THE GCD SEQUENCES OF THE ALTERED LUCAS SEQUENCES

Fikri Koken (i)

Abstract

In this study, we give two sequences $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ derived by altering the Lucas numbers with $\{ \pm 1, \pm 3\}$, terms of which are called as altered Lucas numbers. We give relations connected with the Fibonacci F_{n} and Lucas L_{n} numbers, and construct recurrence relations and Binet's like formulas of the L_{n}^{+}and L_{n}^{-}numbers. It is seen that the altered Lucas numbers have two distinct factors from the Fibonacci and Lucas sequences. Thus, we work out the greatest common divisor ($G C D$) of r-consecutive altered Lucas numbers. We obtain r-consecutive $G C D$ sequences according to the altered Lucas numbers, and show that their $G C D$ sequences are unbounded or periodic in terms of values r.

1. Introduction

Let F_{n} and L_{n} denote nth Fibonacci and Lucas numbers, respectively. The numbers F_{n} and L_{n}, are entries of sequences $\left\{F_{n}\right\}_{n \geq 0}$ and $\left\{L_{n}\right\}_{n \geq 0}$, are given by the linear recurrence relations,

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, \quad L_{n+2}=L_{n+1}+L_{n}, \quad n \geq 0 \tag{1.1}
\end{equation*}
$$

with the initial values $F_{0}=0, F_{1}=1, L_{0}=2, L_{1}=1$ (see [6]).
Received: 19.06.2019. Accepted: 16.03.2020. Published online: 22.06.2020.
(2010) Mathematics Subject Classification: 11B37, 11B39, 11B83.

Key words and phrases: Fibonacci and Lucas numbers, altered Lucas sequence, r-consecutive $G C D$ sequence.

A quick look at the greatest common divisor $(G C D)$ properties of the numbers F_{n} and L_{n} shows that the $G C D$ of two Fibonacci numbers is always a Fibonacci number, $\left(F_{m}, F_{n}\right)=F_{(m, n)}$. Thus, the successive Fibonacci and Lucas numbers are relatively prime, $\left(F_{n}, F_{n+1}\right)=\left(F_{n}, F_{n+2}\right)=1$ and $\left(L_{n}, L_{n+1}\right)=\left(L_{n}, L_{n+2}\right)=1$. In addition to these properties, there exist a number of divisibility and $G C D$ properties for these numbers such as

$$
\begin{gathered}
L_{m}\left|F_{n} \quad \Leftrightarrow \quad 2 m\right| n, \quad m \geq 2 \\
L_{m} \mid L_{n} \Leftrightarrow n=(2 k-1) m, \quad m \geq 2 \\
\left(F_{n}, L_{n}\right)= \begin{cases}2, & n \equiv 0(\bmod 3), \\
1, & \text { otherwise }\end{cases} \\
\left(L_{m}, L_{n}\right)=L_{d} \quad \text { if } \frac{m}{d} \text { and } \frac{n}{d} \text { is odd. }
\end{gathered}
$$

Several authors investigate the above numbers finding many values of a, $b \in \mathbb{Z}$ for the Fibonacci $\left\{F_{n} \pm a\right\}_{n \geq 0}$ and Lucas $\left\{L_{n} \pm b\right\}_{n \geq 0}$ sequences. For example, in [2], two sequences are defined with $\left\{G_{n}\right\}_{n \geq 0}=\left\{F_{n}+(-1)^{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}=\left\{F_{n}-(-1)^{n}\right\}_{n \geq 0}$, which are called as the altered Fibonacci numbers. It is shown that the sequences $\left\{G_{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}$ are multiplication of Fibonacci and Lucas subsequences according to their indices n ([1], [2], 6]). And also, in [2], the authors investigate some $G C D$ cases for successive terms of the $\left\{G_{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}$. It is noted that $\left(G_{4 n+k}, G_{4 n+k+1}\right)$ and $\left(H_{4 n+k}, H_{4 n+k+1}\right),(k=0,2)$ are not relatively prime. In addition to the sequences $\left\{G_{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}$, in [1], K. Chen defines a sequence $\left\{F_{n}+a\right\}_{n \geq 0}, a \in \mathbb{Z}$, called as a shifted Fibonacci sequence. And also, the author establishes a sequence $\left\{f_{n}(a)\right\}_{n \geq 0}=\left\{\operatorname{gcd}\left(F_{n}+a, F_{n+1}+a\right)\right\}_{n \geq 0}$, which is called as a $G C D$ sequence of the shifted Fibonacci sequence. He shows that some successive terms of the altered and shifted sequences have a different behavior such as

$$
\begin{gathered}
\left(G_{4 n}, G_{4 n+1}\right)=L_{2 n+1}=\left(G_{4 n+1}, G_{4 n+3}\right), \quad\left(G_{4 n+2}, G_{4 n+3}\right)=F_{2 n+2} \\
\left(H_{4 n}, H_{4 n+1}\right)=F_{2 n+1}=\left(H_{4 n+1}, H_{4 n+3}\right), \quad\left(H_{4 n+2}, H_{4 n+3}\right)=L_{2 n+2} \\
f_{4 n-1}(1)=F_{2 n-1}, \quad f_{4 n+1}(1)=L_{2 n} \\
f_{4 n-1}(-1)=L_{2 n-1}, \quad f_{4 n+1}(-1)=F_{2 n}
\end{gathered}
$$

In [1], the author shows that $\left\{f_{n}(a)\right\}_{n \geq 0}$ is bounded from above if $a \neq \pm 1$. In addition to the properties of $\left\{f_{n}(a)\right\}_{n \geq 0}$ given in [1], we can give Spilker's result about $f_{n}(a)$ as follows (see [8]): let n and a be integers. If $m:=a^{4}-1$ is not 0 and $f_{n}(a)$ divides $a^{2}+(-1)^{n}$, then $f_{n}(a)$ is simply periodic such that
a period p is defined by $F_{p} \equiv 0(\bmod m), F_{p+1} \equiv 0(\bmod m)$. Also, the author produces explicit formulas for the number $f_{n}(a)$ and generalizes it to a wider class of recursive second order sequences.

In [7], the authors establish a sequence $\left\{f_{n}(\pm 3)\right\}_{n \geq 0}$, and show that their results correspond with bounds and periods given in [1] and [8].

In [4], the authors study cases of $\left(F_{m}+b, F_{n}+a\right)$, for $a, b \in \mathbb{Z}$ by varying positive integers m and n. For example, they show that there exists a constant c such that $\operatorname{gcd}\left(F_{m}+a, F_{n}+a\right)>e^{c m}$ holds for infinitely many pairs of positive integers $m>n$.

In [5], the author studies two shifted sequences $U_{a} \pm k$ of the Lucas sequences of the first kind, where $U_{a}=\left\{u_{n}\right\}_{n \geq 0}, a \in \mathbb{Z}, u_{n}=a u_{n-1}+u_{n-2}$ for $n \geq 2, u_{0}=0, u_{1}=1$, and shows that there exist infinitely many integers k such that two sequences are prime free. This result extends previous works for the shifted Fibonacci sequences, when $a=1$ and $k=1$.

