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A KANNAPPAN-COSINE FUNCTIONAL EQUATION
ON SEMIGROUPS

AHMED JAFAR, OMAR AJEBBAR'Y, ELHOUCIEN ELQORACHI

Abstract. In this paper we determine the complex-valued solutions of the
Kannappan-cosine functional equation g(zyzo) = g(z)g9(y) — f(2)f(y), =,y €
S, where S is a semigroup and zg is a fixed element in S.

1. Introduction

The addition law for cosine is
cos(z + y) = cos(x) cos(y) — sin(z) sin(y), z,y € R.
This gives the origin of the following functional equation on any semigroup S

(1.1) g(zy) = g(x)g(y) — f(x)f(y), =x,y €S,

for the unknown functions f,g: S — C, which is called the cosine addition
law. In Aczél’s monograph [I, Section 3.2.3] we find continuous real valued

solutions of (1.1)) in case S = R.
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The functional equation has been solved on groups by Poulsen and
Stetkeer [10], on semigroups generated by their squares by Ajebbar and Elqo-
rachi [3], and recently by Ebanks [5] on semigroups.

In [I2, Theorem 3.1], Stetkeer solved the following functional equation

(1.2) g(zy) = g(x)g(y) — fy) f(z) + af(zy), =,y€s,

where « is a fixed constant in C. He expressed the solutions in terms of
multiplicative functions and the solution of the special case of the sine addition
law. In [I3] Proposition 16|, he solved the functional equation

(13) f(l'y20> = f('r)f(y)v x,y €5,

on semigroups, and where zq is a fixed element in S. We shall use these results
in our computations.
In this paper, we deal with the following Kannappan-cosine addition law

(1.4) g(wyzo) = g(x)g(y) — f(2)f(y), z,y €S,

on a semigroup S. The functional equation is called Kannappan func-
tional equation because it brings up a fixed element 2y in S as in the paper
of Kannappan [9].

In the special case, where {f, g} is linearly dependent and g # 0, we get
that there exists a constant A € C such that the function (1 — A\?)g satisfies
the functional equation ([L.3).

If S is a monoid with an identity element e, and f(e) = 0 and g(e) # 0,
or g(e) = 0 and f(e) # 0, the last functional equation is the cosine addition
law which was solved recently on general semigroups by Ebanks [5].

Now, if a := f(e) # 0 and B := g(e) # 0 we get that the pair (
satisfies the following functional equation

™~
N
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IB)

9oy = 2Ly — L oL oo @y
B@w»—ﬁ<>5@> B()B@%+B5(w,

which is of the form , and then explicit formulas for f and g on groups
exist in the literature (see for example [8, Corollary 3.2.]).

The natural general setting of the functional equation ([1.4]) is for S being
a semigroup, because the formulation of requires only an associative
composition in S, not an identity element and inverses. Thus we study in the
present paper Kannappan-cosine functional equation on semigroups S,
generalizing previous works in which S is a group. So, the result of the present
paper is a natural continuation of results contained in the literature.
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The purpose of the present paper is to show how the relations between
and f on monoids extend to much wider framework, in which S is
a semigroup. We find explicit formulas for the solutions, expressing them in
terms of homomorphisms and additive maps from a semigroup into C (Theo-
rem . The continuous solutions on topological semigroups are also found.

2. Set up, notations and terminology

Throughout this paper, S is a semigroup (a set with an associative com-
position) and z is a fixed element in S. If S is topological, we denote by C(S)
the algebra of continuous functions from S to the field of complex numbers C.

Let f: S — C be a function. We say that f is central if f(zy) = f(yx) for
all z,y € S, and that f is abelian if f(z172,...,2,) = [(To(1)T0(2), -+ To(n))
for all x1,x9,...,x, € S, all permutations ¢ of n elements and all n € N. A
map A: S — C is said to be additive if A(zy) = A(x) + A(y), for all x,y € S
and a map y: S — C is multiplicative if x(zy) = x(x)x(y), for all z,y € S.
If x # 0, then the nullspace I, := {x € S|x(z) = 0} is either empty or
a proper subset of S and I, is a two sided ideal in S if not empty and S\ I
is a subsemigroup of S. Note that additive and multiplicative functions are
abelian.

