m-CONVEX FUNCTIONS OF HIGHER ORDER

Teodoro Lara (D), Nelson Merentes, Edgar Rosales

Abstract

In this research we introduce the concept of m-convex function of higher order by means of the so called m-divided difference; elementary properties of this type of functions are exhibited and some examples are provided.

1. Introduction

The concept of m-convex function, $0 \leq m \leq 1$, was introduced in [2, 13] and since then many properties, especially inequalities and algebraic properties have been obtained for them ([8]). This concept has evolved and nowadays there are many generalizations of it, examples of both, analytic and numerics, are also available, among these new stuff we ought to mention, strongly m-convex functions, approximate m-convex functions and Jensen m-convex functions; interested readers may consult for instance [7, 8, 9]. In this work we introduce the concepts of m-difference operator and m-divided difference in a similar manner to difference operator and divided difference respectively ([6]), and from here the concept of m-convexity of higher order is set for functions $f:[0, b] \rightarrow \mathbb{R}$. Our research is based and motivated basically by the works of Popoviciu ([12]) and more recently in the works of [3, 6, 11] and references therein.

Received: 29.03.2019. Accepted: 26.10.2019. Published online: 11.12.2019.
(2010) Mathematics Subject Classification: 26A51, 39B62, 26A48.

Key words and phrases: m-convex functions, m-convex functions of higher order, m difference operator, m-divided difference, positively homogeneous function.
(c)2019 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

We need to set a couple of known definitions and remarks before go over the matter of our investigation. Along this work and unless otherwise is said, the real number m will be in $[0,1]$.

Definition 1.1. Let D be any nonempty set of \mathbb{R}. D is said to be m-convex if, for all x and y in D and all t in the interval $[0,1]$, the point $t x+(1-t) m y$ also belongs to D.

In the following, D always will be the interval $[0, b]$ which, of course, is m-convex.

Definition 1.2 ([13]). A function $f:[0, b] \rightarrow \mathbb{R}$ is called m-convex, if for any $x, y \in[0, b]$ and $t \in[0,1]$ we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

REMARK 1.3. It is important to point out that the above definition is equivalent to $f(m t x+(1-t) y) \leq m t f(x)+(1-t) f(y)$, with x, y and t as before.

The incoming result is very similar to the one given in [10, Proposition 1.1.1] (see also the references therein); the proof also goes in a similar fashion.

Proposition 1.4. Let $f:[0, b] \rightarrow \mathbb{R}$. The following statements are equivalent:
(1) f is m-convex.
(2) $f(m s x+t y) \leq m s f(x)+t f(y), x, y \in[0, b] ; s, t \in(0,1)$ and $s+t=1$.
(3) If $x, y, z \in[0, b], x<z<y$,

$$
(y-z) m f(x)+(z-m x) f(y)+(m x-y) f(z) \geq 0
$$

Following ideas given in [6] and [11] we set the following
Definition 1.5. Consider the function $r: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ given by

$$
r(x)= \begin{cases}x-2 & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{cases}
$$

and, for a fixed $k \in \mathbb{N}$, let $x_{k}, x_{k+1}, \ldots, x_{k+n-1}$ be n points in $[0, b]$. If $m \in$ $[0,1]$, we say that these points are m-ordered if they verify

$$
m^{r(j)} x_{j}<m^{r(j+1)} x_{j+1} \quad \text { with } j=k, \ldots, k+n-2
$$

The m-divided difference, $\left[x_{k}, x_{k+1}, \ldots, x_{k+n-1} ; f\right]_{m}$, of order n of a real valued function f defined on $[0, b]$ at the m-ordered points $x_{k}, x_{k+1}, \ldots, x_{k+n-1}$, is given by

$$
\left[x_{k} ; f\right]_{m}=m^{r(k)} f\left(x_{k}\right)
$$

and for $n \geq 2$

$$
\left[x_{k}, \ldots, x_{k+n-1} ; f\right]_{m}=\frac{\left[x_{k+1}, \ldots, x_{k+n-1} ; f\right]_{m}-\left[x_{k}, \ldots, x_{k+n-2} ; f\right]_{m}}{m^{r(k+n-1)} x_{k+n-1}-m^{r(k)} x_{k}}
$$

The case $m=1$ corresponds to the classical definition of divided difference ($4,5,6])$.