In [2], the authors mention that the sequences $\left\{L_{n}+(-1)^{n}\right\}_{n \geq 0}$ and $\left\{L_{n}-(-1)^{n}\right\}_{n \geq 0}$ are not considered as altered Lucas sequences. Fortunately, in [1], the author also derives $G C D$ sequences $\left(L_{4 n+k-1}+1, L_{4 n+k}+1\right), k=$ $0,1,2,3$, and mentions that if $n \equiv l(\bmod m), m=3,6$ and $l \in\{0,1,2,3,4,5\}$, then the sequences $\operatorname{gcd}\left(L_{4 n+k-1}+1, L_{4 n+k}+1\right), k=0,1,2,3$ are constant.

In this study, our goal is to define two altered Lucas sequences, $\left\{L_{n} \pm\right.$ $\left.k_{1}\right\}_{n \geq 0}$ and $\left\{L_{n} \mp k_{2}\right\}_{n \geq 0}$, for specific integers k_{1} and k_{2}. Since it is seen that theirs terms have two distinct factors such as the Fibonacci and Lucas numbers, we work out $G C D$ sequences for r-consecutive terms of the altered Lucas sequences. And also, we determine relations between $G C D$ sequences and the Fibonacci or Lucas sequences. In the last part, we establish some r-consecutive $G C D$ shifted sequences from two altered Lucas sequences, and give some properties of them.

2. The altered Lucas sequences

In this section, we define two altered Lucas sequences $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ by

$$
\begin{align*}
& L_{n}^{+}= \begin{cases}L_{n}-1, & \text { if } n \text { is odd } \\
L_{n}+3, & \text { otherwise }\end{cases} \tag{2.1}\\
& L_{n}^{-}= \begin{cases}L_{n}+1, & \text { if } n \text { is odd } \\
L_{n}-3, & \text { otherwise }\end{cases} \tag{2.2}
\end{align*}
$$

Based on the definitions given in (2.1) and (2.2), we can give the first 12 terms of the $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ in the following table:

n	1	2	3	4	5	6	7	8	9	10	11	12
L_{n}^{+}	0	6	3	10	10	21	28	50	75	126	198	325
L_{n}^{-}	2	0	5	4	12	15	30	44	77	120	200	319

We see that some interesting observations can be made for L_{n}^{+}and L_{n}^{-}given in (2.3) according to both divisibility properties and recurrence relation. For example, the numbers $L_{3 n}^{ \pm}$(i.e., $L_{3 n}^{+}$and $L_{3 n}^{-}$) have odd parity, and the numbers $L_{3 n+1}^{ \pm}$and $L_{3 n+2}^{ \pm}$have even parity. In addition, recurrence relations of $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ are shown by using $L_{n+1}^{ \pm}+L_{n}^{ \pm}=L_{n+2} \pm 2$, namely, the Lucas type recurrence relations are given as

$$
\begin{aligned}
& L_{n}^{ \pm}+L_{n+1}^{ \pm}= \begin{cases}L_{n+2}^{ \pm} \pm 3, & \text { if } n \text { is odd } \\
L_{n+2}^{ \pm} \mp 1, & \text { otherwise }\end{cases} \\
& L_{n+1}^{ \pm}-L_{n}^{ \pm}= \begin{cases}L_{n-1}^{ \pm} \pm 1, & \text { if } n \text { is odd } \\
L_{n-1}^{ \pm} \mp 3, & \text { otherwise }\end{cases}
\end{aligned}
$$

Let us take a look at differences $L_{2 n+1}^{ \pm}-L_{2 n-1}^{ \pm}$and $L_{2 n+2}^{ \pm}-L_{2 n}^{ \pm}$. It is seen they are the Lucas numbers: $L_{2 n+1}^{ \pm}-L_{2 n-1}^{ \pm}=L_{2 n}, L_{2 n+2}^{ \pm}-L_{2 n}^{ \pm}=L_{2 n+1}$.

The following equations, which are the relations for the difference and sum of indices of the Lucas numbers given in [6],

$$
\begin{align*}
& L_{m+n}+L_{m-n}= \begin{cases}L_{m} L_{n}, & \text { if } n \text { is even } \\
5 F_{m} F_{n}, & \text { otherwise }\end{cases} \tag{2.4}\\
& L_{m+n}-L_{m-n}= \begin{cases}5 F_{m} F_{n}, & \text { if } n \text { is even } \\
L_{m} L_{n}, & \text { otherwise }\end{cases} \tag{2.5}
\end{align*}
$$

will enable us to determine a number of properties for the altered Lucas sequences.

Theorem 2.1. Let L_{n}^{+}and L_{n}^{-}be the nth altered Lucas numbers given in (2.1) and 2.2), respectively. The following equations are valid:

$$
\begin{array}{ll}
L_{4 k}^{+}=5 F_{2 k+1} F_{2 k-1}, & L_{4 k}^{-}=L_{2 k+1} L_{2 k-1} \\
L_{4 k+1}^{+}=5 F_{2 k+1} F_{2 k}, & L_{4 k+1}^{-}=L_{2 k+1} L_{2 k} \\
L_{4 k+2}^{+}=L_{2 k+2} L_{2 k}, & L_{4 k+2}^{-}=5 F_{2 k+2} F_{2 k} \\
L_{4 k+3}^{+}=L_{2 k+2} L_{2 k+1}, & L_{4 k+3}^{-}=5 F_{2 k+2} F_{2 k+1}
\end{array}
$$

Proof. By substituting $2 k+1$ and $2 k-1$ for m and n given in (2.4), $2 k+1$ and $2 k$ for m and n given in 2.5 , respectively, we rewrite equalities into the forms

$$
\begin{aligned}
L_{(2 k+1)+(2 k-1)}+3 & =5 F_{2 k+1} F_{2 k-1}, \\
L_{(2 k+1)+2 k}-1 & =5 F_{2 k+1} F_{2 k} .
\end{aligned}
$$

Also, the desired results can be given with similar applications taking suitable values for m and n.

In the rest of this study, similar proofs of all results are generally omitted for the sake of brevity.

Now, we show that the altered Lucas numbers L_{n}^{+}and L_{n}^{-}satisfy interrelationships with the Fibonacci and Lucas numbers.

