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FIXED POINT AND BEST PROXIMITY POINT RESULTS
IN PIV-S-METRIC SPACES

Mohammad Asim , Mohammad Imdad

Abstract. This paper presents the concept of a partial idempotent valued
S-metric space, abbreviated as PIV-S-metric space, as a generalization of both
the PIV-metric space and S-metric space. The study utilizes this new frame-
work to establish a fixed point theorem and a best proximity point theorem.
Additionally, the paper proves the existence and uniqueness of the best prox-
imity point within this context. Several illustrative examples are provided to
demonstrate the practical applications of the main findings.

1. Introduction

The theory of fixed points continues to be a widely used tool across vari-
ous branches of mathematics, with the classical Banach contraction principle
being a well-known example [7]. This principle is particularly significant as
it allows for the resolution of integral equations, differential equations, and
fractional differential equations by reducing them to the problem of identify-
ing a self-mapping’s fixed points. The assurance of a unique fixed point on
a complete metric space provided by the Banach contraction principle has
sparked numerous extensions by researchers, expanding its applicability in
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various contexts (see [2–6, 8, 10, 12, 15–19, 21]). In 1994, the concept of par-
tial metric spaces was introduced by Matthews during the study of denota-
tional semantics of data-flow networks. Expanding on this notion, Shukla [21]
made significant progress two decades later by generalizing both partial met-
ric spaces and b−metric spaces, leading to the establishment of the class of
partial b−metric spaces. This new framework was utilized to establish a fixed
point theorem as an analog of the Banach contraction principle.

In 2007, Huang and Zhang [12] introduced the concept of cone metric
spaces by substituting the set of real numbers (range set of the metric) with
an ordered Banach space. Later, in 2014, Ma et al. [17] expanded on this
concept by inventing C∗-algebra valued metric spaces, which give a more
comprehensive framework than ordinary metric spaces by substituting a uni-
tal C∗-algebra for the range set. Within this context, they successfully proved
fixed point results. The subsequent year, Ma et al. [16] took it a step fur-
ther and introduced C∗-algebra valued b-metric spaces, thereby broadening
their work and establishing additional fixed point results, including an ap-
plication involving integral type operators. In 2019, Chandok [9] generalized
C∗-algebra valued metric spaces to C∗-algebra valued partial metric spaces
and demonstrated some fixed point theorems. By developing the novel class of
C∗-algebra valued partial b-metric spaces in 2020, Mlaiki et al. [19] expanded
both C∗-algebra valued partial metric spaces and C∗-algebra valued b-metric
spaces. They utilized this innovative concept to prove fixed point theorems
and presented an application for solving integral type equations.

In 2012, Sedghi et al. [20] introduced the concept of S-metric spaces and
established fixed point theorems for implicit relations. Concurrently, in the
same year, Iranmanesh et al. [13] pioneered the idea of PIV-metric spaces and
proved fixed point results within this framework. Subsequently, in 2019, Iran-
manesh et al. [14] further expanded on this concept and presented additional
fixed point and the results on best proximity point in PIV-metric spaces.

Building on the previous observations, we propose the notion of PIV-metric
space and S-metric space, culminating in the concept of PIV-S-metric space.
By doing so, we not only unify these two notions but also employ this new
framework to establish fixed point results. Additionally, we provide an illus-
trative example to showcase the practical applications and utility of our main
findings.

2. Preliminaries

Now, we gather a few pertinent definitions and facts that will be relevant
for the subsequent discussion:
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In 1994, Matthews put forth the definition of a partial metric space, which
is as follows:

Definition 2.1 ([18]). Let V 6= ∅. A mapping p : V × V → R+ is called
partial metric on U if (for all χ, ς o, θ ∈ V ):
(1) χ = ς o ⇔ p(χ, χ) = p(χ, ς o) = p( ς o, ς o),
(2) p(χ, χ) ≤ p(χ, ς o),
(3) p(χ, ς o) = p( ς o, χ),
(4) p(χ, θ) ≤ p(χ, ς o) + p( ς o, θ)− p( ς o, ς o).
The pair (V, p) is called a partial metric space.

Since then this fundamental concept has played a significant role in var-
ious mathematical investigations and continues to be relevant in subsequent
research.

Remark 2.1. Obviously, if p(χ, χ) = 0 for all χ ∈ V, then (V, p) is a metric
space.

Throughout the paper, we denote by (B,⊕) an idempotent space and
B+ := {χ ∈ B : χ ≥⊕ 0B}, where 0B is a zero element in B.

Definition 2.2 ([13]). We define an order relations on idempotent space
(B,⊕) by

χ ≤⊕ ς o ⇔ χ⊕ ς o = ς o.