It is clear that known properties of divided differences of functions hold true for m-divided difference of functions defined here; in the incoming section we list some of them.

2. Properties of m-divided differences

Here we show a couple of results involving the foregoing concept of m divided difference; basically a way of writing it, as a sum and also in terms of some determinants.

Theorem 2.1. For any $n \geq 2$, the following equality holds

$$
\left[x_{1}, \ldots, x_{n} ; f\right]_{m}=\sum_{i=1}^{n} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{n}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}
$$

Proof. The proof runs by induction; for $n=2$,

$$
\left[x_{1}, x_{2} ; f\right]_{m}=\frac{\left[x_{2} ; f\right]_{m}-\left[x_{1} ; f\right]_{m}}{m^{r(2)} x_{2}-m^{r(1)} x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

while

$$
\begin{aligned}
\sum_{i=1}^{2} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{2}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}= & \frac{f\left(x_{1}\right)}{\prod_{j=1, j \neq 1}^{2}\left(m^{r(1)} x_{1}-m^{r(j)} x_{j}\right)} \\
& +\frac{f\left(x_{2}\right)}{\prod_{j=1, j \neq 2}^{2}\left(m^{r(2)} x_{2}-m^{r(j)} x_{j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{f\left(x_{1}\right)}{x_{1}-x_{2}}+\frac{f\left(x_{2}\right)}{x_{2}-x_{1}} \\
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} .
\end{aligned}
$$

Thus, the result holds for $n=2$.
Assume now that it is true for n. Then,

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{\left[x_{2}, \ldots, x_{n+1} ; f\right]_{m}-\left[x_{1}, \ldots, x_{n} ; f\right]_{m}}{m^{r(n+1)} x_{n+1}-m^{r(1)} x_{1}}} \\
& \quad=\frac{\sum_{i=2}^{n+1} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=2, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}-\sum_{i=1}^{n} \frac{m^{r(i)} f\left(x_{i}\right)}{m_{j=1, j \neq i}^{n(n+1)} x_{n+1}-x_{1}} .}{} .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \left(m^{r(n+1)} x_{n+1}-x_{1}\right)\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m} \\
& =\sum_{i=2}^{n} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=2, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}+\frac{m^{r(1)} f\left(x_{1}\right)}{\prod_{j=2, j \neq n+1}^{n+1}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)} \\
& \quad-\frac{m^{r(n+1)} f\left(x_{n+1}\right)}{\prod_{j=1, j \neq 1}^{n}\left(m^{r(1)} x_{1}-m^{r(j)} x_{j}\right)}-\sum_{i=2}^{n} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{n}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)} \\
& =\sum_{i=2}^{n}\left[\frac{1}{\prod_{j=2, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}-\frac{1}{\prod_{j=1, j \neq i}^{n}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)}\right] m^{r(i)} f\left(x_{i}\right) \\
& \quad+\frac{m^{r(n+1)} f\left(x_{n+1}\right)}{\prod_{j=2, j \neq n+1}^{n+1}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)}-\frac{f\left(x_{1}\right)}{\prod_{j=1, j \neq 1}^{n}\left(x_{1}-m^{r(j)} x_{j}\right)} \\
& = \\
& \quad \sum_{i=2}^{n} \frac{\left(m^{r(n+1)} x_{n+1}-x_{1}\right) m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)} \\
& \quad+\frac{\left(m^{r(n+1)} x_{n+1}-x_{1}\right) m^{r(n+1)} f\left(x_{n+1}\right)}{\prod_{j=2, j \neq n+1}^{n+1}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)\left(m^{r(n+1)} x_{n+1}-x_{1}\right)} \\
& \quad-\frac{\left(x_{1}-m^{r(n+1)} x_{n+1}\right) f\left(x_{1}\right)}{\prod_{j=1, j \neq 1}^{n}\left(x_{1}-m^{r(j)} x_{j}\right)\left(x_{1}-m^{r(n+1)} x_{n+1}\right)} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{\left[x_{1}, \ldots,\right.} & \left.x_{n+1} ; f\right]_{m} \\
= & \frac{f\left(x_{1}\right)}{\prod_{j=1, j \neq 1}^{n+1}\left(x_{1}-m^{r(j)} x_{j}\right)}+\sum_{i=2}^{n} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)} \\
& +\frac{m^{r(n+1)} f\left(x_{n+1}\right)}{\prod_{j=1, j \neq n+1}^{n+1}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)} \\
= & \sum_{i=1}^{n+1} \frac{m^{r(i)} f\left(x_{i}\right)}{\prod_{j=1, j \neq i}^{n+1}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)} .
\end{aligned}
$$

