
Annales Mathematicae Silesianae 39 (2025), no. 1, 1–22
DOI: 10.2478/amsil-2024-0015

FIBONACCI SUMS MODULO 5

Kunle Adegoke, Robert Frontczak, Taras Goy

Abstract. We develop closed form expressions for various finite binomial Fi-
bonacci and Lucas sums depending on the modulo 5 nature of the upper sum-
mation limit. Our expressions are inferred from some trigonometric identities.

1. Preliminaries

As usual, the Fibonacci numbers Fn and the Lucas numbers Ln are defined,
for n ∈ Z, by the following recurrence relations for n ≥ 2:

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

For negative subscripts we have F−n = (−1)n−1Fn and L−n = (−1)nLn.
Throughout this paper, we denote the golden ratio by α = 1+

√
5

2 and
write β = 1−

√
5

2 = − 1
α . The Fibonacci and Lucas numbers possess the explicit

formulas (Binet formulas)

Fn =
αn − βn

α− β
, Ln = αn + βn, n ∈ Z.
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The sequences {Fn}n≥0 and {Ln}n≥0 are indexed in the On-Line Encyclo-
pedia of Integer Sequences [17] as entries A000045 and A000032, respectively.
For more information we refer to Koshy [12] and Vajda [18] who have written
excellent books dealing with Fibonacci and Lucas numbers.

There exists a countless number of binomial sums involving Fibonacci and
Lucas numbers. For some new articles in this field we refer to the papers
[1, 5, 2, 6].

In this paper, we introduce closed form expressions for finite Fibonacci and
Lucas sums involving different kinds of binomial coefficients and depending
on the modulo 5 nature of the upper summation limit. Our expressions are
derived from various trigonometric identities, particularly utilizing Waring
formulas and Chebyshev polynomials of the first and second kinds. We also
present some series involving Bernoulli polynomials.

We note that some of our results were announced without proofs in [4].

2. Fibonacci sums modulo 5 from the sinnx and cosnx expansions

We begin with a known lemma [9, 1.331(3) and 1.331(1)].

Lemma 2.1. If n is a positive integer, then

bn/2c∑
k=1

(−1)k−1n
k

(
n− k − 1

k − 1

)
2n−2k−1 cosn−2k x = 2n−1 cosn x− cosnx,(2.1)

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
2n−2k−1 cosn−2k−1 x =

sinnx

sinx
.(2.2)

Lemma 2.2. If n is an integer, then

cos
(nπ

5

)
=


(−1)n, if n ≡ 0 (mod 5),

(−1)n−1α/2, if n ≡ 1 or 4 (mod 5),

(−1)n−1β/2, if n ≡ 2 or 3 (mod 5),

(2.3)

cos
(2nπ

5

)
=


1, if n ≡ 0 (mod 5),

−β/2, if n ≡ 1 or 4 (mod 5),

−α/2, if n ≡ 2 or 3 (mod 5).

(2.4)
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Proof. Relations stated in (2.3) can be proved easily by elementary meth-
ods. For instance, they follow by applying the addition theorem for the cosine
function

cos(a+ b) = cos a cos b− sin a sin b

combined with the special values

cos
(π
5

)
=
α

2
, cos

(2π
5

)
= −β

2
, cos

(3π
5

)
=
β

2
, cos

(4π
5

)
= −α

2
.

Relations stated in (2.4) follow directly from (2.3). �

In our first main results we state Lucas (Fibonacci) identities involving
binomial coefficient and additional parameter.

Theorem 2.3. If n is a positive integer and t is any integer, then

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Ln−2k+t

=


Ln+t − (−1)n2Lt, if n ≡ 0 (mod 5),

Ln+t + (−1)nLt+1, if n ≡ 1 or 4 (mod 5),

Ln+t − (−1)nLt−1, if n ≡ 2 or 3 (mod 5),

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Fn−2k+t

=


Fn+t − (−1)n2Ft, if n ≡ 0 (mod 5),

Fn+t + (−1)nFt+1, if n ≡ 1 or 4 (mod 5),

Fn+t − (−1)nFt−1, if n ≡ 2 or 3 (mod 5).