THEOREM 2.2. If L_{n}^{+}and L_{n}^{-}are the $n t h$ altered Lucas numbers, then

$$
\begin{aligned}
L_{2 n}^{+}+L_{2 n+1}^{+} & = \begin{cases}L_{n+1}^{2}, & \text { if } n \text { is odd }, \\
5 F_{n+1}^{2}, & \text { otherwise },\end{cases} \\
L_{2 n+1}^{+}+L_{2 n+2}^{+} & = \begin{cases}L_{n} L_{n+3}+6, & \text { if } n \text { is odd }, \\
5 F_{n} F_{n+3}+6, & \text { otherwise },\end{cases} \\
L_{2 n}^{-}+L_{2 n+1}^{-} & = \begin{cases}L_{n+1}^{2}, & \text { if } n \text { is even }, \\
5 F_{n+1}^{2}, & \text { otherwise },\end{cases} \\
L_{2 n+1}^{-}+L_{2 n+2}^{-} & = \begin{cases}L_{n} L_{n+3}+2, & \text { if } n \text { is odd }, \\
5 F_{n} F_{n+3}+2, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Proof. By using the definitions given in 2.1 and 2.2), and all results of Theorem 2.1, we obtain

$$
\begin{aligned}
L_{2 n}^{+}+L_{2 n+1}^{+} & = \begin{cases}L_{n+1}\left(L_{n}+L_{n-1}\right), & \text { if } n \text { is odd }, \\
5 F_{n+1}\left(F_{n}+F_{n-1}\right), & \text { otherwise },\end{cases} \\
L_{2 n+1}^{+}+L_{2 n+2}^{+} & = \begin{cases}L_{n}\left(L_{n+2}+L_{n+1}\right)+6, & \text { if } n \text { is odd }, \\
5 F_{n}\left(F_{n+2}+F_{n+1}\right)+6, & \text { otherwise. }\end{cases}
\end{aligned}
$$

As an alternative method to the definitions given in (2.1), 2.2 and all results of Theorem 2.1, we investigate a Binet's like formula, which is commonly used in the proof of the properties of the integer sequences. Then, the altered Lucas numbers can be expressed in terms of α and $\beta=-\alpha^{-1}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ is the golden ratio.

Theorem 2.3. The Binet's like formulas of the numbers L_{n}^{+}and L_{n}^{-}are given, respectively, by

$$
\begin{aligned}
& L_{n}^{+}=\left(\alpha^{\left\lfloor\frac{n}{2}+1\right\rfloor}-(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \beta^{\left\lfloor\frac{n}{2}+1\right\rfloor}\right)\left(\alpha^{\left\lceil\frac{n}{2}-1\right\rceil}-(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \beta^{\left\lceil\frac{n}{2}-1\right\rceil}\right) \\
& L_{n}^{-}=\left(\alpha^{\left\lfloor\frac{n}{2}+1\right\rfloor}+(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \beta^{\left\lfloor\frac{n}{2}+1\right\rfloor}\right)\left(\alpha^{\left\lceil\frac{n}{2}-1\right\rceil}+(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \beta^{\left\lceil\frac{n}{2}-1\right\rceil}\right)
\end{aligned}
$$

where $\lfloor x\rfloor$ and $\lceil x\rceil$ denote the floor and ceiling integer functions.
Proof. By using the Binet's formulas of the Fibonacci and Lucas numbers, we achieve the desired results.

3. Properties of the GCD sequences of the altered Lucas sequences

In this section, we consider two greatest common divisor (GCD) sequences, $\left\{L_{n, r}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n, r}^{-}\right\}_{n \geq 1}$, which are called as r-consecutive $G C D$ sequences,

$$
\begin{align*}
& L_{n, r}^{+}=\operatorname{gcd}\left(L_{n}^{+}, L_{n+r}^{+}\right) \tag{3.1}\\
& L_{n, r}^{-}=\operatorname{gcd}\left(L_{n}^{-}, L_{n+r}^{-}\right) \tag{3.2}
\end{align*}
$$

It is known that the Lucas sequence has some $G C D$ properties such as $\left(L_{m}, L_{n}\right) \neq L_{(m, n)}$ for $n, m \in \mathbb{Z}^{+}$, and if $\frac{m}{d}$ and $\frac{n}{d}$ are odd, $\left(L_{m}, L_{n}\right)=L_{d}$ and $\left(F_{n}, L_{n}\right)=1$ or 2 .

Firstly, our aim is to investigate the 1-consecutive $G C D$ sequences, $\left\{L_{n, 1}^{+}\right\}_{n \geq 0}=\left\{\operatorname{gcd}\left(L_{n}^{+}, L_{n+1}^{+}\right)\right\}_{n \geq 1}$ and $\left\{L_{n, 1}^{-}\right\}_{n \geq 1}=\left\{\operatorname{gcd}\left(L_{n}^{-}, L_{n+1}^{-}\right)\right\}_{n \geq 1}$, and also to study some properties of them.

The first 14 terms of the sequence $\left\{L_{n, 1}^{+}\right\}_{n \geq 0}$ are given with

$$
\begin{array}{cccccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
L_{n, 1}^{+} & 5 F_{1} & 6 & L_{2} & 1 & 5 F_{3} & 1 & L_{4} & 2 & 5 F_{5} & 3 & L_{6} & 1 & 5 F_{7} & 2 & L_{8}
\end{array} .
$$

The sequence $\left\{L_{n, 1}^{+}\right\}_{n \geq 1}$ is neither constant nor decreasing, or increasing. But, there are some subsequences of the sequence $\left\{L_{n, 1}^{+}\right\}_{n \geq 1}$, which are either periodic or increasing. It is seen that the sequence $\left\{L_{2 k, 1}^{+}\right\}_{k \geq 0}$ includes $\left\{L_{k+1}\right\}$ for $k=1,3,5, \ldots$ and $\left\{5 F_{k+1}\right\}$ for $k=0,2,4,6, \ldots$. Also, the sequence $\left\{L_{2 k+1,1}^{+}\right\}_{k \geq 0}$ is $\{6,1,1,2,3,1,2,1,3,2,1,1\}$ for $k=0,1,2,3, \ldots, 11$, which is periodic according to $k \equiv 0-11(\bmod 12)$.

Now, according to observations made for the numbers $L_{n, 1}^{+}$, the numbers $L_{n, 1}^{-}$are given with

$$
\begin{array}{cccccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
L_{n, 1}^{-} & L_{1} & 2 & 5 F_{2} & 1 & L_{3} & 3 & 5 F_{4} & 2 & L_{5} & 1 & 5 F_{6} & 1 & L_{7} & 6 & 5 F_{8}
\end{array}
$$

It is seen that $L_{2 k, 1}^{-}=5 F_{k+1}$ for $k=1,3,5, \ldots$, and $L_{2 k, 1}^{-}=L_{k+1}$ for $k=$ $0,2,4,6, \ldots$ Also, the sequence $\left\{L_{2 k+1,1}^{-}\right\}=\{2,1,3,2,1,1,6,1,1,2,3,1\}, k \equiv$ $0-11(\bmod 12)$ is periodic.

Lemma 3.1. For any integers m and n,

$$
\begin{align*}
& \left(L_{n}-L_{m}-F_{m-1}, L_{n+1}+L_{m-1}+F_{m-2}\right) \tag{3.3}\\
& \quad=\left(L_{n-2}-L_{m+2}-F_{m+1}, L_{n-1}+L_{m+1}+F_{m}\right)
\end{align*}
$$