Also, we write ς o ≥⊕ χ instead of χ ≤⊕ ς o. Similarly,

χ <⊕ ς o ⇔ χ⊕ ς o = ς o and χ 6= ς o.

Also, we write ς o >⊕ χ instead of χ <⊕ ς o.

Example 2.1 ([13]). Let B = R endowed with χ ⊕ ς o = max{χ, ς o} or
χ⊕ ς o = min{χ, ς o} for all χ, ς o ∈ R. Then (B,⊕) is an idempotent space.

Example 2.2 ([13]). Let B be a set of real matrices. The conforming
matrices M1 = (χij), M2 = ( ς oij) satisfy the conventional rule of matrix
addition together with multiplication by a scalar α ∈ R as follows

{M1 +M2} = χij ⊕ ς oij , {αM1} = αχij .

Then (B,⊕) is an idempotent space.
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Definition 2.3 ([13]). A vector space B over field R is said to be an
idempotent space if it satisfies the following (for all χ, ς o, θ ∈ B):
(i) χ⊕ ( ς o⊕ θ) = (χ⊕ ς o)⊕ θ;
(ii) χ⊕ χ = χ.

An idempotent space (B,⊕) is commutative if χ⊕ ς o = ς o⊕ χ.

Definition 2.4 ([13]). Assume that (B,≤) is a partially ordered set. We
define

⊕
max{l,m} =


l, if m ≤ l,
m, if l < m,
0B, otherwise,

for l,m ∈ B, and

⊕
max {χ1, χ2, · · · , χn} =

⊕
max

{ ⊕
max {χ1, χ2, · · · , χn−1} , χn

}
,

for χ1, χ2, · · · , χn ∈ B.

Definition 2.5 ([13]). Let (B,≤) be a partially ordered vector space. Let
{χn} be a sequence in B and χ ∈ B. If ∀ 0B < a ∃ N ∈ N ∀ n ≥ N
(χn−χ < a), then the sequence {χn} is called convergent and converges to χ,
where χ is called limit of {χn}. We write then lim

n→∞
χn = χ or χn → χ as

n→∞.

Definition 2.6 ([13]). Consider a partially ordered vector space (B,≤),
and let us focus on its order relation. We say that the order relation on B has
a positive cone ordering property when the following conditions hold: For any
vector 0B ≤ r ≤ s and scalar inequalities 0 ≤ l ≤ ς o, the resulting inequalities
are as follows:

0B ≤ lr ≤ ls, lχ ≤ ς oχ

for all 0B ≤ χ ∈ B. This property essentially ensures a well-behaved order-
ing system within the vector space, where the positive cone contributes to
maintaining the ordering of vectors and scalars consistently.

Definition 2.7 ([13]). Let (B,≤) be a partially ordered vector space. If
the order relation on B has the positive cone ordering property, then B is a
normal space.
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Now, we recall the definition of PIV-metric space as follows:

Definition 2.8 ([13]). Let V 6= ∅. An idempotent valued S-metric on V
is a function dI : V ×V → B+ that satisfies the following (for all χ, ς o, θ ∈ V ):
(i) dI(χ, ς o) = dI(χ, χ) = dI( ς o, ς o)⇔ χ = ς o;
(ii) dI(χ, χ) ≤⊕ dI(χ, ς o);
(iii) dI(χ, ς o) = dI( ς o, χ);
(iv) dI(χ, ς o) ≤⊕ dI(χ, θ)⊕ dI(θ, ς o).
The triplet (V,B, dI) is called PIV-metric space.

Example 2.3 ([13]). Let V = [0,∞), B = R endowed with χ ⊕ ς o =
max{χ, ς o}. Define a mapping d : V × V → B+ by

d(χ, ς o) = χ⊕ ς o, ∀ χ, ς o ∈ V.

Then the triplet (V,B, d) is a PIV-metric space.

The concept of S-metric space was initiated by Sedghi et al. [20] in 2012
and runs as follows.

Definition 2.9 ([20]). Let V 6= ∅. An S-metric space is a function d : V ×
V × V → R+ that satisfies the following (for all χ, ς o, θ, σ ∈ V ):
(i) d(χ, ς o, θ) ≥ 0;
(ii) d(χ, ς o, θ) = 0 ⇔ χ = ς o = θ;
(iii) d(χ, ς o, θ) ≤ d(χ, χ, σ) + d( ς o, ς o, σ) + d(θ, θ, σ).

The pair (V, d) is called S-metric space.

The following notion of partial S-metric space is proposed by Asil et al. [1].