Proof. Set x = π/5 in (2.1) and use (2.3) and the fact that

(2.5) 2αr = Lr + Fr
√
5, 2βr = Lr − Fr

√
5

for any integer r. �

We proceed with some corollaries.
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Corollary 2.4. If n is a positive integer, then

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
F2k =


−2Fn, if n ≡ 0 (mod 5),

−Fn−1, if n ≡ 1 or 4 (mod 5),

Fn+1, if n ≡ 2 or 3 (mod 5),

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Fn−2k+δ = Fn+δ,

where

δ =


0, if n ≡ 0 (mod 5),

−1, if n ≡ 1 or 4 (mod 5),

1, if n ≡ 2 or 3 (mod 5).

Corollary 2.5. If n is a positive integer, then

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Ln−2k−1

=

{
Ln−1 − (−1)n3, if n ≡ 2 or 3 (mod 5),

Ln−1 + (−1)n2, otherwise,

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Ln−2k+1

=

{
Ln+1 + (−1)n3, if n ≡ 1 or 4 (mod 5),

Ln+1 − (−1)n2, otherwise,

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Ln−2k

=

{
Ln − (−1)n4, if n ≡ 0 (mod 5),

Ln + (−1)n, otherwise.

Lemma 2.6. If n is an integer, then

sin (nπ/5)

sin (π/5)
=


0, if n ≡ 0 (mod 5),

(−1)bn/5c, if n ≡ 1 or 4 (mod 5),

(−1)bn/5cα, if n ≡ 2 or 3 (mod 5),

(2.6)
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sin(3nπ/5)

sin(3π/5)
=


0, if n ≡ 0 (mod 5),

(−1)bn/5c, if n ≡ 1 or 4 (mod 5),

(−1)bn/5cβ, if n ≡ 2 or 3 (mod 5).

(2.7)

From Lemma 2.6 we can deduce the following Lucas and Fibonacci bino-
mial identities modulo 5.

Theorem 2.7. If n is a positive integer and t is any integer, then

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Ln−2k+t(2.8)

=


(−1)b(n+1)/5cLt, if n ≡ 0 or 3 (mod 5),

(−1)b(n+1)/5cLt+1, if n ≡ 1 or 2 (mod 5),

0, if n ≡ 4 (mod 5),

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Fn−2k+t(2.9)

=


(−1)b(n+1)/5cFt, if n ≡ 0 or 3 (mod 5),

(−1)bn/5cFt+1, if n ≡ 1 or 2 (mod 5),

0, if n ≡ 4 (mod 5).

Proof. Set x = π/5 in (2.2), use (2.6), (2.5) and simplify. �

A variant of the Lucas and Fibonacci sums with even subscripts is stated
as the next corollary.

Corollary 2.8. If n is a positive integer, then

bn/2c∑
k=0

(−1)n−k
(
n− k
k

)
L2k=


(−1)b(n+1)/5cLn, if n ≡ 0 or 3 (mod 5),

(−1)b(n+1)/5c+1Ln−1, if n ≡ 1 or 2 (mod 5),

0, if n ≡ 4 (mod 5),

bn/2c∑
k=0

(−1)n−k
(
n− k
k

)
F2k=


(−1)b(n+1)/5cFn, if n ≡ 0 or 3 (mod 5),

(−1)b(n+1)/5c+1Fn−1, if n ≡ 1 or 2 (mod 5),

0, if n ≡ 4 (mod 5).
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Corollary 2.9. If n is a positive integer, then

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Fn−2k+1 =

{
0, if n ≡ 4 (mod 5),

(−1)b(n+1)/5c, otherwise,

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Fn−2k−δ = 0,

where

δ =

{
0, if n ≡ 0 or 3 (mod 5),

1, if n ≡ 1 or 2 (mod 5).

3. Fibonacci sums modulo 5 from Waring formulas

This section is based on utilizing the following trigonometric identities
with the use of Waring formulas.