Proof. By applying property $(x, y)=(x, y-x)$ for the left hand side of (3.3), we have

$$
\begin{aligned}
\left(L_{n}\right. & \left.-L_{m}-F_{m-1}, L_{n+1}+L_{m-1}+F_{m-2}\right) \\
& =\left(L_{n}-L_{m}-F_{m-1}, L_{n+1}-L_{n}+L_{m-1}+L_{m}+F_{m-2}+F_{m-1}\right) \\
& =\left(L_{n}-L_{n-1}-L_{m}-L_{m+1}-F_{m-1}-F_{m}, L_{n-1}+L_{m+1}+F_{m}\right) \\
& =\left(L_{n-2}-L_{m+2}-F_{m+1}, L_{n-1}+L_{m+1}+F_{m}\right)
\end{aligned}
$$

by using $F_{n+1}-F_{n}=F_{n-1}$ and $L_{n+1}-L_{n}=L_{n-1}$ given in 1.1.
Lemma 3.2. For any integers m and n,

$$
\begin{align*}
& \left(L_{n}-1, L_{n+1}+3\right) \tag{3.4}\\
& \quad=\left(L_{n-2 m}-L_{2 m+1}-F_{2 m}, L_{n-2 m+1}+L_{2 m}+F_{2 m-1}\right) \\
& \left(L_{n}+1,\right. \tag{3.5}\\
& \left.\quad L_{n+1}-3\right) \\
& \quad=\left(L_{n-2 m}+L_{2 m+1}+F_{2 m}, L_{n-2 m+1}-L_{2 m}-F_{2 m-1}\right)
\end{align*}
$$

Proof. Note that $F_{-1}=F_{1}=1$ and $F_{0}=0$. Thus, by applying property $(x, y)=(x, y-x)$ for the left hand side of 3.4 , we get

$$
\begin{aligned}
\left(L_{n}-1, L_{n+1}+3\right) & =\left(L_{n}-F_{1} L_{1}-F_{0} L_{2}, L_{n+1}+F_{0} L_{1}+F_{-1} L_{2}\right) \\
& =\left(L_{n}-F_{1} L_{1}-F_{0} L_{2}, L_{n-1}+F_{2} L_{1}+F_{1} L_{2}\right) \\
& =\left(L_{n-2}-F_{3}-3 F_{2}, L_{n-1}+F_{2}+3 F_{1}\right)
\end{aligned}
$$

By using $L_{n}=F_{n-1}+F_{n+1}$, we obtain

$$
\begin{align*}
\left(L_{n-2}-F_{3}-3 F_{2}, L_{n-1}+F_{2}+3 F_{1}\right) & =\left(L_{n-2}-F_{4}-2 F_{2}, L_{n-1}+F_{3}+2 F_{1}\right) \\
& =\left(L_{n-2}-L_{3}-F_{2}, L_{n-1}+L_{2}+F_{1}\right) . \tag{3.6}
\end{align*}
$$

The equation in (3.6) is a special case for $m=1$ of equation given in (3.3). Thus, by applying property $(x, y)=(x, y-x), m-1$ times to (3.6), we achieve the desired result.

Theorem 3.3. Let $L_{2 k, 1}^{+}$and $L_{2 k, 1}^{-}$be the 1-consecutive $G C D$ numbers given in (3.1) and (3.2) with $r=1$, respectively. Then

$$
L_{2 k, 1}^{+}=\left\{\begin{array}{ll}
L_{k+1}, & \text { for odd } k, \\
5 F_{k+1}, & \text { for even } k,
\end{array} \quad L_{2 k, 1}^{-}= \begin{cases}5 F_{k+1}, & \text { for odd } k \\
L_{k+1}, & \text { for even } k\end{cases}\right.
$$

Proof. Since $L_{2 k, 1}^{+}=\left(L_{2 k}^{+}, L_{2 k+1}^{+}\right)$, by applying $k+1$ for m, and $k-1$ and k for n in equations given (2.4) and 2.5), respectively, we can rewrite the values $L_{2 k}^{+}$and $L_{2 k+1}^{+}$as

$$
\begin{aligned}
L_{(k+1)+(k-1)}+L_{(k+1)-(k-1)} & = \begin{cases}L_{k+1} L_{k-1}, & \text { if } k \text { is odd } \\
5 F_{k-1} F_{k+1}, & \text { otherwise }\end{cases} \\
L_{(k+1)+k}-L_{(k+1)-k} & = \begin{cases}5 F_{k} F_{k+1}, & \text { if } k \text { is even } \\
L_{k+1} L_{k}, & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $\left(L_{k}, L_{k-1}\right)=1$ and $\left(F_{k}, F_{k-1}\right)=1,\left(L_{2 k}^{+}, L_{2 k+1}^{+}\right)$is L_{k+1} or $5 F_{k+1}$. The other equation is shown with a similar way.

Theorem 3.4. If $L_{2 k-1,1}^{+}$and $L_{2 k-1,1}^{-}$are the $(2 k-1)$ th entries of the 1-consecutive $G C D$ sequences, respectively, then $L_{2 k-1,1}^{+}$and $L_{2 k-1,1}^{-}$are periodic such as

$$
\begin{aligned}
& L_{2 k-1,1}^{+}= \begin{cases}1, & k \equiv 0,2,3,6,8,11(\bmod 12) \\
2, & k \equiv 4,7,10(\bmod 12) \\
3, & k \equiv 5,9(\bmod 12) \\
6, & k \equiv 1(\bmod 12)\end{cases} \\
& L_{2 k-1,1}^{-}= \begin{cases}1, & k \equiv 0,2,5,6,8,9(\bmod 12) \\
2, & k \equiv 1,4,10(\bmod 12) \\
3, & k \equiv 3,11(\bmod 12) \\
6, & k \equiv 7(\bmod 12)\end{cases}
\end{aligned}
$$

Proof. Since $L_{2 k-1,1}^{+}=\left(L_{2 k-1}-1, L_{2 k}+3\right)$, firstly, for an even k, we can write (3.4) with $n=2 k-1$ and $m=\frac{k}{2}$ as

$$
\begin{aligned}
\left(L_{2 k-1}-1, L_{2 k}+3\right) & =\left(L_{k-1}-L_{k+1}-F_{k}, 2 L_{k}+F_{k-1}\right) \\
& =\left(-L_{k}-F_{k}, 2 L_{k}+F_{k-1}\right)
\end{aligned}
$$

By using properties $L_{k}=F_{k+1}+F_{k-1}$ and $(x, y)=(x, y+z x)$, we have

$$
\begin{aligned}
L_{2 k-1,1}^{+} & =\left(-2 F_{k+1}, 2 F_{k+1}+3 F_{k-1}\right) \\
& =\left(-2 F_{k+1}, 3 F_{k-1}\right)
\end{aligned}
$$

Since $\left(F_{k+1}, 3\right)=1$ for even k, it is valid $\left(-2 F_{k+1}, 3 F_{k-1}\right)=\left(2, F_{k-1}\right)$. Thus, $L_{2 k-1,1}^{+}$is 1 or 2 .