And the result takes place for all natural $n \geq 2$.
Again, by following ideas from [6], for a function $f:[0, b] \rightarrow \mathbb{R}$ and m ordered points $x_{1}, \ldots, x_{n} \in[0, b]$, we set $U\left(x_{1}, \ldots, m^{r(n)} x_{n} ; f\right)$ to be the determinant

$$
\begin{aligned}
& U\left(x_{1}, \ldots, m^{r(n)} x_{n} ; f\right) \\
& \quad=\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-2} & f\left(x_{1}\right) \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-2} & f\left(x_{2}\right) \\
1 & m x_{3} & m^{2} x_{3}^{2} & \ldots & m^{n-2} x_{3}^{n-2} & m f\left(x_{3}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & m^{r(n)} x_{n} & m^{2 r(n)} x_{n}^{2} & \ldots & m^{(n-2) r(n)} x_{n}^{n-2} & m^{r(n)} f\left(x_{n}\right)
\end{array}\right|
\end{aligned}
$$

and $V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right)$ the classical Vandermonde determinant

$$
\begin{aligned}
V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right) & =\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
1 & m x_{3} & m^{2} x_{3}^{2} & \ldots & m^{n-1} x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & m^{r(n)} x_{n} & m^{2 r(n)} x_{n}^{2} & \ldots & m^{(n-1) r(n)} x_{n}^{n-1}
\end{array}\right| \\
& =\prod_{\substack{i, j=1 \\
i>j}}^{n}\left(m^{r(i)} x_{i}-m^{r(j)} x_{j}\right)
\end{aligned}
$$

Note that $V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right)>0$ because of the manner in picking up the points. We have the following

Theorem 2.2. Let $f:[0, b] \rightarrow \mathbb{R}$ be an arbitrary function. Then, for any m-ordered points $x_{1}, \ldots, x_{n} \in[0, b](n \geq 2)$ we have

$$
\left[x_{1}, \ldots, x_{n} ; f\right]_{m}=\frac{U\left(x_{1}, \ldots, m^{r(n)} x_{n} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right)}
$$

Proof. It runs by induction on n; for $n=2$, the result is clear since

$$
U\left(x_{1}, x_{2} ; f\right)=\left|\begin{array}{cc}
1 & f\left(x_{1}\right) \\
1 & f\left(x_{2}\right)
\end{array}\right|=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

and

$$
V\left(x_{1}, x_{2}\right)=\left|\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right|=x_{2}-x_{1}
$$

Suppose it holds for n. Then

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{\left[x_{2}, \ldots, x_{n+1} ; f\right]_{m}-\left[x_{1}, \ldots, x_{n} ; f\right]_{m}}{m^{r(n+1)} x_{n+1}-x_{1}}} \\
& =\frac{1}{m^{r(n+1)} x_{n+1}-x_{1}}\left[\frac{U\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1}\right)}-\frac{U\left(x_{1}, \ldots, m^{r(n)} x_{n} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right)}\right]
\end{aligned}
$$