Lemma 3.1. If n is a positive integer, then

bn/2c∑
k=0

(−1)k n

n− k

(
n− k
k

)
2n−2k−1 cosn−2k x = cosnx,(3.1)

(n−1)/2∑
k=0

(−1)(n−1)/2−k n

n− k

(
n− k
k

)
2n−2k−1 sinn−2k x(3.2)

= sinnx, n odd,
n/2∑
k=0

(−1)n/2−k n

n− k

(
n− k
k

)
2n−2k−1 sinn−2k x = cosnx, n even.(3.3)

Proof. Consider the Waring formula

bn/2c∑
k=0

(−1)k n

n− k

(
n− k
k

)
(x1 + x2)

n−2k(x1x2)
k = xn1 + xn2 .
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Let i be the imaginary unit. The choice x1 = eix/2, x2 = e−ix/2 produces
(3.1), while the choice x1 = eix/(2i), x2 = −e−ix/(2i) gives x1 + x2 = sinx,
x1x2 = 1/4, and

xn1 + xn2 =

{
(−1)(n−1)/221−n sinnx, if n is odd,

(−1)n/221−n cosnx, if n is even,

and hence (3.2) and (3.3). �

Lemma 3.2. If n is a positive integer, then

bn/2c∑
k=0

(−1)k
(
n− k
k

)
2n−2k cosn−2k x=

sin((n+ 1)x)

sinx
,(3.4)

(n−1)/2∑
k=0

(−1)(n−1)/2−k
(
n− k
k

)
2n−2k sinn−2k x=

sin((n+ 1)x)

cosx
, n odd,

n/2∑
k=0

(−1)n/2−k
(
n− k
k

)
2n−2k sinn−2k x=

cos((n+ 1)x)

cosx
, n even.

Proof. Similar to the proof of Lemma 3.1. We use the dual to the Waring
formula

bn/2c∑
k=0

(−1)k
(
n− k
k

)
(x1 + x2)

n−2k(x1x2)
k =

xn+1
1 − xn+1

2

x1 − x2
. �

Theorem 3.3. If n is a positive integer and t is any integer, then

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Fn−2k+t =


2Ft, if n ≡ 0 (mod 5),

−Ft+1, if n ≡ 1 or 4 (mod 5),

Ft−1, if n ≡ 2 or 3 (mod 5),

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Ln−2k+t =


2Lt, if n ≡ 0 (mod 5),

−Lt+1, if n ≡ 1 or 4 (mod 5),

Lt−1, if n ≡ 2 or 3 (mod 5).
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Proof. We apply equation (3.1). Inserting x = π/5 and x = 3π/5, respec-
tively, and keeping in mind the trigonometric identity cos 3x = 4 cos3 x−3 cosx
we end with

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
αn−2k+t =


2αt, if n ≡ 0 (mod 5),

−αt+1, if n ≡ 1 or 4 (mod 5),

αt−1, if n ≡ 2 or 3 (mod 5),

and

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
βn−2k+t

=


2βt, if n ≡ 0 (mod 5),

−βt(α3 − 3α), if n ≡ 1 or 4 (mod 5),

−βt(β3 − 3β), if n ≡ 2 or 3 (mod 5).

To complete the proof simplify the terms in brackets and combine according
the Binet formulas. �

From Theorem 3.3 we can immediately obtain the following finite binomial
sums.

Corollary 3.4. If n is a positive integer, then

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Fn−2k =


0, if n ≡ 0 (mod 5),

−1, if n ≡ 1 or 4 (mod 5),

1, if n ≡ 2 or 3 (mod 5),

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Ln−2k =

{
4, if n ≡ 0 (mod 5),

−1, otherwise,

and

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Fn+1−2k =


2, if n ≡ 0 (mod 5),

−1, if n ≡ 1 or 4 (mod 5),

0, if n ≡ 2 or 3 (mod 5),

bn/2c∑
k=0

(−1)n−k n

n− k

(
n− k
k

)
Ln+1−2k =

{
2, if n ≡ 0, 2 or 3 (mod 5),

−3, otherwise.
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Remark. Identities (2.8) and (2.9) in Theorem 2.7 can also be obtained
straightforwardly by evaluating the trigonometric identity (3.4) at x = π/5
and x = 3π/5, respectively, while using (2.6) and (2.7).