Secondly, for an odd k, we can write 3.4 with $n=2 k-1$ and $m=\frac{k-1}{2}$ as

$$
\left(L_{2 k-1}-1, L_{2 k}+3\right)=\left(-F_{k-1}, L_{k+1}+L_{k-1}+F_{k-2}\right)
$$

By using properties $5 F_{k}=L_{k+1}+L_{k-1}$ and $(x, y)=(x, y+z x)$, we have

$$
\begin{aligned}
L_{2 k-1,1}^{+} & =\left(-F_{k-1}, 5 F_{k-1}+6 F_{k-2}\right) \\
& =\left(-F_{k-1}, 6 F_{k-2}\right) .
\end{aligned}
$$

It follows $\left(-F_{k-1}, 6 F_{k-2}\right)=\left(F_{k-1}, 6\right)$, so $L_{2 k-1,1}^{+}$is one of the entries of $\{1,2,3,6\}$ for odd k. In both cases, the following properties are valid

$$
\begin{aligned}
& \left(2, F_{k}\right)=2 \text { if and only if } k \equiv 0(\bmod 3) \\
& \left(3, F_{k}\right)=3 \text { if and only if } k \equiv 0(\bmod 4) \\
& \left(6, F_{k}\right)=6 \text { if and only if } k \equiv 0(\bmod 12)
\end{aligned}
$$

Thus, in case $\left(F_{k-1}, 6\right)=6$, for $k \equiv 1(\bmod 12)$, it is clear that $\left(L_{2 k-1}^{+}, L_{2 k}^{+}\right)=$ 6. If $\left(F_{k-1}, 6\right)=3, k \neq 1$, for $k \equiv 1(\bmod 4)$ for odd k, that is $k=4 l+1$, for $k \equiv 5,9(\bmod 12)$, then $\left(L_{2 k-1}^{+}, L_{2 k}^{+}\right)=3$. Now, assume $\left(F_{k-1}, 6\right)=2$, for $k \equiv 1(\bmod 3)$ for odd k, that is $k=3 m+1$, for $k \equiv 7(\bmod 12)$, then $\left(L_{2 k-1}^{+}, L_{2 k}^{+}\right)=2$. Finally, in the cases $k \equiv 3,11(\bmod 12)$, we have $\left(F_{k-1}, 6\right)=$ 1. Suppose that $\left(2, F_{k-1}\right)=2, k \equiv 1(\bmod 3)$ for even k, that is $k=3 s+1$, for $k \equiv 4,10(\bmod 12)$, it is clear that $\left(L_{2 k-1}^{+}, L_{2 k}^{+}\right)=2$. Otherwise, in cases $k \equiv 0(\bmod 3)$ and $k \equiv 2(\bmod 3)$, it is $\left(2, F_{k-1}\right)=1$, for $k \equiv 0,6,(\bmod 12)$ and $k \equiv 2,8,(\bmod 12)$, respectively. All results complete the proof for all cases of $L_{2 k-1,1}^{+}=\left(L_{2 k-1}^{+}, L_{2 k}^{+}\right)$.

Now, since $L_{2 k-1,1}^{-}=\left(L_{2 k-1}^{-}, L_{2 k}^{-}\right)$, we suppose for even $k, n=2 k-1$ and $m=\frac{k}{2}$ given in 3.5):

$$
\left(L_{k-1}+L_{k+1}+F_{k},-F_{k-1}\right)=\left(2 F_{k},-F_{k-1}\right)
$$

And also, we assume for odd $k, n=2 k-1$ and $m=\frac{k+1}{2}$ given in 3.5 :

$$
\begin{aligned}
\left(L_{k-2}+L_{k+2}+F_{k+1}, L_{k-1}-L_{k+1}-F_{k}\right) & =\left(3 L_{k}+F_{k+1},-L_{k}-F_{k}\right) \\
& =\left(3 F_{k-1}+4 F_{k+1},-2 F_{k+1}\right) \\
& =\left(3 F_{k-1},-2 F_{k+1}\right)
\end{aligned}
$$

Depending on whether k is odd or even, the calculations of expressions $L_{2 k-1,1}^{-}=\left(2 F_{k},-F_{k-1}\right)$ and $L_{2 k-1,1}^{-}=\left(3 F_{k-1},-2 F_{k+1}\right)$ can be made with similar methods.

As a brief summary of the mentioned above, the sequence $\left\{L_{4 k-2,1}^{+}\right\}_{k \geq 1}=$ $\left\{\operatorname{gcd}\left(L_{4 k-2}^{+}, L_{4 k-1}^{+}\right)\right\}_{k \geq 1}$ is $\left\{L_{2 k}\right\}_{k \geq 1}$, and the sequence $\left\{L_{4 k, 1}^{+}\right\}_{k \geq 1}$ is $\left\{5 F_{2 k+1}\right\}_{k \geq 1}$. And also, $\left\{L_{4 k-2,1}^{-}\right\}_{k \geq 1}=\left\{5 F_{2 k}\right\}_{k \geq 1}$ and $\left\{L_{4 k, 1}^{-}\right\}_{k \geq 1}=$ $\left\{L_{2 k+1}\right\}_{k \geq 1}$. These results given in the following lemma are consequences of Theorem 3.3.

Lemma 3.5. Let $L_{n, 1}^{+}$and $L_{n, 1}^{-}$be the nth numbers of 1 -consecutive $G C D$ sequences. Then

$$
\begin{array}{ll}
L_{4 k, 1}^{+}=5 F_{2 k+1}, & L_{4 k, 1}^{-}=L_{2 k+1} \\
L_{4 k+2,1}^{+}=L_{2 k+2}, & L_{4 k+2,1}^{-}=5 F_{2 k+2}
\end{array}
$$

In addition, the $\left\{L_{4 k+1,1}^{+}\right\}_{k \geq 1}=\{6,1,3,2,3,1\}, k \in Z_{6}$ is periodic; that is $L_{4 k+1,1}^{+}=6$ iff $k \equiv 0(\bmod 6), L_{4 k+1,1}^{+}=1$ iff $k \equiv 1(\bmod 6)$ and so on, respectively. The sequence $\left\{L_{4 k-1,1}^{+}\right\}_{k \geq 1}=\{1,2,1,1,2,1\}, k \in Z_{6}$ is periodic. The sequence $\left\{L_{4 k+1,1}^{-}\right\}_{k \geq 1}=\{2,3,1,6,1,3\}, k \in Z_{6}$ is periodic. In addition, the $\left\{L_{4 k-1,1}^{-}\right\}_{k \geq 1}=\{1,2,1\}, k \in Z_{3}$ is also periodic. These results given in the following lemma are consequences of Theorem 3.4.

Lemma 3.6. Let $L_{n, 1}^{+}$and $L_{n, 1}^{-}$be the nth numbers of 1 -consecutive $G C D$ sequences, $L_{n, 1}^{ \pm}$denotes both the numbers $L_{n, 1}^{+}$and $L_{n, 1}^{-}$. Then

$$
\begin{gathered}
L_{4 k+1,1}^{+}= \begin{cases}6, & k=0(\bmod 6) \\
3, & k=2,4(\bmod 6) \\
2, & k=3(\bmod 6) \\
1, & k=1,5(\bmod 6)\end{cases} \\
L_{4 k+1,1}^{-}= \begin{cases}6, & k=4(\bmod 6) \\
3, & k=0,2(\bmod 6) \\
2, & k=1(\bmod 6) \\
1, & k=3,5(\bmod 6)\end{cases}
\end{gathered}
$$

and

$$
L_{4 k+3,1}^{ \pm}= \begin{cases}2, & k=1(\bmod 3) \\ 1, & \text { otherwise }\end{cases}
$$

It is well known that $\left(F_{n}, F_{n+2}\right)=1$ and $\left(L_{n}, L_{n+2}\right)=1$. Similarly, sequences $\left\{L_{n, 2}^{+}\right\}_{k \geq 1}$ and $\left\{L_{n, 2}^{-}\right\}_{k \geq 1}$ are obtained as the periodic constant sequences.

