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SYMMETRIZATION FOR MIXED OPERATORS

Sabri Bahrouni

Abstract. In this paper, we prove Talenti’s comparison theorem for mixed
local/nonlocal elliptic operators and derive the Faber–Krahn inequality for the
first eigenvalue of the Dirichlet mixed local/nonlocal problem. Our findings are
relevant to the fractional p&q−Laplacian operator.

1. Introduction

1.1. Comparison results: an overview

In [19], Talenti states that if, for given f ≥ 0, f ∈ L2(Ω), u ∈ H1
0 (Ω) solves{−∆u = f in Ω,

u = 0 on ∂Ω,

and if v ∈ H1
0

(
Ω#
)
solves{

−∆v = f# in Ω#,

v = 0 on ∂Ω#,

then

u# ≤ v a.e. in Ω#.

Received: 16.10.2023. Accepted: 25.03.2024. Published online: 27.04.2024.
(2020) Mathematics Subject Classification: 35R11, 47A75.
Key words and phrases: Talenti’s comparison, Faber–Krahn’ mixed operators.
The author is supported by FAPESP Proc 2023/04515-7.
c©2024 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0002-0589-5806
http://creativecommons.org/licenses/by/4.0/


Symmetrization for mixed operators 65

Here Ω# is the ball centered at the origin such that |Ω#| = |Ω| and u# de-
notes the Schwarz symmetrization of u. There are two available proofs of this
outcome. The first one, presented by Talenti [19], employs an isoperimetric
inequality that concerns the De Giorgi perimeter of Ω. The second proof, on
the other hand, was formulated by Lions [17] and does not rely on this par-
ticular inequality. Instead, Lions’ approach hinges on a differential inequality
that relates the distribution functions of u and v.

In [11], it is shown that, for f ∈ Lp(Ω) where p satisfies some suitable
conditions, if u solves the nonlinear and nonlocal problem{

(−∆)su = f in Ω,

u = 0 on RN\Ω,

and if v solves the symmetrized problem{
(−∆)sv = f# in Ω#,

v = 0 on RN\Ω#,

then

u# ≺ v

where ≺ is the order relation in the form of mass concentration comparison
(see Section 2 for precise definitions).

Can the comparison of mass concentration be refined to provide a pointwise
estimate? To determine whether a local case result, such as the one proven
by Talenti, could also apply to the non-local case, Section 4 in [11] examines
certain special cases. The findings reveal that a pointwise estimate cannot be
upheld, indicating that the result in [11] is optimal.

1.2. Main results

Mixed local and nonlocal problems have gained recent attention and are
currently under intensive investigation. The main focus is on an elliptic op-
erator that combines two different orders of differentiation, with the simplest
model case being L := −∆ + (−∆)s for s ∈ (0, 1).

Initial progress in this direction was achieved through probabilistic meth-
ods in [9, 10]. More recently, Biagi, Dipierro, Valdinoci, and Vecchi [2, 3, 4, 5]
have undertaken a systematic investigation of problems involving mixed op-
erators, with the publication of a number of results concerning regularity and
qualitative behavior for solutions, maximum principles, and related variational
principles.
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In this note, we establish the comparison principle of Talenti in the context
of a mixed local/nonlocal elliptic operator:

(1.1)
{Lu = f in Ω,

u = 0 in Rn\Ω,

where Ω is a bounded domain in Rn with smooth boundary, and f ∈ L2(Ω)
in order to guarantee the existence and the uniqueness of a weak solution.

Theorem 1.1. Let u ∈ X(Ω) be the weak solution of problem (1.1). Let
v ∈ Hs

0(Ω#) be the weak solution of the symmetrized problem

(1.2)

{
(−∆)sv = f# in Ω#,

v = 0 on RN\Ω#.

Then

u# ≺ v.

As applications of Theorem 1.1 we will give the alternative proof of that
Faber-Krahn inequality which was proved recently in [5, Theorem 1.1], and
in [14, Theorem 4.1], [8, Corollary 1.2] for the local case.