4. Fibonacci sums modulo 5 from Chebyshev polynomials

For any integer n ≥ 0, the Chebyshev polynomials {Tn(x)}n≥0 of the first
kind are defined by the second-order recurrence relation [16]

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 2, T0(x) = 1, T1(x) = x,

while the Chebyshev polynomials {Un(x)}n≥0 of the second kind are de-
fined by

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 2, U0(x) = 1, U1(x) = 2x.

The Chebyshev polynomials possess the representations

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k,

Un(x) =

bn/2c∑
k=0

(
n+ 1

2k + 1

)
(x2 − 1)kxn−2k,

and have the exact Binet-like formulas

Tn(x) =
1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
,

Un(x) =
1

2
√
x2 − 1

(
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

)
.

The properties of Chebyshev polynomials of the first and second kinds have
been studied extensively in the literature. The reader can find in the recent
papers [7, 8, 11, 14, 15, 19] additional information about them, especially
about their products, convolutions, power sums as well as their connections
to Fibonacci numbers and polynomials.
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Lemma 4.1. For all x ∈ C and a positive integer n, we have the following
identities:

n

n∑
k=0

(−1)k 4k

n+ k

(
n+ k

n− k

)
sin2k

(x
2

)
= cosnx,(4.1)

n

n∑
k=0

(−1)n−k 4k

n+ k

(
n+ k

n− k

)
cos2k

(x
2

)
= cosnx.(4.2)

Proof. Identities (4.1) and (4.2) are consequences of the identity

(4.3) n

n∑
k=0

(−2)k

n+ k

(
n+ k

n− k

)
(1∓ x)k = (±1)nTn(x)

derived in [3]. �

Lemma 4.2. If n is a non-negative integer, then

Tn

(
− α

2

)
=


1, if n ≡ 0 (mod 5),

−α/2, if n ≡ 1 or 4 (mod 5),

−β/2, if n ≡ 2 or 3 (mod 5),

Tn

(
− β

2

)
=


1, if n ≡ 0 (mod 5),

−β/2, if n ≡ 1 or 4 (mod 5),

−α/2, if n ≡ 2 or 3 (mod 5).

Proof. Evaluate the identity Tn(cosx) = cosnx at x = 4π/5 and x =
2π/5, in turn. �

Theorem 4.3. If n is a positive integer and t is any integer, then

(4.4)
dn/2e∑
k=1

n

n+ 2k − 1

(
n+ 2k − 1

n− 2k + 1

)
5kF2k+t−1

−
bn/2c∑
k=0

n

n+ 2k

(
n+ 2k

n− 2k

)
5kL2k+t =


−Lt, if n ≡ 0 (mod 5),

Lt+1/2, if n ≡ 1 or 4 (mod 5),

−Lt−1/2, if n ≡ 2 or 3 (mod 5),
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(4.5)
dn/2e∑
k=1

n

n+ 2k − 1

(
n+ 2k − 1

n− 2k + 1

)
5k−1L2k+t−1

−
bn/2c∑
k=0

n

n+ 2k

(
n+ 2k

n− 2k

)
5kF2k+t =


−Ft, if n ≡ 0 (mod 5),

Ft+1/2, if n ≡ 1 or 4 (mod 5),

−Ft−1/2, if n ≡ 2 or 3 (mod 5).

Proof. Using x = −α/2 and x = −β/2, in turn, in (4.3) with the upper
sign gives, in view of Lemma 4.2,

n∑
k=0

n

n+ k

(
n+ k

n− k

)
(
√
5)k
(
(−1)k+1λαk+t − βk+t

)

=


−(λαt + βt), if n ≡ 0 (mod 5),

(λαt+1 + βt+1)/2, if n ≡ 1 or 4 (mod 5),

−(λαt−1 + βt−1)/2, if n ≡ 2 or 3 (mod 5),

from which (4.4) and (4.5) now follow upon setting λ = 1 and λ = −1, in
turn, and using the Binet formulas and the summation identity

n∑
j=0

fj =

bn/2c∑
j=0

f2j +

dn/2e∑
j=1

f2j−1. �

We observe the following special cases of the prior result.