Theorem 3.7. Let $L_{n, 2}^{+}$and $L_{n, 2}^{-}$be the nth 2-consecutive $G C D$ numbers. Then

$$
L_{4 k, 2}^{+}=L_{4 k+3,2}^{+}=L_{4 k+3,2}^{-}= \begin{cases}2, & k \equiv 2(\bmod 3) \\ 1, & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
L_{4 k+2,2}^{+}=\left\{\begin{array}{ll}
2, & k \equiv 0(\bmod 3), \\
1, & \text { otherwise },
\end{array} \quad L_{4 k, 2}^{-}= \begin{cases}4, & k \equiv 2(\bmod 3) \\
1, & \text { otherwise }\end{cases} \right. \\
L_{4 k+2,2}^{-}= \begin{cases}4, & k \equiv 0(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
L_{4 k+1,2}^{-}=\left\{\begin{array}{ll}
1, & k \equiv 0,2(\bmod 6), \\
2, & k \equiv 4(\bmod 6), \\
3, & k \equiv 3,5(\bmod 6), \\
6, & k \equiv 1(\bmod 6)
\end{array} \quad L_{4 k+1,2}^{+}= \begin{cases}1, & k \equiv 3,5(\bmod 6) \\
2, & k \equiv 1(\bmod 6) \\
3, & k \equiv 0,2(\bmod 6) \\
6, & k \equiv 4(\bmod 6)\end{cases} \right.
\end{gathered}
$$

Proof. From $L_{4 k, 2}^{+}=\left(L_{4 k}^{+}, L_{4 k+2}^{+}\right)$and $L_{4 k+2,2}^{-}=\left(L_{4 k+2}^{-}, L_{4 k+4}^{-}\right)$, we get

$$
\begin{aligned}
\left(L_{4 k}+3\right. & \left.L_{4 k+2}+3\right)=\left(5 F_{2 k+1} F_{2 k-1}, L_{2 k+2} L_{2 k}\right) \\
& =\left(5 F_{2 k+1}, L_{2 k+2}\right)\left(F_{2 k-1}, L_{2 k}\right)\left(5 F_{2 k+1}, L_{2 k}\right)\left(F_{2 k-1}, L_{2 k+2}\right) \\
& =\left(F_{2 k-1}, F_{2 k+3}+F_{2 k+1}\right)=\left(F_{2 k-1}, 4 F_{2 k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(L_{4 k+2}-3\right. & \left.L_{4 k+4}-3\right)=\left(5 F_{2 k+2} F_{2 k}, L_{2 k+3} L_{2 k+1}\right) \\
& =\left(5 F_{2 k+2}, L_{2 k+3}\right)\left(F_{2 k}, L_{2 k+1}\right)\left(5 F_{2 k+2}, L_{2 k+1}\right)\left(F_{2 k}, L_{2 k+3}\right) \\
& =\left(F_{2 k}, F_{2 k+4}+F_{2 k+2}\right)=\left(F_{2 k}, 4 F_{2 k+1}\right)
\end{aligned}
$$

By using the properties $\left(2, F_{k}\right)=2$ if and only if $k \equiv 0(\bmod 3)$ and $\left(4, F_{k}\right)=4$ if and only if $k \equiv 0(\bmod 6)$, we obtain $L_{4 k, 2}^{+}=2$ iff $k \equiv 2(\bmod 3)$ and $L_{4 k+2,2}^{-}=4$ iff $k \equiv 0(\bmod 3)$, then the desired results are found. The other properties are obtained in a similar way by using $\left(3, F_{k}\right)=3$ if and only if $k \equiv 0(\bmod 4)$.

It is well known that $\left(F_{n}, F_{n+3}\right)=2$ and $\left(L_{n}, L_{n+3}\right)=2$ iff $n \equiv 0(\bmod 3)$, otherwise $\left(F_{n}, F_{n+3}\right)=\left(L_{n}, L_{n+3}\right)=1$. And, sequences $\left\{L_{n, 3}^{+}\right\}_{k \geq 1}$ and $\left\{L_{n, 3}^{-}\right\}_{k \geq 1}$ are established by Theorem 3.8 .

Theorem 3.8. Let $L_{n, 3}^{+}$and $L_{n, 3}^{-}$be the nth 3-consecutive $G C D$ numbers. Then

$$
L_{4 k+1,3}^{+}= \begin{cases}10 F_{2 k+1}, & k \equiv 0(\bmod 3) \\ 5 F_{2 k+1}, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& L_{4 k+3,3}^{+}= \begin{cases}2 L_{2 k+2}, & k \equiv 1(\bmod 3), \\
L_{2 k+2}, & \text { otherwise },\end{cases} \\
& L_{4 k+1,3}^{-}= \begin{cases}2 L_{2 k+1}, & k \equiv 0(\bmod 3), \\
L_{2 k+1}, & \text { otherwise },\end{cases} \\
& L_{4 k+3,3}^{-}= \begin{cases}10 F_{2 k+2}, & k \equiv 1(\bmod 3), \\
5 F_{2 k+2}, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Proof. From $L_{4 k+1,3}^{+}=\left(L_{4 k+1}^{+}, L_{4 k+4}^{+}\right)$and $L_{4 k+1,3}^{-}=\left(L_{4 k+1}^{-}, L_{4 k+4}^{-}\right)$, we get

$$
\begin{aligned}
& \left(L_{4 k+1}-1, L_{4 k+4}+3\right)=5 F_{2 k+1}\left(F_{2 k}, F_{2 k+3}\right) \\
& \left(L_{4 k+1}+1, L_{4 k+4}-3\right)=L_{2 k+1}\left(L_{2 k}, L_{2 k+3}\right)
\end{aligned}
$$

Thus, the properties $\left(F_{n}, F_{n+3}\right)=2$ and $\left(L_{n}, L_{n+3}\right)=2$ iff $n \equiv 0(\bmod 3)$ complete the proof.

Theorem 3.9. Let $L_{n, 3}^{+}$and $L_{n, 3}^{-}$be the nth 3-consecutive GCD numbers. Then

$$
\begin{aligned}
& L_{4 k, 3}^{+}=\left\{\begin{array}{ll}
1, & k \equiv 0,3(\bmod 6), \\
2, & k \equiv 1,2,4,5(\bmod 6),
\end{array} \quad L_{4 k, 3}^{-}= \begin{cases}1, & k \equiv 0,3(\bmod 6) \\
2, & k \equiv 1,4(\bmod 6), \\
4, & k \equiv 2,5(\bmod 6),\end{cases} \right. \\
& L_{4 k+2,3}^{+}=\left\{\begin{array}{ll}
1, & k \equiv 4(\bmod 6), \\
2, & k \equiv 0,2(\bmod 6), \\
3, & k \equiv 1(\bmod 6), \\
6, & k \equiv 3,5(\bmod 6),
\end{array} \quad L_{4 k+2,3}^{-}= \begin{cases}1, & k \equiv 1(\bmod 6) \\
2, & k \equiv 5(\bmod 6) \\
3, & k \equiv 4(\bmod 6) \\
4, & k \equiv 3(\bmod 6) \\
6, & k \equiv 2(\bmod 6) \\
12, & k \equiv 0(\bmod 6)\end{cases} \right.
\end{aligned}
$$

Proof. Since $L_{4 k+2,3}^{+}=\left(L_{4 k+2}^{+}, L_{4 k+5}^{+}\right)$and $L_{4 k, 3}^{-}=\left(L_{4 k}^{-}, L_{4 k+3}^{-}\right)$, by applying appropriate values of equations given in (3.4) and (3.5), we obtain proofs of all results.

