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A NOTE ON ABELIAN GROUPS
SUPPORTING UNITAL RINGS

Mateusz Woronowicz

Abstract. Non-nil abelian groups are classified on which every ring, different
from the zero-ring, is unital. It is shown that the assumption on the associa-
tivity of the considered rings does not influence the obtained classification.
A significant mistake made by other authors studied this topic is corrected.

1. Introduction and motivations

One of the interesting issues studied by algebraists is how the additive
structure of a ring influences its multiplication. It has a rich history in ab-
stract algebra. Its starting point can be dated back to the end of the first half
of the 20th century when Beaumont published the paper on rings supported by
direct sums of cyclic groups (see [4]). Shortly thereafter Fuchs, Redei, Szele,
Zuckerman, Ree, and Wisner joined in the investigation of additive groups
of rings which resulted in the next valuable papers. Many of their achieve-
ments can be found in, today already classic, two-volume monograph ‘Infinite
abelian groups’ written by L. Fuchs (see, [10, Chapter XVII]). Subsequent
results related to the topic were closely connected to the progress in abelian
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group theory. Further research, conducted with the momentous contribution
of Feigelstock, led to the monograph [6] and its complement [7]. Currently,
additive groups of rings are generating renewed interest, and consequently,
papers concerning this subject appear quite regularly (see, e.g., [1–3,11–16]).
In particular, there is the problem of classifying abelian groups supporting
rings belonging only to some fixed class. The class of unital rings is a very
well motivated example of them. Probably the most classical results on the
abelian groups supporting unital rings are presented as [6, Theorems 4.1.1
& 4.1.3] and [10, Proposition 120.8]. The research on such groups were con-
tinued in [5] by Breaz and Călugăreanu who investigated, among others, the
structure of non-nil groups A such that every associative ring on A, different
from the zero-ring A0 on A, is unital. Abelian groups with this property were
called S-identity groups. Recall that an abelian group is said to be non-nil if
it supports any non-zero ring structure.

However, the mentioned authors did not avoid some essential gap in their
reasoning related to switching from the ring-theoretical direct sums to the
group-theoretical ones, and to the best of our knowledge, their paper is avail-
able only as a preprint on the website http://math.ubbcluj.ro/~calu/ident.pdf.
More precisely, before [5, Theorem 1] they wrote: ‘Since a finite direct (prod-
uct) sum of rings has identity if and only if each component has identity (the
finite decomposition of 1 into central idempotents), the ring obtained by any
trivial extension has no identity. Hence S-identity groups are indecomposable’.
But it is easily seen that the proposed arguments are insufficient to infer that
the S-identity groups are indecomposable. For example, they do not work
for decomposable non-nil abelian groups such that all their direct summands
are nil groups. Indeed, let A and B be subgroups of the full rational group
generated by the inverses of all primes and by the inverses of squares of all
primes, respectively. Then A and B are torsion-free rank one abelian groups
of non-idempotent types, so it follows from [10, Theorem 121.1] that A and
B are both nil. Thus A0 ×B0 is the only ring with the additive group A⊕B
that can be obtained by trivial extensions. Since A ·A ⊆ B, the multiplication
(a1, b1) ∗ (a2, b2) = (0, a1 · a2) defined for all a1, a2 ∈ A and b1, b2 ∈ B, pro-
vides a non-zero associative ring structure on the group A⊕B, which is clearly
non-unital. This shows that the trivial extension argument is insufficient to
infer that A ⊕ B is not an S-identity group; to deduce this, it is necessary
to focus on the ring structure defined from the beginning on the entire group
A ⊕ B. In particular, this is closely related to the fact that neither A nor B
can be an ideal I satisfying I2 6= 0 in any ring R with the additive group
A⊕B. Consequently, the proof of [5, Theorem 1] is incomplete and partially
incorrect.

The aim of this note is to remove the mentioned inconsistency and prove [5,
Theorem 1] correctly for the case of associative as well as not necessarily
associative rings. We start with the second case to introduce the notion of
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an SU -group understood as a non-nil group G such that G0 is the only not
unital ring on G. In particular, the prefix SU is an abbreviation from strongly
unital. Since the concepts of SU -group and S-identity group will turn out to
be equivalent (see Remark 2.3) as well as the definition of an SU -group is
slightly less complicated than that of an S-identity group (due to the lack
of the assumption on the associativity of rings) and the prefix SI naturally
associated with the second of these notions has been previously assigned to the
abelian groups supporting only rings whose subrings are ideals (see, e.g., [2,8]),
this new name seems to be more appropriate.