Definition 2.10 ([1]). Let V 6= ∅. A partial S-metric space is a function
d : V × V × V → R+ that satisfies the following (for all χ, ς o, θ, σ ∈ V ):
(i) d(χ, χ, χ) = d( ς o, ς o, ς o) = d(χ, χ, ς o)⇔ χ = ς o;
(ii) d(χ, χ, χ) ≤ d(χ, ς o, θ);
(iii) d(χ, ς o, θ) ≤ d(χ, χ, σ) + d( ς o, ς o, σ) + d(θ, θ, σ)− 2d(σ, σ, σ).

The pair (V, d) is called partial S-metric space.

Remark 2.2. Clearly, every S-metric space can be considered as a partial
S-metric space. However, it is important to note that the converse is not
always true in general. In other words, not every partial S-metric space can
be regarded as an S-metric space. The distinction between the two lies in
the specific conditions and properties that they satisfy, making them distinct
concepts within the realm of mathematical spaces.
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3. Idempotent-valued S-metric space

Now, we introduce the following definition of PIV-S-metric space.

Definition 3.1. Let V 6= ∅. A PIV-S-metric on V is a function d : V ×
V × V → B+ that satisfies the following (for all χ, ς o, θ, σ ∈ V ):
(i) d(χ, χ, χ) = d( ς o, ς o, ς o) = d(χ, χ, ς o)⇔ χ = ς o;
(ii) d(χ, χ, χ) ≤⊕ d(χ, ς o, θ);
(iii) d(χ, χ, ς o) = d( ς o, ς o, χ);
(iv) d(χ, ς o, θ) ≤⊕ d(χ, χ, σ)⊕ d( ς o, ς o, σ)⊕ d(θ, θ, σ).

The triplet (V,B, d) is called PIV-S-metric space.

Example 3.1. Let V = [0,∞), B = R endowed with the operation χ⊕ ς o =
max{χ, ς o}. Define a mapping d : V × V × V → B+ by

d(χ, ς o, θ) = χ⊕ ς o⊕ θ, ∀ χ, ς o, θ ∈ V.

Then the triplet (V,B, d) is a PIV-S-metric space. When we connect points
χ, ς o, θ with lines, forming a triangle, and choose a point σ inside this triangle,
the inequality

d(χ, ς o, θ) = d(χ, χ, σ)⊕ d( ς o, ς o, σ)⊕ d(θ, θ, σ)

holds true. This expression signifies the fulfillment of a specific property within
the PIV-S-metric space, demonstrating its unique characteristics and struc-
ture.

Example 3.2. Let Y 6= ∅ and V = B(Y, [0,∞)) be the set of bounded
mappings with order-bounded range. Suppose B = B(V, (R,⊕)) with (T1 ⊕
T2)(χ) = T1(χ) ⊕ T2(χ) and χ ⊕ ς o = max{χ, ς o}. Define a mapping d : V ×
V × V → B+ by

d(T1, T2, T3)(χ) = max{T1(χ), T2(χ), T3(χ)}, ∀ T1, T2, T3 ∈ V.

Then the triplet (V,B, d) is a PIV-S-metric space.

Example 3.3. Let V 6= ∅, dI endowed with the operation ⊕ PIV-metric
on V . Then

d(χ, ς o, θ) = dI(χ, θ)⊕ dI( ς o, θ)

is a PIV-S-metric on V .
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Let (V,B, d) be a PIV-S-metric space. Then the open ball with radius
ε >⊕ 0B and center χ is defined by

Bd(χ, ε) = { ς o ∈ V : d( ς o, ς o, χ) <⊕ d(χ, χ, χ)⊕ ε},

and the closed ball with radius ε >⊕ 0B and center χ is defined by

Bd(χ, ε) = { ς o ∈ V : d( ς o, ς o, χ) ≤⊕ d(χ, χ, χ)⊕ ε}.

The family of open balls

Λ = {Bd(χ, ε) : χ ∈ V, ε >⊕ 0B},

where Bd(χ, ε) represents the open ball centered at χ with radius ε, constitutes
a basis for a certain topology τ⊕ on V . This means that τ⊕ is a collection of
open sets in V , and any open set in τ⊕ can be expressed as a union of these
open balls from Λ. The topology τ⊕ is built upon the notion of open balls
defined by the S-metric space, which plays a crucial role in describing the
open sets and the structure of the space V .

Definition 3.2. Let (V,B, d) be a PIV-S-metric space. We say that
(i) A sequence {χn} ⊂ V is called convergent to χ if and only if

lim
n→∞

d(χn, χn, χ) = d(χ, χ, χ).