Since $\left(F_{n}, F_{n+4}\right)=\left(F_{n}, 3 F_{n+1}\right)$ and $\left(L_{n}, L_{n+4}\right)=\left(L_{n}, 3 L_{n+1}\right)$, it is seen that $\left(F_{n}, F_{n+4}\right)=3$ iff $n \equiv 0(\bmod 4)$ and $\left(L_{n}, L_{n+4}\right)=3$ iff $n \equiv 2(\bmod 4)$,
otherwise it equals to 1 . Now, we give the form of the sequences $\left\{L_{n, 4}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n, 4}^{-}\right\}_{n \geq 1}$.

Theorem 3.10. Let $L_{n, 4}^{+}$and $L_{n, 4}^{-}$be the nth 4-consecutive $G C D$ numbers. Then

$$
\begin{aligned}
& L_{4 k, 4}^{+}=5 F_{2 k+1}, \\
& L_{4 k, 4}^{-}=L_{2 k+1}, \\
& L_{4 k+2,4}^{+}= \begin{cases}L_{2 k+2}, & k \equiv 0(\bmod 2), \\
3 L_{2 k+2}, & \text { otherwise },\end{cases} \\
& L_{4 k+2,4}^{-}= \begin{cases}15 F_{2 k+2}, & k \equiv 0(\bmod 2), \\
5 F_{2 k+2}, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Proof. From $L_{4 k+2,4}^{-}=\left(L_{4 k+2}^{-}, L_{4(k+1)+2}^{-}\right)$, it follows that $L_{4 k+2,4}^{-}=$ $\left(L_{4 k+2}-3, L_{4(k+1)+2}-3\right)$ and $L_{4 k+2,4}^{-}=5 F_{2 k+2}\left(F_{2 k}, 3 F_{2 k+1}\right)$. Since $\left(F_{2 k}, 3\right)=$ 3 iff $k \equiv 0(\bmod 2)$, we achieve desired results.

Lemma 3.11. Let $L_{n, 4}^{+}$and $L_{n, 4}^{-}$be the nth 4 -consecutive $G C D$ numbers. Then

$$
\begin{aligned}
& L_{4 k+1,4}^{+}=5 L_{4 k+1,4}^{-}= \begin{cases}5, & k \equiv 1,2(\bmod 3) \\
10, & k \equiv 0(\bmod 3)\end{cases} \\
& 5 L_{4 k+3,4}^{+}=L_{4 k+3,4}^{-}= \begin{cases}5, & k \equiv 0,2(\bmod 3) \\
10, & k \equiv 1(\bmod 3)\end{cases}
\end{aligned}
$$

Proof. Since $L_{4 k+1,4}^{+}=\left(L_{4 k+1}^{+}, L_{4 k+5}^{+}\right)$and $L_{4 k+3,4}^{-}=\left(L_{4 k+3}^{-}, L_{4(k+1)+3}^{-}\right)$, by applying Theorem 2.1, we get the desired results.

Now, in addition to the sequences $L_{n, r}^{+}$and $L_{n, r}^{-}$defined in (3.1) and (3.2), by selecting r-consecutive elements as mixed from the numbers L_{n}^{+}and L_{n}^{-} defined in 2.1 and 2.2 , we establish two different $G C D$ sequences of the altered Lucas sequences such as

$$
\begin{aligned}
& \left\{L_{n, r}^{+}\right\}_{n \geq 1}=\left\{\operatorname{gcd}\left(L_{n}^{+}, L_{n+r}^{-}\right)\right\}_{n \geq 1} \\
& \left\{L_{n, r}^{-+}\right\}_{n \geq 1}=\left\{\operatorname{gcd}\left(L_{n}^{-}, L_{n+r}^{+}\right)\right\}_{n \geq 1}
\end{aligned}
$$

It is well known that $\left(F_{n}, L_{n}\right)=2$ if and only if $3 \mid n$, otherwise $\left(F_{n}, L_{n}\right)=1$. Similarly, the sequence $\left\{L_{n, 0}^{+}\right\}_{n \geq 1}$ (or $\left\{L_{n, 0}^{-}\right\}_{n \geq 1}$), i.e. 0-consecutive $G C D$ sequence, is a constant periodic sequence.

Lemma 3.12. Let $L_{n, 0}^{+}=L_{n, 0}^{-}+=\operatorname{gcd}\left(L_{n}^{+}, L_{n}^{-}\right)$be the nth 0 -consecutive $G C D$ numbers. Then

$$
\begin{aligned}
& L_{4 k, 0}^{+-}= \begin{cases}1, & k \equiv 0(\bmod 3), \\
2, & \text { otherwise, }\end{cases} \\
& L_{4 k+1,0}^{+-}= \begin{cases}1, & k \equiv 2(\bmod 3), \\
2, & \text { otherwise },\end{cases} \\
& L_{4 k+2,0}^{+-}= \begin{cases}3, & k \equiv 1(\bmod 3), \\
6, & \text { otherwise, }\end{cases} \\
& L_{4 k+3,0}^{+-}= \begin{cases}1, & k \equiv 0(\bmod 3), \\
2, & \text { otherwise }\end{cases}
\end{aligned}
$$

Proof. Since $L_{4 k, \overline{0}}^{+}=\left(L_{4 k}^{+}, L_{4 k}^{-}\right)$and $L_{4 k+1,0}^{+-}=\left(L_{4 k+1}^{+}, L_{4 k+1}^{-}\right)$, by applying Theorem 2.1 with appropriate values, we can write

$$
\begin{aligned}
L_{4 k, 0}^{+-} & =\left(5 F_{2 k+1} F_{2 k-1}, L_{2 k+1} L_{2 k-1}\right) \\
& =\left(5 F_{2 k+1}, L_{2 k+1}\right)\left(F_{2 k-1}, L_{2 k-1}\right) .
\end{aligned}
$$

By using $\left(L_{2 k+1}, 2\right)=2$ if and only if $k \equiv 1(\bmod 3)$, and $\left(F_{2 k-1}, 2\right)=2$ if and only if $k \equiv 2(\bmod 3)$, others cases are 1 , we achieve desired result. The other results are produced with similar ways.

Firstly, we have not encountered in the literature with $\left(F_{n}, L_{n+1}\right)$ and $\left(F_{n+1}, L_{n}\right)$, but, we can write $\left(F_{n}, F_{n}+F_{n+2}\right)=1$ and $\left(F_{n+1}, F_{n-1}+F_{n+1}\right)=1$, respectively. Therefore, we study on 1-consecutive $G C D$ sequences.