The symbols Z (p∞), Z(n), Zn, Z, Q, N, and P stand for the quasi-cyclic
p-group, finite cyclic group of order n, the rings of integers modulo n and
integers, the field of rationals, and the sets of all positive integers and primes,
respectively. The multiplication of the ring Zn is denoted by �n. Rings are
not assumed to be associative, commutative, or unital. The additive group
of a ring R is denoted by R+. Throughout this paper all groups are abelian
and written additively. For any abelian group A, the symbol P(A) stands for
the set of all primes p for which the p-component Ap of A is non-trivial. In
particular, the torsion part of A, denoted by T (A), is the direct sum of p-
components of A with p running over P(A). The notations D(A) and Mult(A)
are used for the divisible hull of A (see [9, p. 107]) and the group of all ring
multiplications on A, respectively. If a is an element of A, then the order
of a is denoted by o(a). All other designations are consistent with generally
accepted standards (see, e.g., [9, 10]).

2. The classification of SU-groups and its consequences

In the classification of SU -groups, some specific ring multiplications con-
structed in [1, proofs of Theorems 3.1 & 3.6] will play an important role.
Due to the quite technical character of these constructions and the need of
some additional observations related to them, they will be repeated in a little
bit simplified form and complemented in the proof of Theorem 2.2. For the
transparency and completeness of this note, the following slight improvement
of [1, Lemma 2.4] is also presented with the complete proof.

Lemma 2.1. Let p be a prime. If f is an epimorphism of Q+ onto Z (p∞),
and A is a non-trivial p-divisible subgroup of Q+, then f(A) = Z (p∞).

Proof. Suppose, contrary to our claim, that f(A) = {0}. Take any x ∈
Q+, and define m = min {n ∈ N : nx ∈ A}. Then mx = pa for some a ∈ A. If
p | m, then there exists r ∈ N such that mx = p(rx). Moreover, T (A) = {0},
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so a = rx, contrary to the minimality of m. Thus p - m. Next, mf (x) =
f (mx) = 0, whence o (f (x)) | m. But f(A) is a p-group and p - m, so
o
(
f(x)

)
= 1. Therefore, f(Q+) = {0}, a contradiction. Hence f(A) is a non-

trivial subgroup of Z(p∞). Furthermore, the group f(A) is p-divisible, so it is
divisible, and consequently, f(A) = Z(p∞). �

Theorem 2.2. An abelian group A is an SU -group if and only if either
A ∼= Q+ or A = Z(p) for some prime p.

Proof. Take any p ∈ P. It is a well-known fact that the fields Q and Zp

are the only up to isomorphism rings on the groups Q+ and Z(p) different from
the zero-rings. Thus, Q+ and Z(p) are both SU -groups. Conversely, suppose
that A is an SU -group. We need to consider the following two cases:

(i) T (A) = {0}. Let R = (A, ·) be any ring satisfying R2 6= {0}. Take any
n ∈ N, and define ◦ to be the n-th multiple of the multiplication of R in the
group Mult(A). Then (A, ◦) is a unital ring, so there exists e ∈ A such that
x = x ◦ e = n(x · e) for every x ∈ A. Hence A = nA. Since n has been chosen
arbitrarily, the non-trivial torsion-free group A is divisible. Combining this
with [9, Theorem 23.1] leads to the conclusion that A ∼=

⊕
i∈I Q+ with I 6= ∅,

and consequently, there exists a subgroup H of A such that A ∼= Q+ ⊕ H.
Moreover,Q×H0 is a ring with the additive group isomorphic to the SU -group
A, so the ring Q×H0 is unital. Thus H = {0}, whence A ∼= Q+.

(ii) T (A) 6= {0}. By way of contradiction, assume that the group T (A) is
divisible. Then it follows from [9, Theorem 24.5] that there exists a torsion-
free subgroup B of A such that A = T (A) ⊕ B. Since the group A is not
nil, [6, Theorem 2.1.1] implies B 6= {0}.

First suppose B 6= pB for some p ∈ P(A). Then B/pB ∼=
⊕

i∈I Z+
p with

I 6= ∅. Hence there exists an epimorphism η : A → Z+
p satisfying η

(
T (A)

)
=

{0}. As p ∈ P(A), there is a0 ∈ A such that o(a0) = p. An easy computation
shows that the function ∗ : A×A→ A given by

(1) a1 ∗ a2 =
(
η (a1)�p η (a2)