Corollary 4.4. If n is a positive integer, then

dn/2e∑
k=1

n

n+ 2k − 1

(
n+ 2k − 1

n− 2k + 1

)
5kL2k+δ−1 =

bn/2c∑
k=0

n

n+ 2k

(
n+ 2k

n− 2k

)
5k+1F2k+δ,

where

δ =


0, if n ≡ 0 (mod 5),

−1, if n ≡ 1 or 4 (mod 5),

1, if n ≡ 2 or 3 (mod 5).
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Theorem 4.5. If n is a positive integer and t is any integer, then

n∑
k=0

(−1)n−k n

n+ k

(
n+ k

n− k

)
L2k+t =


Lt, if n = 0 (mod 5),

Lt−1/2, if n = 1 or 4 (mod 5),

−Lt+1/2, if n = 2 or 3 (mod 5),

n∑
k=0

(−1)n−k n

n+ k

(
n+ k

n− k

)
F2k+t =


Ft, if n = 0 (mod 5),

Ft−1/2, if n = 1 or 4 (mod 5),

−Ft+1/2, if n = 2 or 3 (mod 5).

Proof. Set x = π/5 in (4.1) and use (2.3) and the fact that sin(π/10) =
−β/2 to obtain

n∑
k=0

(−1)n−k n

n+ k

(
n+ k

n− k

)
β2k+t =


βt, if n = 0 (mod 5),

βt−1/2, if n = 1 or 4 (mod 5),

−βt+1/2, if n = 2 or 3 (mod 5),

from which the results follow by (2.5). �

Using Theorem 4.5, we have the following binomial Fibonacci identities
modulo 5.

Corollary 4.6. If n is a positive integer, then

n∑
k=0

(−1)k

n+ k

(
n+ k

n− k

)
F2k+δ = 0,

where

δ =


0, if n = 0 (mod 5),

1, if n = 1 or 4 (mod 5),

−1, if n = 2 or 3 (mod 5).

Lemma 4.7. If x is a complex variable and n is a positive integer, then

n∑
k=1

(−1)k−1 4kk

n+ k

(
n+ k

n− k

)
sin2k−2

(x
2

)
=

2 sinnx

sinx
,(4.6)

n∑
k=1

(−1)n−k 4kk

n+ k

(
n+ k

n− k

)
cos2k−2

(x
2

)
=

2 sinnx

sinx
.(4.7)
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Proof. Identities (4.6) and (4.7) come from the following identities de-
rived in [3]:

n∑
k=1

(−1)n−k 2kk

n+ k

(
n+ k

n− k

)
(1∓ x)k−1 = (∓1)n−1Un−1(x),

n∑
k=1

(−1)n−k 4kk

n+ k

(
n+ k

n− k

)
x2k−1 = U2n−1(x). �

Theorem 4.8. If n is a positive integer and n is any integer, then

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
L2k+t

=


0, if n ≡ 0 (mod 5),

(−1)bn/5cLt+2/2, if n ≡ 1 or 4 (mod 5),

(−1)bn/5c+1Lt+1/2, if n ≡ 2 or 3 (mod 5),

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
F2k+t

=


0, if n ≡ 0 (mod 5),

(−1)bn/5cFt+2/2, if n ≡ 1 or 4 (mod 5),

(−1)bn/5c+1Ft+1/2, if n ≡ 2 or 3 (mod 5).

Proof. Set x = π/5 and x = 3π/5, respectively, in (4.6), and use (2.6)
and (2.7). �

Remark. Theorem 4.8 can also be proved using (4.7). Using the trigono-
metric identities sin 2x = 2 sinx cosx and cos 3x = 4 cos3 x−3 cosx and work-
ing with x = 2π/5 and x = 6π/5, respectively, we end with

2

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
L2k−1+t

=


0, if n ≡ 0 (mod 5),

(−1)bn/5c(αt+1 − βt−3 + 3βt−1), if n ≡ 1 or 4 (mod 5),

(−1)bn/5c(−αt + βt+4 − 3βt+2), if n ≡ 2 or 3 (mod 5),
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and

2
√
5

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
F2k−1+t

=


0, if n ≡ 0 (mod 5),

(−1)bn/5c
(
αt+1 + βt−3 − 3βt−1

)
, if n ≡ 1 or 4 (mod 5),

(−1)bn/5c
(
− αt − βt+4 + 3βt+2

)
, if n ≡ 2 or 3 (mod 5).