(ii) A sequence {χn} ⊂ V is called Cauchy if and only if lim
n,m→∞

d(χn, χn, χm)

exists and is finite.
(iii) The PIV-S-metric space (V,B, d) is said to be complete if every Cauchy

sequence {χn} in V converges to a point χ ∈ V such that

d(χ, χ, χ) = lim
n→∞

d(χn, χn, χ) = lim
n,m→∞

d(χn, χn, χm).

Definition 3.3. Let (V,B, d) be a PIV-S-metric space. A mapping
f : V → V is called a continuous at point χ ∈ V if for any χn → χ implies
that fχn → fχ.

Our main result runs as follows:
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Theorem 3.1. Let (V,B, d) be a complete PIV-S-metric space and f : V →
V satisfy the following:

(3.1) d(fχ, f ς o, fθ)

≤⊕ Θ
(
⊕

max{d(χ, ς o, θ), d(χ, χ, fχ), d( ς o, ς o, f ς o), d(θ, θ, fθ)}
)

for all χ, ς o, θ ∈ V , where Θ: B+ → B+ is a continuous, non-decreasing func-
tion such that lim

n→∞
Θn(b) = 0B and Θ(b) <⊕ b for b ∈ B+. Then f has

a unique fixed point ξ ∈ V and d(ξ, ξ, ξ) = 0B.

Proof. Choose χ0 ∈ V and define χn+1 = fχn for all n ∈ N0. For any
n ∈ N0, we have

d(χn+1,χn+1, χn) = d(fχn, fχn, fχn−1)

≤⊕ Θ
(
⊕

max{d(χn, χn, χn−1), d(χn, χn, fχn), d(χn, χn, fχn),

d(χn−1, χn−1, fχn−1)}
)

= Θ
(
⊕

max{d(χn, χn, χn−1), d(χn, χn, fχn), d(χn−1, χn−1, fχn−1)}
)

= Θ
(
⊕

max{d(χn, χn, χn−1), d(χn, χn, χn+1), d(χn−1, χn−1, χn)}
)

= Θ
(
⊕

max{d(χn, χn, χn−1), d(χn, χn, χn+1), d(χn, χn, χn−1)}
)

= Θ
(
⊕

max{d(χn, χn, χn−1), d(χn, χn, χn+1)}
)
.

Assume that

⊕
max{d(χn, χn, χn−1), d(χn, χn, χn+1)} = d(χn, χn, χn+1),

then we have

d(χn+1, χn+1, χn) ≤⊕ Θ
(
d(χn, χn, fχn)

)
= Θ

(
d(χn, χn, χn+1)

)
= Θ

(
d(χn+1, χn+1, χn)

)
,

a contradiction. Thus

⊕
max{d(χn, χn, χn−1), d(χn, χn, χn+1)} = d(χn, χn, χn−1).
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Therefore, (3.1) gives rise

(3.2) d(fχn, fχn, fχn−1) = d(χn+1, χn+1, χn) ≤⊕ Θ
(
d(χn, χn, χn+1)

)
.

By continuing this process, we get

(3.3) d(χn+1, χn+1, χn) ≤⊕ Θn
(
d(χ0, χ0, χ1)

)
.

This demonstrates that lim
n→∞

d(χn+1, χn+1, χn) = 0B. Now, we assert that the
sequence {χn} is Cauchy in V . For n,m ∈ N0 (n < m), we have

d(χn,χn, χm) ≤⊕ d(χn, χn, χn+1)⊕ d(χn, χn, χn+1)⊕ d(χm, χm, χn+1)

= d(χn, χn, χn+1)⊕ d(χm, χm, χn+1) (By (ii) of Definition 2.3)

≤⊕ d(χn, χn, χn+1)⊕ {d(χm, χm, χn+2)⊕ d(χm, χm, χn+2)

⊕ d(χn+1, χn+1, χn+2)}

= d(χn, χn, χn+1)⊕ d(χn+1, χn+1, χn+2)⊕ d(χm, χm, χn+2)

≤⊕ d(χn, χn, χn+1)⊕ d(χn+1, χn+1, χn+2)

⊕ {d(χm, χm, χn+3)⊕ d(χn+2, χn+2, χn+3)}

≤⊕ d(χn, χn, χn+1)⊕ d(χn+1, χn+1, χn+2)

⊕ d(χn+2, χn+2, χn+3)⊕ d(χm, χm, χn+3)

≤⊕ d(χn, χn, χn+1)⊕ d(χn+1, χn+1, χn+2)⊕ · · · ⊕ d(χm, χm, χm−1)

= d(χn+1, χn+1, χn)⊕ d(χn+2, χn+2, χn+1)⊕ · · · ⊕ d(χm, χm, χm−1).