For any subset T C S let T2 := {2y |xz,y € T} and for any fixed element
20 in S we let T%2 := {wyzo |z, y € T}.

To express solutions of our functional equations studied in this paper we
will use the set P, := {p € I,, \I>2< | up, pv, upv € I, \ I>2< for all u,v € S\ I, }.
For more details about P, we refer the reader to [4], [5] and [6].

3. Preliminaries

In this section, we give useful results to solve the functional equation (|1.4)).

LEMMA 3.1. Let S be a semigroup, n € N, and x, X1, X2, ---sXn: S = C
be different non-zero multiplicative functions. Then

(a) {x1,X2, " Xn} i linearly independent.
(b) If A: S\ I, — C is a non-zero additive function, then the set {xA,x} is
linearly independent on S\ I.

PROOF. (a) See [1I, Theorem 3.18]. (b) See [2, Lemma 4.4]. O
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The proposition below gives the solutions of the functional equation

(3.1) f(zyzo) = x(20) f()x(y) + x(20) f(¥)x(2), 2,y€S.

PROPOSITION 3.2. Let S be a semigroup, and x: S — C be a multiplicative
function such that x(z0) # 0. If f: S — C is a solution of (3.1]), then

x(x)(A(z) + A(z0)) for z € S\I,
(3.2 f@) = { ple) forz € Py,
0 forx e I, \ Py,

where A: S\ I, — C is additive and p: P, — C is the restriction of f to Py.
In addition, f is abelian and satisfies the following conditions:
(I) f(zy) = f(yx) =0 forallxz € I, \ Py andy € S\ I,.
(II) If = € {up,pv,upv} with p € P, and u,v € S\ I, then z € P,
and we have respectively p(z) = p(p)x(u), p(x) = p(p)x(v) or p(x) =
p(p)x(wv).

Conversely, the function f of the form (3.2)) define a solution of (3.1)).
Moreover, if S is a topological semigroup and f € C(S), then x € C(S),

AeC(S\ 1) and p € C(Py).
PROOF. See [7, Proposition 4.3]. O

To shorten the way to finding the solutions of functional equation (|1.4)),
we prove the following lemma that contains some key properties.

LEMMA 3.3. Let S be a semigroup and let f,g: S — C be the solutions of
the functional equation with g # 0. Then

(i) If f(z0) =0 then
(1) for all x,y € S,

(3.3) 9(20)g(xy) = g(z0)[g(x)g(y) — f (@) f(W)] + f(25) [ (@y),
(2) 9(25)* = 9(20)® + f(25)*.

(3) If f and g are linearly independent then g(zo) # 0.
(i) If f(z0) # 0, then there exists pu € C such that

(3.4) flzyzo) = f(x)g(y) + f(y)g(z) + pf(x)f(y), =,y€S.
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PROOF. (i) Suppose that f(z9) = 0.

(1) Making the substitutions (xy,23) and (xyzp,20) in (1.4) we get
9(zyz3) = g(xy)g(23)— f(xy) f(25) and g(zy=3) = g(xyz0)g9(20)—f(2y20) f(20)
= g(20)9(x)g(y) — g(20) f(x) f(y), respectively. Comparing these expressions,

we deduce that g(xy)g(23)— f(28) f(zy) = 9(20)g(x)9(y) —9g(20) f (y) f(x). This
proves the desired identity.

(2) It follows directly by putting z =y = 2o in the equation (3.3).

(3) For a contradiction we suppose that g(zgp) = 0. Then using (1.4), we
get g(zyz5) = g(x)g(y20) — f(2)f(y20) = g(xy)g(20) — f(zy) f(20) = 0 since
f(z0) = g(20) = 0. Then we deduce that

(3.5) 9(x)g(yz0) = f(x)f(yz0), z,y€S.