Corollary 1.2 (A Faber-Krahn inequality). Let Ω be a bounded open
subset of Rn satisfying |Ω#| = |Ω| and let λ1(Ω) denotes the first eigenvalue
of the Dirichlet problem{

(−∆)su = λ1(Ω)u in Ω,

u = 0 in Rn\Ω.

Then we have

(1.3) λ1(Ω#) ≤ λ1(Ω).

Moreover, if the equality holds in (1.3), then Ω is a ball.

Theorem 1.1 enables us to establish a priori estimates for solutions to
problem (1.1), expressed in relation to the data f .

Corollary 1.3 (Some regularity). Let u be the weak solution to prob-
lem (1.1). Then u ∈ Lr(Ω) with r = 2N

N+4s and there exists a constant C
such that

‖u‖Lr(Ω) ≤ C‖f‖L2(Ω).
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This paper is structured as follows. In Section 2, we present preliminar-
ies and useful results about the functional setting, rearrangements, and sym-
metrization. In Section 3, we provide the proofs for Theorem 1.1, Corollary 1.2,
and Corollary 1.3. Additionally, in Section 4, we extend our findings to the
fractional p&q−Laplacian operator.

2. Preliminaries

2.1. Functional setting

Let Ω ⊆ Rn be a bounded open set with continuous boundary. We then
consider the space X(Ω) defined as follows:

X(Ω) :=
{
u ∈ H1 (Rn) : u ≡ 0 a.e. on Rn\Ω

}
.

We can establish that X(Ω) is a real Hilbert space by using the scalar
product defined as:

〈u, v〉X(Ω) :=

∫
Ω

〈∇u,∇v〉dx.

The corresponding norm for this scalar product is given by:

‖u‖X(Ω) :=

(∫
Ω

|∇u|2dx
)1/2

.

Additionally, the linear map E0 : H1
0 (Ω)→ X(Ω) defined by

E0(u) := u · 1Ω

is a bijective isometry connecting H1
0 (Ω) and X(Ω).

On the space X(Ω), we consider the bilinear form

B(u, v) :=

∫
Ω

〈∇u,∇v〉dx+

∫∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy;

moreover, for every u ∈ X(Ω) we define

D(u) := B(u, u).
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Definition 2.1. Let f ∈ L2(Ω). We say that a function u : Rn → R is a
weak solution of problem (1.1), if it satisfies the following properties:
(i) u ∈ X(Ω);
(ii) for every test function ϕ ∈ X(Ω), one has

(2.1) B(u, ϕ) =

∫
Ω

fϕdx.

Applying the Lax–Milgram Theorem to the bilinear form B yields the
following existence result, see, [4, Theorem 1.1].

Theorem 2.2. For every f ∈ L2(Ω), there exists a unique weak solution
u ∈ X(Ω) of (1.1), further satisfying the ’a-priori’ estimate

‖u‖X(Ω) ≤ c0‖f‖L2(Ω).

Here, c0 > 0 is a constant independent of f .

We also recall that the solution v to the symmetrized problem (1.2) is
radial and radially decreasing, see for instance [2, Theorem 1.1].

2.2. Rearrangements and symmetrization

Definition 2.3. Let h : Ω→ [0,+∞[ be a measurable function, then the
decreasing rearrangement h∗ of h is defined as follows:

h∗(s) = inf{t ≥ 0 : |{x ∈ Ω : |h(x)| > t}| < s}, s ∈ [0,Ω].

While the Schwartz rearrangement of h is defined as follows

h](x) = h∗ (ωn|x|n) , x ∈ Ω].

We denote by ωn the measure of the unit ball in Rn, and Ω# the ball, centered
at the origin, with the same measure as Ω.

It is easily checked that h, h∗ and h] are equi-distributed, i.e.

|{x ∈ Ω : |h(x)| > t}| = |{s ∈ (0, |Ω|) : h∗(s) > t}|

=
∣∣{x ∈ Ω] : h](x) > t

}∣∣ , t ≥ 0,

and then if h ∈ LP (Ω), 1 ≤ p ≤ ∞, then h∗ ∈ LP (0, |Ω|), h] ∈ Lp
(
Ω]
)
, and

‖h‖Lp(Ω) = ‖h∗‖Lp(0,|Ω|) =
∥∥h]∥∥

Lp(Ω])
.
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Moreover, the following inequality, known as Hardy–Littlewood inequality,
holds true ∫

Ω

|h(x)g(x)|dx ≤
∫ |Ω|

0

h∗(s)g∗(s)ds.