Now, developing the determinants U according to the last column, we get

$$
U\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)
$$

$$
=\sum_{i=2}^{n+1}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{2}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right)
$$

and

$$
\begin{aligned}
& U\left(x_{1}, \ldots, m^{r(n)} x_{n} ; f\right) \\
& =\sum_{i=1}^{n}(-1)^{n+i} m^{r(i)} f\left(x_{i}\right) V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n)} x_{n}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)=V\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1}\right) \prod_{j=2}^{n+1}\left(m^{r(j)} x_{j}-x_{1}\right) \\
& \quad=\left(m^{r(n+1)} x_{n+1}-x_{1}\right) V\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1}\right) \prod_{j=2}^{n}\left(m^{r(j)} x_{j}-x_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)=V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right) \prod_{j=1}^{n}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right) \\
& \quad=\left(m^{r(n+1)} x_{n+1}-x_{1}\right) V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right) \prod_{j=2}^{n}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)
\end{aligned}
$$

Therefore,

$$
\left.\begin{array}{l}
{\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{1}{m^{r(n+1)} x_{n+1}-x_{1}}} \\
\times\left[\frac{\sum_{i=2}^{n+1}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{2}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right)}{\frac{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}{\left(m^{r(n+1)} x_{n+1}-x_{1}\right) \prod_{j=2}^{n}\left(m^{r(j)} x_{j}-x_{1}\right)}}\right. \\
\quad+\frac{\sum_{i=1}^{n}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n)} x_{n}\right)}{\left(m^{r(n+1)} x_{n+1}-x_{1}\right) \prod_{j=2}^{n}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)} \\
=\frac{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}\left[\sum_{i=2}^{n+1}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right)\right.
\end{array}\right] .
$$

Actually, since for $i=2, \ldots, n$

$$
\begin{aligned}
& V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right)\left(m^{r(n+1)} x_{n+1}-m^{r(i)} x_{i}\right) \\
& = \\
& V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n)} x_{n}\right) \\
& \quad \times \prod_{j=2}^{n}\left(m^{r(n+1)} x_{n+1}-m^{r(j)} x_{j}\right)\left(m^{r(n+1)} x_{n+1}-x_{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right)\left(m^{r(i)} x_{i}-x_{1}\right) \\
& =V\left(x_{2}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \\
& \quad \times \prod_{j=2}^{n}\left(m^{r(j)} x_{j}-x_{1}\right)\left(m^{r(n+1)} x_{n+1}-x_{1}\right)
\end{aligned}
$$

we can write

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{1}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}\left[\sum_{i=2}^{n+1}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right)\right.} \\
& \quad \times V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \frac{\left(m^{r(i)} x_{i}-x_{1}\right)}{m^{r(n+1)} x_{n+1}-x_{1}} \\
& +\sum_{i=1}^{n}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \\
& \left.\quad \times \frac{\left(m^{r(n+1)} x_{n+1}-m^{r(i)} x_{i}\right)}{m^{r(n+1)} x_{n+1}-x_{1}}\right] \\
& =\frac{1}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}\left[(-1)^{n+2} f\left(x_{1}\right) V\left(x_{2}, \ldots, m^{r(n+1)} x_{n+1}\right)\right. \\
& +\sum_{i=2}^{n}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \\
& \left.\quad+m^{r(n+1)} f\left(x_{n+1}\right) V\left(x_{1}, \ldots, m^{r(n)} x_{n}\right)\right] \\
& \sum_{i=1}^{n+1}(-1)^{n+i+1} m^{r(i)} f\left(x_{i}\right) V\left(x_{1}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \\
& = \\
& V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)
\end{aligned}
$$

Thus,

$$
\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}
$$

Hence, the result is true for all $n \geq 2$.

3. m-convexity of higher order

In the last section, we use the divided differences of functions to define the concept of m-convex function of higher order and show some of their properties.