If g(yzo) = 0 for all y € S then 0 = g(zyzo) = g(x)g(y) — f(2)f(y), v,y € 5.
So, g(z)g(y) = f(x)f(y), z,y € S. Hence, f = g or f = —g, which contradicts
the fact that f and g are linearly independent. So g # 0 on Sz, and from ([3.5))
we get that ¢ = c1f with ¢; := f(az0)/g(azo) for some a € S such that
g(azp) # 0. This is also a contradiction, since f and g are linearly independent.
So we conclude that g(zg) # 0.

(ii) Suppose that f(zo) # 0. By the substitutions (z,y23) and (zyzo, 20)
in we get g(zyzy) = g(2)g(yzg) — f(2)f(yz5) = 9(20)9(x)g(y) —
9(x) f(20)f(y) — f(2)f(yz5) and g(xyz3) = g(xyz0)g(z0) — f(zy20)f(20) =
9(20)9(x)g(y) — g(z0) f(z) f(y) — f(zyz0)f(20), respectively. Then, by the as-
sociativity of the operation in S we obtain

(3.6)  f(z0)[f(zyz0) — f(2)g(y) — f(y)g(2)]

= f(@)[f(y=5) = F(y)g(z0) — f(20)9(y)]-
Since f(zg) # 0, dividing by f(z0) we get
(3.7) flayzo) = f(x)g(y) + f(y)g(@) + f(@)Y(y),
where ¥(y) == f(z0) ' [f(y25) — f(4)9(20) — f(20)g(y)]. Substituting (3.7) back
into (3.6), we find out that f(z0)f(2)t(y) = f(2)f(y)eb(20), which implies that

Y(y) = pf(y) with p := ¥(z0)/f(20). Therefore, becomes f(xyzp) =
f(@)g(y)+ f(y)g(x)+ wnf(x) f(y). This completes the proof of Lemma O
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4. Main results

Now, we are ready to describe the solutions of the functional equation (|1.4)).
Let Way,,: S — C denote the function of the form in 6, Theorem 3.1
(B)], i.e.,
x(z)A(z) for z € S\I,,
Uy p(x) =< pla) for x € Py,
0 for x € I, \ Py,

where x: S — C is a non-zero multiplicative function, A: S\ I, — C is
additive, p: P, — C is the restriction of ¥4, ,, and the following conditions
hold.

(1) Way,p(qt) =TVay,(tq) =0forallge I, and t € S\ I,.
(ii) If x € {up, pv,upv} for p € P, and u,v € S\ I, then x € P, and we have
p(x) = p(p)x(u), p(z) = p(p)x(v), or p(x) = p(p)x(uv), respectively.

THEOREM 4.1. The solutions f,g: S — C of the functional equation ((1.4)
are the following pairs of functions.
(1) f=g=0.
(2) S # 82z and we have

20 (T orx € S\ S?z,

f:ﬂ:g and g(x): go() f \ 0
0 for x € S%z,

where g.,: S\ S?z0 — C is an arbitrary non-zero function.

(3) There exist a constant d € C\ {£1} and a multiplicative function x on S
with x(zo0) # 0, such that

d x(20)

x(20)
X
1—d?