2.3. Mass concentration

Definition 2.4. Let f, g ∈ L1
loc(Rn). We say that f is less concentrated

than g, and we write f ≺ g if for all r > 0 we get∫
Br(0)

f#(x)dx ≤
∫
Br(0)

g#(x)dx.

The partial order relationship ≺ is called the comparison of mass concentra-
tions.

Lemma 2.5 ([1, Corollary 2.1]). Let f, g ∈ L1
+(Ω). Then the following are

equivalent:
(i) f ≺ g;
(ii) for all φ ∈ L∞+ (Ω),∫

Ω

f(x)φ(x)dx ≤
∫

Ω#

f#(x)φ#(x)dx,

(iii) for all convex, nonnegative functions Φ: [0,∞) → [0,∞) with Φ(0) = 0
it holds that ∫

Ω

Φ(f(x))dx ≤
∫

Ω

Φ(g(x))dx.

3. Proofs

Proof of Theorem 1.1. Let Gt,h, t, h > 0 be the truncation function

Gt,h(θ) =


h if θ > t+ h,

θ − t if t < θ ≤ t+ h,

0 if θ ≤ t.
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Let us take ϕ(x) = Gt,h(u(x)) as a test function in (2.1), we obtain∫
Ω

〈∇u,∇Gt,h(u(x))〉dx+

∫∫
R2n

(u(x)− u(y))(Gt,h(u(x))− Gt,h(u(y)))

|x− y|n+2s
dxdy

=

∫
Ω

f(x)Gt,h(u(x)) dx.

It is proven in [11] that∫∫
R2n

(u(x)− u(y))(Gt,h(u(x))− Gt,h(u(y)))

|x− y|n+2s
dxdy

≥
∫∫

R2n

(u#(x)− u#(y))(Gt,h(u#(x))− Gt,h(u#(y)))

|x− y|n+2s
dxdy.

As a consequence we have∫
Ω

〈∇u,∇Gt,h(u(x))〉dx

+

∫∫
R2n

(u#(x)− u#(y))(Gt,h(u#(x))− Gt,h(u#(y)))

|x− y|n+2s
dxdy

≤
∫

Ω

f(x)Gt,h(u(x)) dx.

Letting h go to 0 yields

(3.1) − d

dt

(∫
Ωt

|∇u|2 dx

)
+

∫ r

0

(∫ +∞

r

(µ(τ)− µ(ρ))ΘN,s(τ, ρ)ρN−1 dρ

)
τN−1 dτ

≤
∫ r

0

f∗
(
ωNρ

N
)
ρN−1 dρ,

where

Ωt = {x ∈ Ω: u(x) > t} ,

and

ΘN,s(τ, ρ) =
1

NωN

∫
|x′|=1

(∫
|y′|=1

1

|τx′ − ρy′|N+2s
dHN−1 (y′)

)
dHN−1 (x′) .
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From (3.1) we get

∫ r

0

(∫ +∞

r

(µ(τ)− µ(ρ))ΘN,s(τ, ρ)ρN−1 dρ

)
τN−1 dτ

≤
∫ r

0

f∗
(
ωNρ

N
)
ρN−1 dρ.

The rest of the proof is the same as the proof of [11, Theorem 3.1] (Step 3
and Step 4). �

Proof of Corollary 1.2. Let u ∈ X(Ω) be such that{Lu = λ1(Ω)u in Ω,

u = 0 in Rn\Ω.

Let v ∈ X(Ω#) be such that{
(−∆)sv = λ1(Ω)u# in Ω#,

u = 0 in Rn\Ω#.

Then by Theorem 1.1, u# ≺ v. If we take Φ(t) = t|v| in Lemma 2.5, we get∫
Ω#

u#|v|dx ≤
∫

Ω#

|v|2dx.