Definition 3.1. Let $m \in[0,1]$ and $n \in \mathbb{N}$ be fixed numbers. A function $f:[0, b] \rightarrow \mathbb{R}$ is called m-convex of order n if

$$
\begin{equation*}
\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m} \geq 0 \tag{3.1}
\end{equation*}
$$

for all m-ordered points $x_{1}, \ldots, x_{n+1} \in[0, b]$.
Remark 3.2. Note that if $n=2$ Theorem 2.1 implies that condition (3.1) is equivalent to

$$
\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-m x_{3}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-m x_{3}\right)}+\frac{m f\left(x_{3}\right)}{\left(m x_{3}-x_{1}\right)\left(m x_{3}-x_{2}\right)} \geq 0
$$

or

$$
f\left(x_{2}\right) \leq \frac{m x_{3}-x_{2}}{m x_{3}-x_{1}} f\left(x_{1}\right)+m \frac{x_{2}-x_{1}}{m x_{3}-x_{1}} f\left(x_{3}\right)
$$

By putting $t=\frac{m x_{3}-x_{2}}{m x_{3}-x_{1}}$ it follows that

$$
1-t=\frac{x_{2}-x_{1}}{m x_{3}-x_{1}} \quad \text { and } \quad x_{2}=t x_{1}+m(1-t) x_{3}
$$

thus,

$$
f\left(t x_{1}+m(1-t) x_{3}\right) \leq t f\left(x_{1}\right)+m(1-t) f\left(x_{3}\right)
$$

implying that f is an m-convex function. In other words, the m-convexity of order 2 , is precisely the usual m-convexity.

Remark 3.3. If $n=2$, Theorem 2.2 implies

$$
\left[x_{1}, x_{2}, x_{3} ; f\right]_{m}=\frac{U\left(x_{1}, x_{2}, m x_{3} ; f\right)}{V\left(x_{1}, x_{2}, m x_{3}\right)}=\frac{\left|\begin{array}{ccc}
1 & x_{1} & f\left(x_{1}\right) \\
1 & x_{2} & f\left(x_{2}\right) \\
1 & m x_{3} & m f\left(x_{3}\right)
\end{array}\right|}{\left|\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & m x_{3} & m^{2} x_{3}^{2}
\end{array}\right|}
$$

That is, the m-convexity of f is determined for the nonnegativity of the above quotient. This fact is known from [1, Theorem 1]. Even more, Theorem 2.2 generalizes the above-cited result to m-convexity of higher order.

Remark 3.4. Constant functions are 1-convex of any order n.
In the case of m-convexity it is known ($[1,9]$) that if a function f is m convex then it is also n-convex for any $0<n<m$. For a similar result in higher order it is necessary to consider some additional hypothesis.

Proposition 3.5. Let $m_{1}, m_{2} \in(0,1]$ with $m_{1} \leq m_{2}$, and $f:[0, b] \rightarrow \mathbb{R}$ be a function such that

$$
\begin{equation*}
f(\lambda x)=\lambda f(x) \text { for all } \lambda \in[0,1] . \tag{3.2}
\end{equation*}
$$

If f is m_{2}-convex of order n, then f is m_{1}-convex of order n as well.
Proof. Let x_{1}, \ldots, x_{n+1} be m_{1}-ordered points in $[0, b]$. By Theorem 2.2.

$$
\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m_{1}}=\frac{U\left(x_{1}, \ldots, m_{1}^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{1}, \ldots, m_{1}^{r(n+1)} x_{n+1}\right)}
$$

But

$$
\begin{aligned}
& U\left(x_{1}, \ldots, m_{1}^{r(n+1)} x_{n+1} ; f\right) \\
& =\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} & f\left(x_{1}\right) \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} & f\left(x_{2}\right) \\
1 & m_{1} x_{3} & m_{1}^{2} x_{3}^{2} & \ldots & m_{1}^{n-1} x_{3}^{n-1} & m_{1} f\left(x_{3}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & m_{1}^{r(n+1)} x_{n+1} & m_{1}^{2 r(n+1)} x_{n+1}^{2} & \ldots & m_{1}^{(n-1) r(n+1)} x_{n+1}^{n-1} & m_{1}^{r(n+1)} f\left(x_{n+1}\right)
\end{array}\right|
\end{aligned}
$$