To get Theorem 4.8 simplify the terms in brackets and replace t by t+ 1.

Applying Theorem 4.8 yields the following two corollaries.

Corollary 4.9. If n is a positive integer, then

n∑
k=1

(−1)k k

n+ k

(
n+ k

n− k

)
F2k−δ = 0,

where

δ =

{
2, if n ≡ 1 or 4 (mod 5),

1, if n ≡ 2 or 3 (mod 5).

Corollary 4.10. If n is a positive integer and t is any integer, then we
have:

If n ≡ 0 (mod 5), then

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Ln−2k+t = 2

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
L2k+t,

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Fn−2k+t = 2

n∑
k=1

(−1)k−1 k

n+ k

(
n+ k

n− k

)
F2k+t,

if n ≡ 1 or 4 (mod 5), then

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Ln−2k+t = 2

n∑
k=1

(−1)k+1 k

n+ k

(
n+ k

n− k

)
L2k−1+t,

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Fn−2k+t = 2

n∑
k=1

(−1)k+1 k

n+ k

(
n+ k

n− k

)
F2k−1+t,
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if n ≡ 2 or 3 (mod 5), then

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Ln−2k+t = 2

n∑
k=1

(−1)k k

n+ k

(
n+ k

n− k

)
L2k+1+t,

b(n−1)/2c∑
k=0

(−1)k
(
n− k − 1

k

)
Fn−2k+t = 2

n∑
k=1

(−1)k k

n+ k

(
n+ k

n− k

)
F2k+1+t.

Proof. Compare Theorem 4.8 with Theorem 2.7. �

Lemma 4.11. If n is a non-negative integer, then

(4.8)
n∑
k=0

(−1)n−k4k
(
n+ k

n− k

)
cos2k x =

sin((2n+ 1)x)

sinx
.

Proof. Evaluate the identity [3]

n∑
k=0

(−1)n−k4k
(
n+ k

n− k

)
x2k = U2n(x)

at x = cosx. �

Lemma 4.12. If n is an integer, then

sin
(
(2n+ 1)π/5

)
sin(π/5)

=



1, if n ≡ 0 (mod 5),

α, if n ≡ 1 (mod 5),

0, if n ≡ 2 (mod 5),

−α, if n ≡ 3 (mod 5),

−1, if n ≡ 4 (mod 5).

From Lemmas 4.11 and 4.12 we can deduce the following Fibonacci and
Lucas binomial identities modulo 5.

Theorem 4.13. If n is a non-negative integer and t is any integer, then

n∑
k=0

(−1)n−k
(
n+ k

n− k

)
L2k+t =



Lt, if n ≡ 0 (mod 5),

Lt+1, if n ≡ 1 (mod 5),

0, if n ≡ 2 (mod 5),

−Lt+1, if n ≡ 3 (mod 5),

−Lt, if n ≡ 4 (mod 5),
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n∑
k=0

(−1)n−k
(
n+ k

n− k

)
F2k+t =



Ft, if n ≡ 0 (mod 5),

Ft+1, if n ≡ 1 (mod 5),

0, if n ≡ 2 (mod 5),

−Ft+1, if n ≡ 3 (mod 5),

−Ft, if n ≡ 4 (mod 5).

Proof. Set x = π/5 in (4.8) and use Lemma 4.12. �

Lemma 4.14 ([10, (41.2.16.1)]). If n is a positive integer and x is any
variable, then

(4.9)
n∑
k=1

(−1)k

cosx− cos(πk/n)
=

1

2

(
1

1− cosx
+

(−1)n

1 + cosx

)
− n

sinx sinnx
.