Now, by employing (3.3), we get

d(χn, χn, χm) ≤⊕ Θn
(
d(χ1, χ1, χ0)

)
⊕Θn+1

(
d(χ1, χ1, χ0)

)
⊕Θn+2

(
d(χ1, χ1, χ0)

)
⊕ · · · ⊕Θm−1(d(χ1, χ1, χ0)

)
≤⊕ Θn

(
d(χ1, χ1, χ0)

)
⊕Θn

(
d(χ1, χ1, χ0)

)
⊕Θn

(
d(χ1, χ1, χ0)

)
⊕ · · · ⊕Θn

(
d(χ1, χ1, χ0)

)
= Θn

(
d(χ1, χ1, χ0)

)
(By (ii) of Definition (2.3)).

Therefore

lim
n→∞

d(χn, χn, χm) = 0B.
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Hence, the sequence {χn} is Cauchy in V . Since V is a complete PIV-S-metric
space then there exists ξ ∈ V such that

(3.4) d(ξ, ξ, ξ) = lim
m→∞

d(χn, χn, ξ) = lim
n,m→∞

d(χn, χn, χm) = 0B.

Now, to show that ξ ∈ V is a fixed point of f , we note that

d(ξ, ξ, fξ) ≤⊕ d(ξ, ξ, χn+1)⊕ d(Tξ, Tξ, χn+1)

= d(ξ, ξ, χn+1)⊕ d(fξ, fξ, fχn).

From (3.2), we have d(fξ, fξ, fχn) ≤⊕ Θ
(
d(ξ, ξ, χn)

)
, then

d(ξ, ξ, fξ) ≤⊕ d(ξ, ξ, χn+1)⊕Θ
(
d(ξ, ξ, χn)

)
= d(χn+1, χn+1, ξ)⊕Θ

(
d(χn, χn, ξ)

)
.

Using (3.4) in the above inequality, we get d(ξ, ξ, fξ) = 0B which implies
fξ = ξ. Hence, ξ is a fixed point of f .

For the uniqueness part, let us assume that there exist two points ξ and
ξ∗ in the space V such that fξ = ξ and fξ∗ = ξ∗. In other words, ξ and ξ∗
are fixed points of the mapping f . Then by employing (3.1), we have

d(ξ, ξ, fξ∗) = d(fξ, fξ, fξ∗)

≤⊕ α
⊕

max{d(ξ, ξ, ξ∗), d(ξ, ξ, fξ), d(ξ, ξ, fξ), d(ξ∗, ξ∗, fξ∗)}

= Θ
( ⊕

max{d(ξ, ξ, ξ∗), d(ξ, ξ, ξ), d(ξ∗, ξ∗, ξ∗)}
)

= Θ
(
d(ξ, ξ, ξ∗)

)
<⊕ d(ξ, ξ, ξ∗),

a contradiction. Hence ξ = ξ∗. Therefore, ξ is a unique fixed point of f .
Finally, we show that d(ξ, ξ, ξ) = 0B. Let us suppose, d(ξ, ξ, ξ) >⊕ 0B.

Then (3.1) implies that

d(ξ, ξ, ξ) = d(fξ, fξ, fξ∗)

≤⊕ Θ
( ⊕

max{d(ξ, ξ, ξ), d(ξ, ξ, fξ), d(ξ, ξ, fξ), d(ξ, ξ, fξ)}
)

= Θ
( ⊕

max{d(ξ, ξ, ξ), d(ξ, ξ, ξ), d(ξ, ξ, ξ)}
)

= Θ
(
d(ξ, ξ, ξ)

)
<⊕ d(ξ, ξ, ξ),

which leads to a contradiction. Consequently, d(ξ, ξ, ξ) = 0B. �
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Example 3.4. Let V = [1,∞), B = R endowed with the operation χ⊕ ς o =
max{χ, ς o}. Define a mapping d : V × V × V → B+ by

d(χ, ς o, θ) = χ⊕ ς o⊕ θ, ∀ χ, ς o, θ ∈ V.