$$
=\left|\begin{array}{cccccc}
1 & y_{1} & y_{1}^{2} & \ldots & y_{1}^{n-1} & f\left(y_{1}\right) \\
1 & y_{2} & y_{2}^{2} & \ldots & y_{2}^{n-1} & f\left(y_{2}\right) \\
1 & m_{2} y_{3} & m_{2}^{2} y_{3}^{2} & \ldots & m_{2}^{n-1} y_{3}^{n-1} & m_{2} f\left(y_{3}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & m_{2}^{r(n+1)} y_{n+1} & m_{2}^{2 r(n+1)} y_{n+1}^{2} & \ldots & m_{2}^{(n-1) r(n+1)} y_{n+1}^{n-1} & m_{2}^{r(n+1)} f\left(y_{n+1}\right)
\end{array}\right|,
$$

where $y_{j}=\left(m_{1} / m_{2}\right)^{r(j)} x_{j}, j=1, \ldots, n+1$; and the last column is obtained by using the additional hypothesis on f.

Now, since x_{1}, \ldots, x_{n+1} are m_{1}-ordered, $m_{1}^{r(j)} x_{j}<m_{1}^{r(j+1)} x_{j+1}$ with $j=$ $1, \ldots, n$, which in turn implies $m_{2}^{r(j)} y_{j}<m_{2}^{r(j+1)} y_{j+1}$, also points $y_{1}, \ldots, y_{n+1} \in$ $[0, b]$ are m_{2}-ordered, $U\left(x_{1}, \ldots, m_{1}^{r(n+1)} x_{n+1} ; f\right)=U\left(y_{1}, \ldots, m_{2}^{r(n+1)} y_{n+1} ; f\right)$ and $V\left(x_{1}, \ldots, m_{1}^{r(n+1)} x_{n+1}\right)=V\left(y_{1}, \ldots, m_{2}^{r(n+1)} y_{n+1}\right)$. Therefore,

$$
\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m_{1}}=\left[y_{1}, \ldots, y_{n+1} ; f\right]_{m_{2}} \geq 0
$$

and the last inequality is a consequence of the m_{2}-convexity of order n of f.
Remark 3.6. The condition (3.2) can not be omitted in Proposition 3.5 . Note that, according to Remark 3.4, the function $f:[0,8] \rightarrow \mathbb{R}$ given by $f(x)=-1$ is 1 -convex of order 3 . Nonetheless, f is not $\frac{1}{2}$-convex of order 3 ; indeed, if we consider the $\frac{1}{2}$-ordered points of the interval $[0,8]$ as $x_{1}=0$, $x_{2}=1, x_{3}=3, x_{4}=7$, then

$$
[0,1,3,7 ; f]_{\frac{1}{2}}=\frac{U\left(0,1, \frac{3}{2}, \frac{7}{4} ; f\right)}{V\left(0,1, \frac{3}{2}, \frac{7}{4}\right)}=-\frac{8}{21}<0
$$

Proposition 3.7. If $f, g:[0, b] \rightarrow \mathbb{R}$ are m-convex functions of order n, then $f+g$ and $\alpha f, \alpha>0$ are m-convex functions of order n as well.

Proof. Let x_{1}, \ldots, x_{n+1} be m-ordered points in $[0, b]$, by Theorem 2.2

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{n+1} ; f+g\right]_{m}=\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; f+g\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}} \\
& \quad=\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}+\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; g\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)} \\
& \quad=\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}+\left[x_{1}, \ldots, x_{n+1} ; g\right]_{m} \\
& \quad \geq 0
\end{aligned}
$$

Also,

$$
\begin{aligned}
{\left[x_{1}, \ldots, x_{n+1} ; \alpha f\right]_{m} } & =\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; \alpha f\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)} \\
& =\frac{\alpha U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)} \\
& =\alpha\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m} \\
& \geq 0
\end{aligned}
$$

In [9] it was proved that if f and g are both nonnegative, increasing and m-convex functions (m-convex of order 2), then the product function, $f g$, is m-convex as well. Nevertheless, in case of higher order, this is not necessarily true.