1—a2X

f= and ¢ =

(4) There exist a constant ¢ € C*\ {%i} and two different multiplicative
functions x1 and x2 on S, with x1(20) # 0 and x2(z0) # 0 such that

f= _Xl(ZO)Xl — x2(20)x2

¢ x1(z0)x1 + exa(z0)x2
i(c7t +¢) ’

and g = cl4e¢
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(5) There exist constants q,v € C* and two different non-zero multiplicative
functions x1 and x2 on S, with

2 2 2 2
¢ —(1+¢ —(1-9
x1(z0) = ——————, x2(20) = ——"—7""~—
1) 2vq (%) 2vq
and § := £+/1+ ¢? such that
+ — —
f:Xl X2+£X1 X2 and g:qXI Xz'
2y 2 2y

(6) There exist constants g € C\ {£a}, v € C*\ {£a} and 6 € C\{£1}, and
two different non-zero multiplicative functions x1 and x2 on S, with

_ (149 —(a+9)? _(1-9)?—(a—9q)?
alo) = —— a1 o el) =G

and 0 := ++/1+ ¢% — a2 such that

aX1+X2+qX1—X2 and g:X1+X2+5X1—X2'

2y 2y 2 2y

f=

(7) There exist a constant B € C*, a non-zero multiplicative function x on
S, an additive function A: S\ I, — C and a function p: P, — C with
X(z0) =1/ and A(zp) = 0 such that

1 1
=—=Uay, and g=—(xETay,)-
5 Axr 5( x:p)

(8) There exist a multiplicative function x on S with x(z0) # 0, an additive
function A: S\ I,, = C and a function p: P, — C such that

f

f = A<ZO)X + \I’Ax,p and g= (X(ZO) + A(ZO)) X+ \I’Ax,p-

Moreover, if S is a topological semigroup and f € C(S) then g € C(S) in

cases , , f, and if d # 0 then also in .

PRrROOF. If g = 0, then (1.4) reduces to f(z)f(y) =0 for all z,y € S. This
implies that f = 0, so we get the first part of solutions. From now we may
assume that g # 0.

If f and g are linearly dependent, then there exists d € C such that f = dg.
Substituting this into we get the following functional equation

g(zyzo) = (1 — d*)g(z)g(y), =,ye€S.
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If d> = 1, then g(zyzo) = 0 for all z,y € S. Therefore, S # S?zy because
g # 0. So, we are in solution family (2) with g, an arbitrary non-zero function.
If d? # 1, then by [13, Proposition 16| there exists a multiplicative function
x on S such that x(z0)x := (1 — d?)g and x(20) # 0. Then we deduce that

d
= 1X(Z(;l 1X (Z;Q) X so we have the solution family (3).

For the rest of the proof, we assume that f and g are linearly independent.
We split the proof into two cases according to whether f(z9) = 0 or f(z) # 0.

Case I. Suppose f(z9) = 0. Then by Lemma[3.3) (i)-(3) and (i)-(1), we have
9(20) # 0 and

(4.1) g(20)g(zy) = g(20)9(x)g(y) — 9(z0) f () f(y) + f(z5) f(xy), =x,y €S,

xand f=dg=

respectively.
Subcase L.1. Assume that g(z2) = 0. Then by Lemmal3.3| (i)-(2) and (i)-(3),
we get f(23) # 0 since f and g are linearly independent and then (4.1)) can be

rewritten as f(zy) =~vf(x)f(y) —v9(z)g9(y), z,y € S, where 7 := ? zg) # 0.

Consequently, the pair (v f,~g) satisfies the cosine addition formula (1.1]). So,
according to [I2, Theorem 6.1] and taking into account that f and g are
linearly independent, we know that there are only the following possibilities.

(I.1.i) There exist a constant ¢ € C* and two different non-zero mul-
X1 — X2

tiplicative functions x; and x2 on S such that vg = ¢ and vf =

X1;X2 i(m)xl ;XQ,which gives f = Xl;;/mi(m)mz_yxz

and g = q%. By putting £ := +4/1 + ¢? and using 1) we get
8

4,1/2(92 —(1 +§)2 )xa(zy) + 4’172(q2 - (1- 5)2 )Xg(my)

= %Xl (20)X1(5L'y) - %XQ(ZO)X2<xy)’

1
which implies by Lemma (i) that Qixl(zo) = ﬁ(q2 -1 +§)2) and
gl v

1
Qixg (20) = —33 (*—(1— 5)2 ), since x1 and x; are different and non-zero.
8 2
Then we deduce that
Yi(20) = = (= (14€)°) and xalz0) = ——(¢® — (1— £)°).
2vq 2vq