Then the triplet (V,B, d) is a complete PIV-S-metric space. Define a mapping
f : V → V by

fχ =
χ+ 2

3
for all χ ∈ V

and define Θ: B+ → B+ by Θ(b) = b
2 . Here, one can easily seen that Θ is

continuous and non-decreasing function. Now, we have

d(fχ, f ς o, fθ) =
χ+ 2

3
⊕ ς o + 2

3
⊕ θ + 2

3

= max

{
χ+ 2

3
, ς

o + 2

3
,
θ + 2

3

}
=

1

3
max {χ, ς o, θ}

≤ 1

3
max

{(
χ+ 2

3
, ς

o + 2

3
,
θ + 2

3

)
,

(
χ, χ,

χ+ 2

3

)
,

(

ς o, ς o, ς
o + 2

3

)
,

(
θ, θ,

θ + 2

3

)}

=
1

3

⊕
max

{(
χ+ 2

3
⊕ ς o + 2

3
⊕ θ + 2

3

)
,

(
χ⊕ χ⊕ χ+ 2

3

)
,

(

ς o⊕ ς o⊕ ς o + 2

3

)
,

(
θ ⊕ θ ⊕ θ + 2

3

)}
≤⊕Θ

( ⊕
max

{
d(χ, ς o, θ), d(χ, χ, fχ), d( ς o, ς o, f ς o), d(θ, θ, fθ)

})
.

Therefore, all the prerequisites of Theorem 3.1 are met, confirming that ξ = 1
stands as the unique fixed point of the given mapping f .

Corollary 3.1. Consider a complete PIV-S-metric space (V,B, d) and a
mapping f : V → V that fulfills the following:

d(fχ, f ς o, fθ) ≤⊕ αd(χ, ς o, θ)

for all χ, ς o, θ ∈ V , where α ∈ [0, 1). Then f has a unique fixed point ξ ∈ V
and d(ξ, ξ, ξ) = 0B.
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4. Best proximity point results in PIV-S-metric space

In this section, we delve into the study of best proximity points within
the framework of PIV-S-metric spaces. The significance of best proximity
point results lies in their relevance to best approximation outcomes from this
perspective. The inception of best proximity point results can be traced back
to Fan [11], who demonstrated that for a continuous mapping f : K → X
defined on a nonempty compact convex subsetK of a Hausdorff locally convex
topological vector space V , equipped with the metric d, there exists a point
χ ∈ K such that d(χ, fχ) = inf{d( ς o, fχ) : ς o ∈ K}. Notably, when f is
a self-mapping, the best proximity point transforms into a fixed point. The
best approximation theorem ensures the existence of an approximate solution,
while the best proximity point theorem proves instrumental in resolving the
problem and offering an optimal approximate solution.

Consider two nonempty subsets, denoted as A and B, of a metric space
(V, d). In the context of a mapping f : A→ B, an element χ ∈ A is referred to
as a fixed point if fχ = χ. It is important to highlight that the requirement
f(A) ∩ A 6= ∅ is a vital condition for the presence of a fixed point in the
mapping f . However, it’s worth noting that this condition is necessary but
not sufficient. If the intersection of A and f(A) is empty, it implies that there
is no fixed point for f . In such cases, it is customary to seek an element χ
that is in some way closest to fχ, with the hope of finding an approximate
solution even though a fixed point may not exist.

Proposition 4.1. Let (V,B, d) be a PIV-S-metric space and Sd : V ×V →
B defined as follows

(4.1) Sd(χ, ς o) = d(χ, χ, ς o)⊕ d( ς o, ς o, χ).

Then (V,B, Sd) is a PIV-metric space.

Proof. Observe that the conditions (i)–(iii) are satisfied. Now to for (iv),
we have

Sd(χ, ς o) = d(χ, χ, ς o)⊕ d( ς o, ς o, χ) ≤⊕ (d(χ, χ, θ)⊕ d(χ, χ, θ)⊕ d( ς o, ς o, θ))
⊕ (d( ς o, ς o, θ)⊕ d( ς o, ς o, θ)⊕ d(χ, χ, θ))

= (d(χ, χ, θ)⊕ d( ς o, ς o, θ))⊕ (d( ς o, ς o, θ)⊕ d(θ, θ, θ))

= d(θ, θ, θ)⊕ d(θ, θ, χ)⊕ d(θ, θ, ς o)⊕ d( ς o, ς o, θ) = Sd(χ, θ)⊕ Sd(θ, ς o).

Hence, (V,B, Sd) is a PIV-metric space. �
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Definition 4.1. Let A and B be two nonempty subsets of (V,B, d). De-
note the distance between A and B by

Sd(A,B) =
⊕

inf{Sd(χ, ς o) : χ ∈ A, ς o ∈ B}.

Define the following

A0 = {χ ∈ A : Sd(χ, ς o) = Sd(A,B) for some ς o ∈ B} and

B0 = {χ ∈ B : Sd(χ, ς o) = Sd(A,B) for some ς o ∈ A}.

In the same way, we have developed the best proximity point analysis in the
framework of PIV-S-metric space (V,B, d).

An element χ ∈ A is said to be best proximity point of the map f : A→ B if

Sd(χ, fA) = Sd(A,B).