Example 1. The function $f:[0, b] \rightarrow \mathbb{R}, b>3$, given by $f(x)=a x, a>0$ is clearly m-convex of any order n (and any $m \in[0,1]$), since

$$
\left[x_{1}, \ldots, x_{n+1} ; f\right]_{m}=\frac{U\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(x_{1}, \ldots, m^{r(n+1)} x_{n+1}\right)}=0
$$

actually, f is $\frac{1}{2}$-convex of order 3 . However, the function $g=f^{2}$ is not $\frac{1}{2}$ convex of order 3 . Indeed, if we consider the four $\frac{1}{2}$-ordered points $x_{1}=$ $0, x_{2}=\frac{1}{3}, x_{3}=\frac{7}{10}, x_{4}=3$ in $[0, b]$,

$$
\left[0, \frac{1}{3}, \frac{7}{10}, 3 ; g\right]_{\frac{1}{2}}=\frac{U\left(0, \frac{1}{3}, \frac{7}{20}, \frac{3}{4} ; g\right)}{V\left(0, \frac{1}{3}, \frac{7}{20}, \frac{3}{4}\right)}=\frac{-\frac{91}{9600} a^{2}}{\frac{7}{28800}}=-39 a^{2}<0
$$

ThEOREM 3.8. Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be an m-convex function of order n. If f is bounded in a neighborhood of one point $p \in(0,+\infty)$, and the abovementioned neighborhood contains some m-ordered collection x_{1}, \ldots, x_{n+1} of points of $(0,+\infty)$, then f is locally bounded.

Proof. Consider $A \subset D \subset(0,+\infty)$, where A is an m-ordered collection of points x_{1}, \ldots, x_{n+1}, and D is a neighborhood of p with radius r, such that $|f(u)| \leq M$ for all $u \in D$, with $M \in \mathbb{R}^{+}$. We must prove that for any $z \in(0,+\infty)$ there exists a neighborhood K on which f is bounded. If $z \in D$, we pick K as the neighborhood centered at z and radius $r-|p-z|$, in this case $K \subset D$ and f is bounded on K.

If $z \notin D$, we can choose $y \in(0,+\infty)$ with $z=\lambda p+(1-\lambda) y$ for some $\lambda \in(0,1)$, hence $K=\lambda D+(1-\lambda) y$ is a neighborhood of z with radius λr.

Now, let $v \in K$. It is clear that if $v \in D$, then $|f(v)| \leq M$; so, we can assume $v \in K \backslash D$. Hence, two possibilities may occur:
(1) $y<v<w$ for all $w \in A$, this happens if $z<x$ for all $x \in D$;
(2) $y>v>w$ for all $w \in A$, which occurs only if $z>x$ for all $x \in D$.

If (1) happens, we consider the points $y, v, x_{3}, \ldots, x_{n+1}$ and because $v<x_{2}$, these points become m-ordered. Consequently, by the m-convexity of order n of f and Theorem 2.2,

$$
\frac{U\left(y, v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1} ; f\right)}{V\left(y, v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right)} \geq 0
$$

Even more, $V\left(y, v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right)>0$ therefore,

$$
U\left(y, v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1} ; f\right) \geq 0
$$

By developing this determinant U according to the last column,

$$
\begin{aligned}
& (-1)^{n+2} V\left(v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right) f(y) \\
& \quad+(-1)^{n+3} V\left(y, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right) f(v) \\
& +\sum_{i=3}^{n+1}(-1)^{n+i+1} V\left(y, v, m x_{3}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right) \\
& \times m^{r(i)} f\left(x_{i}\right) \geq 0
\end{aligned}
$$

Hence, if n is even,

$$
\begin{align*}
& \quad f(v) \leq \frac{V\left(v, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right)}{V\left(y, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right)} f(y) \tag{3.3}\\
& +\sum_{i=3}^{n+1}(-1)^{i+1} \frac{V\left(y, v, m x_{3}, \ldots, m^{r(i-1)} x_{i-1}, m^{r(i+1)} x_{i+1}, \ldots, m^{r(n+1)} x_{n+1}\right)}{V\left(y, m x_{3}, \ldots, m^{r(n+1)} x_{n+1}\right)} \\
& \times m^{r(i)} f\left(x_{i}\right)
\end{align*}
$$

The Vandermonde determinants involved in (3.3) are bounded, since all the differences between each pair of points corresponding may be estimated by the radii of D and K, and the distances between y and these neighborhoods. Moreover, since $x_{i} \in D$ for all $i \in\{3, \ldots, n+1\},\left|f\left(x_{i}\right)\right| \leq M$.