Further interesting identities involving Fibonacci and Lucas numbers are
stated in the next theorem.

Theorem 4.15. If n is a positive integer and t is any integer, then

n∑
k=1

(−1)k−1
(
Lt−1 + 2Lt cos(πk/n)

)
4 cos2(πk/n)− 2 cos(πk/n)− 1

=
1

2

(
Lt+2 + (−1)nFt−1

)
− 2(−1)bn/5cn ·


0, if n ≡ 0 (mod 5),

Ft+1, if n ≡ 1 or 4 (mod 5),

Ft, if n ≡ 2 or 3 (mod 5),
n∑
k=1

(−1)k−1
(
Ft−1 + 2Ft cos(πk/n)

)
4 cos2(πk/n)− 2 cos(πk/n)− 1

=
1

2

(
Ft+2 +

(−1)n

5
Lt−1

)
− 2(−1)bn/5c

5
n ·


0, if n ≡ 0 (mod 5),

Lt+1, if n ≡ 1 or 4 (mod 5),

Lt, if n ≡ 2 or 3 (mod 5).

Proof. Set x = π/5 and x = 3π/5, in turn, in (4.9) to obtain

2

n∑
k=1

(−1)k

α− 2 cos(πk/n)
=

1

2− α
+

(−1)n

2 + α
− 4nα√

5

sin(π/5)

sin(nπ/5)

and

2

n∑
k=1

(−1)k

β − 2 cos(πk/n)
=

1

2− β
+

(−1)n

2 + β
+

4nβ√
5

sin(3π/5)

sin(3nπ/5)
,

from which the identities follow. �
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By setting t = 0 and t = 1 in Theorem 4.15, we obtain the following.

Corollary 4.16. If n is a positive integer, then

n∑
k=1

(−1)k−1 (4 cos(πk/n)− 1)

4 cos2(πk/n)− 2 cos(πk/n)− 1

=
3 + (−1)n

2
− 2(−1)bn/5c n ·

{
0, if n ≡ 0, 2 or 3 (mod 5),

1, otherwise,
n∑
k=1

(−1)k−1

4 cos2(πk/n)− 2 cos(πk/n)− 1

=
5− (−1)n

10
− 2(−1)bn/5c

5
n ·


0, if n ≡ 0 (mod 5),

1, if n ≡ 1 or 4 (mod 5),

2, if n ≡ 2 or 3 (mod 5),

n∑
k=1

(−1)k−1cos2(πk/2n)
4 cos2(πk/n)− 2 cos(πk/n)− 1

=
1

2
− (−1)bn/5c

2
n ·

{
0, if n ≡ 0 (mod 5),

1, otherwise,
n∑
k=1

(−1)k−1 cos(πk/n)
4 cos2(πk/n)− 2 cos(πk/n)− 1

=
5 + (−1)n

10
− (−1)bn/5c

5
n ·


0, if n ≡ 0 (mod 5),

3, if n ≡ 1 or 4 (mod 5),

1, if n ≡ 2 or 3 (mod 5).

5. Some additional observations

We close this paper with some additional observations leading to possibly
new series representations of the constant α involving Bernoulli polynomials.
Recall that Bernoulli polynomials Bn(t), n ≥ 0, may be defined by the

Bn(t) =

n∑
k=0

(
n

k

)
Bn−kt

k,
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where Bn is the nth Bernoulli number, defined by the power series

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, |z| < 2π.

We have Bn(1) = Bn(0) = Bn for all n ≥ 2 and B2n+1 = 0 for all n ≥ 1.

Theorem 5.1. Let m be a non-negative integer. Then

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(5m
2

)
= (−1)m−1,

∞∑
k=0

(−1)k 22k

(2k + 1)!

π2k

25k
B2k+1

(5m
2

+
1

2

)
= 0,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(5m
2

+ 1
)
= (−1)m,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(5m
2

+
3

2

)
= (−1)mα,(5.1)

and

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(5m
2

+ 2
)
= (−1)mα.(5.2)

Proof. Combine (2.6) with the representation [13, Eq. (2.5)]

�(5.3)
sinxt

sin t
=
∞∑
k=0

(−1)k 22k+1

(2k + 1)!
B2k+1

(1 + x

2

)
t2k, |t| < π.