So, we are in part (F).
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(I.1.ii) There exist a non-zero multiplicative function x on S, an additive
function A on S\ I, and a function p on P, such that vg = V4, , and
’yf =X + \I’Ax,p-

If 29 € I,, \ Py we have v9(z0) = Yay,,(20) = 0 by definition of ¥4, ,. If
29 € Py we have x(20) = 0 and |yg(z0)[=|p(20)|=[x(20) £ p(20)|=[7f(20)[= 0
So, if zo € I, we get that vg(z9) = 0, which is a contradiction because

9(%)

zp) # 0 and v = .

) 1G3)
Hence, zp € S\ I, and we have x(z9) # 0. Since f(z9) = 0, by the

1
assumption, we get f(z0) = —[x(20) £ A(20)x(20)] = 0, which implies that
Y
A(zp) = —1. Now for all z,y € S\ I,, we have zyzy € S\ I, then by using
1 1
(1) we et (5 o) Jxtam) + (- + x(z0) ) xla) A(ry) = 0, which mplies
1
according to Lemma |3.1{(i), that — —x(20) = 0 and —+x(z0) = 0, since A # 0.
Y Y

1 1
Therefore, x(z0) = — = ——, which is a contradiction because — # 0 by the

assumption. So we do not have a solution corresponding to this possibility.
Subcase 1.2. Suppose that g(22) # 0, then (4.1)) can be rewritten as follows

Boley) = B9(a)g(y) — B F(@)F(y) + aBf(wy), o,y € S with § = E; £0
£(:2)

2y This shows that the pair (8g,5f) satisfies the functional

9\ =

equation (1.2)). So, according to |12, Theorem 3.1], and taking into account

that f and g are linearly independent, there are only the following possibilities.
(I.2.i) There exist a constant ¢ € C\{£a} and two different non-zero

X1+X2 | X1—X2

and « :=

multiplicative functions y; and x»2 on S such that f = « 5 +q 5
andﬂg:%i 14+¢®>—« 2X1 X2 2 Introducing § := £1/1 + ¢2 — a2
we find that f = aX12—;X2 —|-qX12jBX2 and g = X12—;X2 +5X12_ﬁ 2. By using
(1.4), we get

1

15 (407 = @+ ) alan) + 335 (197 — (0 = 0 xalaw)

L 12 5) va(z0)xa(a).

_ L (1+6) x1(z0)x1(zy) + 28

26

So, by Lemma ( ) we obtaln — (1 +0) x1(20) =

1 1
and %(1 — 0)x2(20) = 1

ferent non-zero multiplicative functions. Notice that § # +1 because ¢ #

452 ((1 +5) (Q+Q)2)

((1 —8)?2— (a — ¢)?), since x; and x are dif-
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(146)% — (a + q)?
26(1+9)

. Hence, by writing ~ instead of 8 we get part @

+a. Therefore we deduce that x1(z9) = and x2(z0) =

(1-0)%—(a—q)
26(1 —9)
(I.2.ii) @ # 0 and there exist two different non-zero multiplicative functions
x1 and x2 on S such that Bf = ax; and Bg = x2. By using (|1.4) again we get
1 1 « L 1
B(XQ(ZO) - B)XQ(xy) + ?Xl(xy) = 0, which gives xa(z9) = 3 and o = 0,
since x1 and xo are different. This possibility is excluded because a # 0.

(I.2.iii) There exist a non-zero multiplicative function x on S, an additive
function A on S\ I, and a function p on P, such that Sf = ax + ¥4,,, and

o 1 1
B9 = x £ Vay,,, which gives f = B(ax +W4y,) and g = B(X +Way,p)-

1
If g = B(x—i—\IIAX’p) then zy ¢ I,,\ Py. Indeed, otherwise we have x(z9) = 0

and W4, ,(20) = 0. Then Bg(z0) = x(20) + Yay,p(20) = 0. This contradicts
the fact that g(zg) # 0.