If n is odd, we obtain the opposite inequality in (3.3); and thus, f is bounded from below on K.

For the boundedness of f on K in the opposite direction (from below if n is even, and from above if n is odd), we may choose the m-ordered points $v, x_{2}, x_{3}, \ldots, x_{n+1}$, and by reasoning in a similar manner to the above arguments, $U\left(v, x_{2}, m x_{3}, \ldots, m^{r(n+1)} x_{n+1} ; f\right) \geq 0$. Whereupon, the desired boundedness is shown.

For the case (2), if necessary, we can decrease K so that $v<m y$, in this case $m^{r(n)} v<m^{r(n+1)} y$ and because $x_{n}<v$, points $x_{1}, \ldots, x_{n-1}, v, y$ become m-ordered, as well as x_{1}, \ldots, x_{n}, v. Now from the m-convexity of order n of f, and arguing as before, we obtain

$$
U\left(x_{1}, \ldots, m^{r(n-1)} x_{n-1}, m^{r(n)} v, m^{r(n+1)} y ; f\right) \geq 0
$$

and

$$
U\left(x_{1}, \ldots, m^{r(n)} x_{n}, m^{r(n+1)} v ; f\right) \geq 0
$$

The rest of the proof goes in a similar way to the previous case.
Acknowledgments. Authors are thankful to anonymous referee for his or her valuable comments and remarks that helped to improve our paper

References

[1] S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002), no. 1, 45-55.
[2] S.S. Dragomir and G. Toader, Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai Math. 38 (1993), no. 1, 21-28.
[3] R. Ger, Convex functions of higher orders in Euclidean spaces, Ann. Polon. Math. 25 (1972), 293-302.
[4] A. Gilányi and Z. Páles, On convex functions of higher order, Math. Inequal. Appl. 11 (2008), no. 2, 271-282.
[5] V. Janković, Divided differences, Teach. Math. 3 (2000), no. 2, 115-119.
[6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Second edition, Edited by A. Gilányi, Birkhäuser Verlag, Basel, 2009.
[7] T. Lara, N. Merentes, R. Quintero and E. Rosales, On strongly m-convex functions, Math. Æterna 5 (2015), no. 3, 521-535.
[8] T. Lara, R. Quintero, E. Rosales and J.L. Sánchez, On a generalization of the class of Jensen convex functions, Aequationes Math. 90 (2016), no. 3, 569-580.
[9] T. Lara, E. Rosales and J.L. Sánchez, New properties of m-convex functions, Int. J. Math. Anal., Ruse 9 (2015), no. 15, 735-742.
[10] N. Merentes and S. Rivas, The Develop of the Concept of Convex Function, XXVI Escuela Venezolana de Matemáticas, Mérida, Venezuela, 2013 (in Spanish).
[11] K. Nikodem, T. Rajba and S. Wąsowicz, On the classes of higher-order Jensenconvex functions and Wright-convex functions, J. Math. Anal. Appl. 396 (2012), no. 1, 261-269.
[12] T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1-85.
[13] G. Toader, Some generalizations of the convexity, in: I. Maruşciac et al. (eds.), Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, pp. 329-338.

Teodoro Lara
Edgar Rosales
Departamento de Física y Matemáticas
Universidad de los Andes
Trujillo
Venezuela
e-mail: tlara@ula.ve
e-mail: edgarr@ula.ve

Nelson Merentes
Escuela de matemáticas
Universidad Central de Venezuela
Caracas
Venezuela
e-mail: nmerucv@gmail.com