When m = 0 then from (5.1) and (5.2) we get the special series:

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(3
2

)
= α,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1(2) = α.
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From Raabe’s formula

Bn(ax) = an−1
a−1∑
k=0

Bn

(
x+

k

a

)
we get

B2k+1(2) = 22k
(
B2k+1(1) +B2k+1

(3
2

))
and

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

π2k

25k
B2k+1

(3
2

)
= α,

∞∑
k=1

(−1)k 24k+1

(2k + 1)!

π2k

25k
B2k+1

(3
2

)
= α− 3 =

√
5β.

But making use of Bn(t+ 1)−Bn(t) = ntn−1 we see that

B2k+1

(3
2

)
=

2k + 1

22k

and thus the series turn into

(5.4)
∞∑
k=1

(−1)k

(2k)!

π2k

25k
=
α

2
− 1 = −β

2

2

and

(5.5)
∞∑
k=1

(−1)k 2
2k+1

(2k)!

π2k

25k
=
√
5β.

The series (5.4) and (5.5) are essentially cosh(iπ/5) = cos(π/5) = α/2 and
cosh(2iπ/5) = cos(2π/5) = −β/2 which we encountered at the beginning of
the paper.

Combining (2.7) with (5.3) we have the following theorem. The details of
we leave to the reader.
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Theorem 5.2. Let m be a non-negative integer. Then

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1

(5m
2

)
= (−1)m−1,

∞∑
k=0

(−1)k 22k

(2k + 1)!

9kπ2k

25k
B2k+1

(5m
2

+
1

2

)
= 0,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1

(5m
2

+ 1
)
= (−1)m,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1

(5m
2

+
3

2

)
= (−1)mβ,(5.6)

and

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1

(5m
2

+ 2
)
= (−1)mβ.(5.7)

Finally, we obtain the following special series as a consequence of (5.6)
and (5.7):

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1

(3
2

)
= β,

∞∑
k=0

(−1)k 22k+1

(2k + 1)!

9kπ2k

25k
B2k+1(2) = β.

6. Concluding comments

In this paper, we presented new closed forms for some types of finite Fi-
bonacci and Lucas sums involving different kinds of binomial coefficients and
depending on the modulo 5 nature of the upper summation limit. To prove
our results, we applied some trigonometric identities utilizing Waring formulas
and Chebyshev polynomials of the first and second kinds.

Using similar techniques, we can generalize our findings to more common
number sequences. Let us give, for example, a generalization of Theorems
2.3, 3.3 and 4.5 to the case of the gibonacci (generalized Fibonacci) sequence
defined by the recurrence Gn = Gn−1+Gn−2, n ≥ 2, with G0 = a and G1 = b,
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where a and b are arbitrary [12, 18]. Note that Fn corresponds to the case of
Gn when a = 1 and b = 0, while Ln to the case when a = 1 and b = 2. The
following identities modulo 5 hold for positive integer n and any integer t:

n

bn/2c∑
k=1

(−1)k−1

k

(
n− k − 1

k − 1

)
Gn−2k+t

=


Gn+t − (−1)n2Gt, if n ≡ 0 (mod 5),

Gn+t + (−1)nGt+1, if n ≡ 1 or 4 (mod 5),

Gn+t − (−1)nGt−1, if n ≡ 2 or 3 (mod 5),

n

bn/2c∑
k=0

(−1)n−k

n− k

(
n− k
k

)
Gn−2k+t =


2Gt, if n ≡ 0 (mod 5),

−Gt+1, if n ≡ 1 or 4 (mod 5),

Gt−1, if n ≡ 2 or 3 (mod 5),

n

n∑
k=0

(−1)n−k

n+ k

(
n+ k

n− k

)
G2k+t =


Gt, if n = 0 (mod 5),

Gt−1/2, if n = 1 or 4 (mod 5),

−Gt+1/2, if n = 2 or 3 (mod 5).
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