)
a0 for all a1, a2 ∈ A,

provides a ring structure on A. As η(A) = Z+
p and o(a0) = p, we have A∗A =

〈a0〉 ∼= Z+
p , whence A ∗ A ( A. Thus the ring (A, ∗) is different from A0 and

not unital. Consequently, A is not an SU -group, a contradiction.
Now assume that B = pB for each p ∈ P(A), and fix any q ∈ P(A). In

view of [9, Theorems 23.1 & 24.1], there is no loss of generality in assuming
that D(B) = Q⊕E, where Q = Q+ and E is some subgroup of D(B). Define
G = B ∩ Q. Then G 6= {0} by [9, Lemma 24.3 & Theorem 24.4]. Moreover,
G = qG, because B and Q are both torsion-free and q-divisible. Next, let
ψ : D(B)→ Q be a natural epimorphism. Since Q/Z+ ∼=

⊕
p∈P Z (p∞), there
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exists an epimorphism ξ : Q → Z (q∞). A straightforward verification shows
that the function ϑ : B ×B → Z(q∞) given by

(2) ϑ (b1, b2) = ξ (ψ (b1) · ψ (b2)) for all b1, b2 ∈ B,

is bilinear. Take any g ∈ G \ {0}. As G ⊆ Q+, we get g · G ∼= G. Thus g · G
is a non-trivial q-divisible subgroup of Q+. Combining this with Lemma 2.1
gives ξ(g ·G) = Z (q∞). Moreover, ψ(x) = x for each x ∈ G, so imϑ = Z(q∞).
Consider the function ~ :

(
Z(q∞)⊕B

)
×
(
Z(q∞)⊕B

)
→
(
Z(q∞)⊕B

)
given by

(3) (d1, b1)~ (d2, b2) =
(
ϑ (b1, b2) , 0

)
for all d1, d2 ∈ Z(q∞), b1, b2 ∈ B,

and define S =
(
Z(q∞)⊕B,~

)
. Since ϑ is a bilinear map with imϑ = Z(q∞),

S is a ring satisfying S2 = Z(q∞) ⊕ {0}. Hence the ring S is not unital.
As q ∈ P(A) and the group T (A) is divisible, it follows from [9, Theorem
23.1] that Z (q∞) is a direct summand in T (A). Define Tq = T (A)/Z (q∞)
and P = S × T 0

q . Then the ring P is not unital even if Tq = {0}. Moreover,
P+ ∼= A, so A is not an SU -group, a contradiction.

Thus the group T (A) is not divisible. Hence there exists p ∈ P(A) such
that the group Ap is not divisible. In particular, Ap contains an element a of
order p and of finite p-height (see [9, p. 98, (C)]). Of course, the p-height of a
in A is the same as in Ap, so from [10, Corollary 27.2] we infer that there exist
m ∈ N and a subgroup C of A such that A = Z (pm)⊕ C. Since Zpm × C0 is
a ring with the additive group isomorphic to the SU -group A, we infer that
C = {0}. Therefore, without loss of generality, we may assume that A = Z+

pm .
Suppose, contrary to our claim, that m > 1. Let ? be the p-th multiple of
�pm in the group Mult

(
Z+
pm

)
. Then a ? A = {0} and A ? A 6= {0}, so (A, ?)

is a non-zero ring without a unity, a contradiction. Hence m = 1, and finally,
A = Z(p). �

Remark 2.3. Notice that Theorem 2.2 remains true if we restrict the
condition SU to the class of associative rings. Indeed, let us introduce the
temporary notation SUa for this modified condition. Retaining all the desig-
nations of the proof of Theorem 2.2 and assuming that the ring R = (A, ·)
is associative, we infer that so is the ring (A, ◦). Thus if A is a torsion-free
SUa-group, then A ∼= Q+. Next, in view of (1), the ring (A, ∗) is commuta-
tive. Moreover, (A ∗ A) ∗ A = {0} because of a0 ∈ T (A) and η

(
T (A)

)
= {0}.

Consequently, (A, ∗) is an associative ring. Since the function ϑ is symmetric,
the ring S is commutative (see (2) and compare with (3)). Combining this
with

(
Z (q∞)⊕ {0}

)
~ S =

{
(0, 0)

}
leads to the conclusion that it is also as-

sociative, whence P is an associative ring. The associativity of the ring (A, ?)
follows immediately from the fact that Zm is an associative ring. Therefore,
if A is an SUa-group which is not torsion-free, then A = Z(p) for some p ∈ P.
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Thus if A is an SUa-group, then either A ∼= Q+ or A = Z(p) for some p ∈ P.
The reverse implication is obvious.

Combining Theorem 2.2 with Remark 2.3 leads to the following.

Corollary 2.4. For any abelian group A, the following conditions are
equivalent:
(i) A is an SU -group;
(ii) either A ∼= Q+ or A = Z(p) for some prime p;
(iii) A satisfies the condition SU restricted to the class of associative rings;
(iv) A is not nil and every ring on A, different from A0, is an integral domain;
(v) A is not nil and every ring on A, different from A0, is a field.
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