But by the Rayleigh-quotient characterization of the first eigenvalue,

λ1(Ω) =
DΩ#(v)∫
Ω# u#v

≥ DΩ#(v)∫
Ω# |v|2dx

≥ λ1(Ω#).

This gives the proof of (1.3). �

Proof of Corollary 1.3. We will use [7, Theorem 3.2] the integral
form for the solution v to the symmetrized problem (1.2), namely

v(x) =

∫
Ω#

GΩ#(x, y)f#(y)dy,

where GΩ# is the Green function of the fractional Laplacian on the ball. From
[15, Theorem 3.2], we have

GΩ#(x, y) ≤ C

|x− y|N−2s
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for any x 6= y in Ω#, then, extending f to 0 out of Ω, Hardy-Littlewood-
Sobolev inequality [16, Theorem 4.3] implies,

‖u‖Lr(Ω) = ‖u#‖Lr(Ω#) ≤ ‖v‖Lq(Ω#) = ‖v‖Lq(Ω) ≤ C‖f‖L2(Ω),

where r = 2N
N+4s . �

4. Further extensions

In [12], it is proven that for p ≥ 2 and f ∈ Lm(Ω) satisfying certain
conditions, if u is a solution to the nonlinear and nonlocal problem{

(−∆)spu = f in Ω,

u = 0 on Rn\Ω,

and v is a solution to the symmetrized problem{
(−∆)sv = g# in Ω#,

v = 0 on Rn\Ω#,

then

u# ≺ v

where g = g(|x|) is the radial function defined by

g(r) = H(n, s, p)r
(n−s)(p−2)

p−1

[(n− s)(p− 2)

p− 1

1

rn

(∫
Br

f#dx
) 1
p−1

+
nωn

p− 1

(∫
Br

f#dx
) 2−p
p−1

f#(x)
]
,

with

H(n, s, p) =
γ(n, s, 2)

nωn

(Ps (B1))
p−2
p−1

γ(n, s, p)
1
p−1

,

being

Ps (B1) =

∫
Br

∫
Bcr

1

|x− y|n+s
dxdy.
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We establish the comparison principle of Talenti for nonlocal, nonlinear,
and nonhomogeneous elliptic problems of the form:

(4.1)
{

(−∆)spu+ (−∆)squ = f in Ω,

u = 0 on Rn\Ω,

where Ω is a bounded domain in Rn with smooth boundary, 2 ≤ q < p <∞,
and f satisfies suitable conditions to ensure the existence and uniqueness of
a weak solution.

In the case of the usual Sobolev spaces, for any 1 ≤ p < q ≤ ∞, it is easy
to see thatW 1,q

0 (Ω) ⊂W 1,p
0 (Ω). In the fractional case, this kind of embedding

is NOT TRUE. In fact, in [6, Lemma 2.6] it is proved that

W s1,p
0 (Ω) ↪→W s2,q

0 (Ω) for any 0 < s1 < s2 < 1 ≤ q < p <∞,

this also holds when p = q (see [13, Theorem 2.2]). However, the embedding

W s,p
0 (Ω) ↪→W s,q

0 (Ω) for any 0 < s < 1 ≤ q < p <∞

is not true (see [18, Theorem 1.1]). So, in order to deal with our problem (4.1),
we consider the space

Ws := W s,p
0 (Ω) ∩W s,q

0 (Ω)

endowed with the norm [·]s := [·]s,p + [·]s,q.
We say that u ∈ Ws is a weak solution of problem (4.1) if

K(n, s, p)

2

∫
Rn

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sp
dxdy

+
K(n, s, q)

2

∫
Rn

∫
Rn

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sq
dxdy

=

∫
Rn
f(x)ϕ(x) dx for all ϕ ∈ Ws.

Theorem 4.1. Let u ∈ Ws be the weak solution of problem (4.1). Let
v ∈ Ws be the weak solution of the symmetrized problem{

(−∆)sv = g in Ω#,

v = 0 on Rn\Ω#.

Then

u# ≺ v.
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