The global minimum of the mapping χ → d(χ, fχ) is identified as the best
proximity point, as it satisfies the condition Sd(χ, fχ) ≥⊕ Sd(A,B) for ev-
ery χ ∈ A. In other words, the best proximity point minimizes the distance
between a point and its image under the mapping, making it an optimal ap-
proximate solution within the space A and B. If the mapping is a self-mapping,
it is evident that the best proximity point coincides with a fixed point.

The fundamental objective of the best proximity point theory is to es-
tablish sufficient conditions that guarantee the existence of such points. By
providing these conditions, the theory offers a valuable tool to determine when
best proximity points are attainable, allowing for the identification of optimal
approximate solutions in various scenarios.

In what follows, we introduce two notions.

Definition 4.2. Let (V,B, d) be a PIV-S-metric space and A, B two
nonempty subsets of V . The set B is said to be approximatively compact with
respect to A if every sequence { ς on} ⊆ B satisfying the condition Sd(χ, ς on)→
Sd(χ,B) has a convergent subsequence for some χ in A.

Definition 4.3. Let A and B be two nonempty subsets of a PIV-S-metric
space (V,B, d). The mapping f : A→ B is said to be ⊕−proximal contraction
mapping if

(4.2)
Sd(x, fχ) = Sd(A,B)

Sd(y, f ς o) = Sd(A,B)

}
implies d(x, x, y) ≤⊕ αd(χ, χ, ς o),

where α ∈ [0, 1), for all x, y, χ, ς o ∈ A.
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Theorem 4.1. Consider two nonempty subsets, A and B of a complete
PIV-S-metric space (V,B, d), A0 is nonempty, and B is approximately com-
pact with respect to A. Let us assume that f : A → B is a ⊕−proximal con-
traction mapping satisfying f(A0) ⊆ B0. Then f has a unique best proximity
point ξ ∈ A such that Sd(ξ, fξ) = Sd(A,B).

Proof. Fix an arbitrary point χ0 ∈ A0 and take fχ0 ∈ f(A0) ⊆ B0 into
account. We can choose χ1 ∈ A0 such that Sd(χ1, fχ0) = Sd(A,B). Also, since
fχ1 ∈ f(A0) ⊆ B0, there exists χ1 ∈ A0 such that Sd(χ2, fχ1) = Sd(A,B).
Continuing this process, we can construct a sequence {χn} in A0 such that

Sd(χn+1, fχn) = Sd(A,B), ∀ n ∈ N0,

which shows that

Sd(x, fχ) = Sd(A,B),

Sd(y, f ς o) = Sd(A,B),

where x = χn, χ = χn−1, y = χn+1 and ς o = χn. Then from (4.2), we obtain

d(χn, χn, χn+1) ≤⊕ αd(χn−1, χn−1, χn)

≤⊕ α2d(χn−2, χn−2, χn−1)

...
≤⊕ αnd(χ0, χ0, χ1),

which on making n→∞, gives

lim
n→∞

d(χn, χn, χn+1) = 0B.

Now, we assert to show that {χn} is a Cauchy sequence in (V,B, d). Let us
suppose, on the contrary, that there exists ε >⊕ 0B and a subsequence {χnk

}
of {χn} such that

(4.3) d(χmk
, χmk

, χnk
) ≥⊕ ε for nk ≥ mk > k.

Also, for any mk, we can choose nk with nk > mk which satisfies (4.3). Hence

d(χmk
, χmk

, χnk−1) <⊕ ε.
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Setting Γn = d(χn, χn, χn−1), we have

ε ≤⊕ d(χmk
, χmk

, χnk
) = d(χnk

, χnk
, χmk

)

≤⊕ d(χnk
, χnk

, χnk−1)⊕ d(χnk
, χnk

, χnk−1)⊕ d(χmk
, χmk

, χnk−1)

= d(χnk
, χnk

, χnk−1)⊕ d(χmk
, χmk

, χnk−1) <⊕ Γnk
⊕ ε.

By taking limit as k →∞, we get

lim
k→∞

d(χmk
, χmk

, χnk
) = ε.

Further, we have

d(χmk
,χmk

, χnk
) ≤⊕ d(χmk

, χmk
, χnk−1)⊕ d(χnk

, χnk
, χmk−1)

≤⊕ d(χmk
, χmk

, χnk−1)⊕ d(χnk
, χnk

, χnk−1)

⊕ d(χmk−1, χmk−1, χnk−1)(4.4)

<⊕ (Γmk
⊕ Γnk

)⊕ d(χmk−1, χmk−1, χnk−1)

and

d(χmk−1, χmk−1, χnk−1) ≤⊕ d(χmk−1, χmk−1, χmk
)⊕ d(χnk−1, χnk−1, χmk

)

≤⊕ d(χmk−1, χmk−1, χmk
)⊕ d(χnk−1, χnk−1, χnk

)

⊕ d(χmk
, χmk

, χnk
)(4.5)

<⊕
(
Γmk−1

⊕ Γnk−1

)
⊕ d(χmk

, χmk
, χnk

).

