

Corollary 20. Let Σ be countably generated. If a Markov operator P is
geometrically ergodic, and is additionally normal in L2(m), then

∥Pn − E∥2 → 0.

The symmetric case is in [22]. For S countable Corollary 20 is established
in [26].

Remarks.
1. P in Theorem 19 need not be Harris recurrent.
2. When Σ is countably generated and P is Harris recurrent and normal in

L2(m), Theorems 18 and 19 yield that exponential decay to 0 of α(n),
geometric ergodicity and ρ-mixing are equivalent.

In Bradley’s and Häggström’s examples P is geometrically ergodic, and
every centered f ∈ Lp(m), p > 2, satisfies the CLT, by Theorem 17; however,
P does not have a spectral gap in Lp(m), i.e. limn→∞ ∥Pn − E∥p > 0, since
otherwise it would imply limn→∞ ∥Pn − E∥2 = 0 ([24]), and so the CLT for
every centered f ∈ L2(m). By Corollary 20, P in such examples cannot be
normal in L2(m).

The examples of Bradley and Häggström show that without normality
Theorem 19 fails, although we have geometric ergodicity.

Problem 4. Let P be a Harris aperiodic Markov chain, and suppose that
every centered f such that

∫
|f |2 log+ |f | dm < ∞ satisfies the annealed CLT.

Does this imply that P is geometrically ergodic? (Is a converse of Theorem 17
true?).

Dedecker informed the author that an example of Bradley ([6]) exhibits P
Harris recurrent which is not geometrically ergodic, such that every
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f ∈ Lp
0(m), p > 2, satisfies the annealed CLT. In Problem 4 we (necessar-

ily) assume more, i.e. that the annealed CLT is satisfied by a strictly larger
subset of L2

0(m).
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