On the other hand zy ¢ P,. Indeed, otherwise we have x(zp) = 0. Then
B9(20) = Y ay,p(20) = Bf(20) = 0, which is a contradiction because g(z) # 0.
So, zp € S\ I, and then x(z9) # 0. Since f(z9) = 0 we get that f(z9) =
x(20)

[a + A(z9)] = 0, which implies that A(zy) = —a. Now, let z,y € S\ I,

be arbitrary. We have xzyzy € S\ I,. By using (1.4)), we get

2 l1-«a
2

1-a”  a- 1X(z0)>x(xy) + (7 - lX(Zo))X(fE?J)A(CEy) =0.

(4.2) (—52 + =5 5 3

1
If A =0 then p # 0 because V4, , # 0, a =0, and x(z) = 3 by 1)
This is a special case of solution part @
If A # 0 then by Lemma (i) we get from (4.2) that

—o? _ —
1520[ + aﬂlx(zo) =0 and 15201 — ;X(Zg) =0.

As a # 1, because x(z9) # 0, we deduce that x(z9) = ;a and x(zop) =
1 1
—;a. So, we obtain that @ = 0 and x(zo) = 5 and the form of f reduces
1
to f = —Way,,. So we are in part (7).

B

1
If g = —=(x — Yay,p), by using a similar computation as above, we show

that we are also in part .
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Case II. Suppose f(zg) # 0. By using system ([1.4) and (3.4)), we deduce
by an elementary computation that for any A € C

(4.3) (9= A)(zyzo)
=(g=AN@)(g=ANW) — (N +pA+ 1) f(x)f(y), z,yeS.

Let A; and Ay be the two roots of the equation A2 +pA+1 = 0. Then A\ =1

which gives Ay # 0 and A2 # 0. According to [I3, Proposition 16] we deduce

from (4.3)) that g— A1 f := x1(20)x1 and g— Ao f := x2(20) X2, where x1 and x2

are two multiplicative functions such that x1(z9) # 0 and x2(20) # 0, because

f and g are linearly independent.

A2x1(20)x1 — A1xa(20)x2 and
Ao — A1

. By putting A1 = ic, we get the solution of cate-

If Ay # Ao, then x1 # X2 and we get g =

f= X1(20)X1 — x2(20) X2

A2 — A
gory (4).
If Ay = Ay =: A\, then g— A f =: x(20)x where x is a multiplicative function
on S such that x(zg) # 0, because f and g are linearly independent. Hence,

(4.4) g=x(z0)x +Af.

Substituting this in (3.4]), an elementary computation shows that

fzyzo0) = x(20) f(2)x(y) + x(20) f(W)x(x) + (2A + p) f(x) f(y),

for all z,y € S.

Moreover A = 1 or A\ = —1 because A\; A\ = 1. Hence, (A, ) = (1,—2) or
(A p) = (—1,2) since A2 +puA+1 =0 and A € {—1,1}. So, the functional
equation above reduces to

f(zyzo) = x(20) f(®)x(y) + x(20) f () x(2),

for all x,y € S. Thus, the function f satisfies . Hence, in view of Propo-
sition we get f = A(z0)x + Pay,p. Then, by , we derive that g =
xX(z0)x + A f = (x(20) + X A(20))x + NWay,, = (x(20) £ A(20))X + Pay,p-
This is part .

Conversely, it is easy to check that the formulas for f and g listed in
Theorem define solutions of .

Finally, suppose that S is a topological semigroup. The continuity of the
solutions of the forms (I)—(6) follows directly from [II, Theorem 3.18|, and
for the ones of the forms (7)) and it is parallel to the proof used in [5]
Theorem 2.1| for categories (7) and (8). This completes the proof of Theo-

rem [4.1] O
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