By taking limit as k →∞ in (4.5) and using (4.4), we get

lim
k→∞

d(χmk−1, χmk−1, χnk−1) = ε.

From (4.2) with x = χmk
, χ = χmk−1, y = χnk

and ς o = χnk−1, we obtain

d(χmk
, χmk

, χnk
) ≤⊕ αd(χmk−1, χmk−1, χnk−1)

=⇒ lim
k→∞

d(χmk
, χmk

, χnk
) ≤⊕ α lim

k→∞
d(χmk−1, χmk−1, χnk−1)

ε ≤⊕ αε,

which implies that ε = 0B. Thus

lim
m,n→∞

d(χm, χmk
, χnk

) = 0B.
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Therefore, {χn} is a Cauchy sequence in A. Since (A,B, d) is a complete PIV-
S-metric space then there exists ξ ∈ A such that lim

n→∞
χn = ξ. Furthermore,

for all n ∈ N, we have

Sd(ξ,B) ≤⊕ Sd(ξ, fχn) ≤⊕ Sd(ξ, fχn+1)⊕ Sd(χn+1, fχn)

= Sd(ξ, fχn+1)⊕ Sd(A,B).

Letting n→∞, we have

lim
n→∞

Sd(ξ, fχn) = Sd(ξ,B) = Sd(A,B).

The sequence {fχn} has a subsequence {fχnk
} that converges to some η ∈ B

since B is approximately compact with respect to A. Hence,

Sd(ξ, η) = lim
n→∞

Sd(χnk
, fχnk

) = Sd(A,B),

that is, ξ ∈ A0. Since fξ ∈ f(A0) ⊆ B0 then there exists θ ∈ A0 such that
Sd(θ, fξ) = Sd(A,B). From (4.2) with x = χn+1, χ = χn, y = θ and ς o = ξ,
we obtain

d(χn+1, χn+1, θ) ≤⊕ αd(χn, χn, ξ) =⇒ lim
n→∞

d(ξ, ξ, θ) = 0B,

which implies that d(ξ, ξ, θ) = 0B and so ξ = θ. Therefore, Sd(ξ, fξ) =
Sd(A,B). Hence, f has the best proximity point.

For the uniqueness part, suppose that ξ 6= ξ∗, Sd(ξ, fξ) = Sd(A,B) and
Sd(ξ∗, fξ∗) = Sd(A,B). Employing (4.2) with x = χ = ξ and y = ς o = ξ∗,
we have

d(ξ, ξ, ξ∗) ≤⊕ αd(ξ, ξ, ξ∗),

which implies that d(ξ, ξ, ξ∗) = 0B and, consequently, ξ = ξ∗. �

Example 4.1. In Example 3.1, define a mapping f : V → V by

fχ =
χ

2
for all χ ∈ V.

Here, (V,B, d) is a complete PIV-S-metric space. By employing (4.1), we have

Sd(χ, ς o) = χ⊕ ς o.
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Let A = {2, 4, 6} and B = {1, 2, 3, 5, 7}. Observe that Sd(A,B) = 2, A0 =
{4}, B0 = {2} and f(A0) ⊆ B0. Suppose Sd(x, fχ) = Sd(A,B) and Sd(y, f ς o) =
Sd(A,B) = 2 then (x, χ), (y, ς o) ∈ {(2, 4), (2, 2)}. Since Sd(x, fχ) = Sd(A,B)
and Sd(y, f ς o) = Sd(A,B), then from (4.2) for α ≤ 0 and x = y = 2, we have

d(x, x, y) ≤⊕ αd(χ, χ, ς o).

Hence, all the hypotheses of Theorem 4.1 are fulfilled and ξ = 2 is a unique
best proximity point of f .

5. Conclusion

In this paper, we presented a unification of the concepts of PIV-metric
space and S-metric space, by introducing the notion of PIV-S-metric space
and utilizing it to establish fixed point results. Additionally, we extended our
study to prove best proximity point results within the framework of PIV-
S-metric space. To illustrate the practical applications of our main results,
we provided several examples that showcase their relevance and utility. This
unified approach not only enhances our understanding of these mathemati-
cal spaces but also opens up new avenues for exploring fixed point and best
proximity point properties within a broader context.
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