Theorem 3.13. Let $L_{n, 1}^{+}{ }^{-}$and $L_{n, 1}^{-}{ }^{+}$be the nth numbers of 1-consecutive $G C D$ sequences. Then

$$
\begin{gathered}
L_{4 k+1,1}^{+-}=5 F_{2 k}, \quad L_{4 k+1,1}^{-+}=L_{2 k} \\
L_{4 k+3,1}^{+-}=L_{2 k+1}, \quad L_{4 k+3,1}^{-+}=5 F_{2 k+1}
\end{gathered}
$$

Proof. From the definitions given in 2.1, 2.2 and Theorem 2.1, we have

$$
\begin{aligned}
& \left(L_{4 k+1}^{+}, L_{4 k+2}^{-}\right)=\left(L_{4 k+1}-1, L_{4 k+2}-3\right)=5 F_{2 k}\left(F_{2 k+1}, F_{2 k+2}\right) \\
& \left(L_{4 k+1}^{-}, L_{4 k+2}^{+}\right)=\left(L_{4 k+1}+1, L_{4 k+2}+3\right)=L_{2 k}\left(L_{2 k+1}, L_{2 k+2}\right)
\end{aligned}
$$

Thus, all results are obtained, since $\left(F_{2 k+1}, F_{2 k+2}\right)=1=\left(L_{2 k+1}, L_{2 k+2}\right)$.

Lemma 3.14. If $L_{n, 1}^{+-}$and $L_{n, 1}^{-+}$are the nth 1 -consecutive $G C D$ numbers, then

$$
\begin{aligned}
& L_{4 k, 1}^{ \pm} \mp= \begin{cases}2, & k \equiv 1(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
& L_{4 k+2,1}^{+-}=\left\{\begin{array}{ll}
1, & k \equiv 0,4(\bmod 6), \\
2, & k \equiv 2(\bmod 6), \\
3, & k \equiv 1,3(\bmod 6), \\
6, & k \equiv 5(\bmod 6),
\end{array} \quad L_{4 k+2,1}^{-}, \quad \begin{cases}1, & k \equiv 1,3(\bmod 6), \\
2, & k \equiv 5(\bmod 6), \\
3, & k \equiv 0,4(\bmod 6), \\
6, & k \equiv 2(\bmod 6) .\end{cases} \right.
\end{aligned}
$$

Secondly, $\left(F_{n}, L_{n+2}\right)=\left(F_{n}, 3 F_{n+1}\right)$ and $\left(F_{n+2}, L_{n}\right)=\left(F_{n-2}, 3 F_{n-1}\right)$ give $\left(F_{n}, L_{n+2}\right)=3$ iff $n \equiv 0(\bmod 4)$ and $\left(F_{n+2}, L_{n}\right)=3$ iff $n \equiv 2(\bmod 4)$, otherwise, it equals to 1 . Now, we study on numbers $L_{n, 2}^{+-}$and $L_{n, 2}^{-}{ }^{+}$.

TheOrem 3.15. Let $L_{n, 2}^{+-}$and $L_{n, 2}^{-}{ }^{+}$be the nth numbers of 2 -consecutive $G C D$ sequences. Then

$$
\begin{aligned}
& L_{4 k+1,2}^{+-}=5 F_{2 k+1}, \quad L_{4 k+1,2}^{-+}=L_{2 k+1} \\
& L_{4 k+3,2}^{+-}=L_{2 k+2}, \quad L_{4 k+1,2}^{-+}=5 F_{2 k+2}
\end{aligned}
$$

Proof. From the definitions given in 2.1, 2.2 and Theorem 2.1, we have

$$
\left(L_{4 k+1}^{+}, L_{4 k+3}^{-}\right)=5 F_{2 k+1}\left(F_{2 k}, F_{2 k+1}+F_{2 k}\right)
$$

Since $\left(F_{2 k}, F_{2 k+1}\right)=1$ and $(x, y)=(x, y-x)$, we have the proof of the first of our equalities. The proofs of the remaining properties are similar.

Lemma 3.16. If $L_{n, 2}^{+-}$and $L_{n, 2}^{-}{ }^{+}$are the nth 2-consecutive $G C D$ numbers, then

$$
\begin{gathered}
L_{4 k, 2}^{+-}=5 L_{4 k, 2}^{-+}= \begin{cases}10, & k \equiv 2(\bmod 3) \\
5, & \text { otherwise }\end{cases} \\
L_{4 k+2,2}^{-+}=5 L_{4 k+2,2}^{+-}= \begin{cases}10, & k \equiv 0(\bmod 3), \\
5, & \text { otherwise }\end{cases}
\end{gathered}
$$

As the third, since $\left(F_{n}, L_{n+3}\right)=\left(F_{n}, 4 F_{n+1}\right)$ and $\left(F_{n+3}, L_{n}\right)=\left(2 F_{n}, L_{n}\right)$, it is seen that $\left(F_{n}, L_{n+3}\right)=4$ iff $n \equiv 0(\bmod 6)$ and $\left(F_{n+3}, L_{n}\right)$ is 4 iff $n \equiv$ $3(\bmod 6)$ or 2 iff $n \equiv 0(\bmod 6)$, otherwise, $\left(F_{n+3}, L_{n}\right)=\left(F_{n}, L_{n+3}\right)=1$. So, we derive numbers $L_{n, 3}^{+}$and $L_{n, 3}^{-}{ }^{+}$.

Theorem 3.17. Let $L_{n, 3}^{+}{ }^{-}$and $L_{n, 3}^{-}{ }^{+}$be the nth numbers of 3 -consecutive $G C D$ sequences. Then
$L_{4 k, 3}^{+-}=\left\{\begin{array}{ll}10 F_{2 k+1}, & k \equiv 2(\bmod 3), \\ 5 F_{2 k+1}, & \text { otherwise },\end{array} \quad L_{4 k+2,3}^{+-}= \begin{cases}2 L_{2 k+2}, & k \equiv 0(\bmod 3), \\ L_{2 k+2}, & \text { otherwise },\end{cases}\right.$
$L_{4 k, 3}^{-}=\left\{\begin{array}{ll}2 L_{2 k+1}, & k \equiv 2(\bmod 3), \\ L_{2 k+1}, & \text { otherwise },\end{array} \quad L_{4 k+2,3}^{-}= \begin{cases}10 F_{2 k+2}, & k \equiv 0(\bmod 3), \\ 5 F_{2 k+2}, & \text { otherwise } .\end{cases}\right.$
Proof. Since $\left(L_{4 k}^{+}, L_{4 k+3}^{-}\right)=\left(L_{4 k}+3, L_{4 k+3}+1\right)$, by using Theorem 2.1. we have

$$
\begin{aligned}
\left(L_{4 k}+3, L_{4 k+3}+1\right) & =\left(5 F_{2 k+1} F_{2 k-1}, 5 F_{2 k+2} F_{2 k+1}\right) \\
& =5 F_{2 k+1}\left(F_{2 k-1}, F_{3}\right) \\
& =5 F_{2 k+1} F_{(2 k-1,3)} .
\end{aligned}
$$

Since $\left(L_{4 k}^{-}, L_{4 k+3}^{+}\right)=\left(L_{4 k}-3, L_{4 k+3}-1\right)$, we get

$$
\begin{aligned}
\left(L_{4 k}-3, L_{4 k+3}-1\right) & =\left(L_{2 k+1} L_{2 k-1}, L_{2 k+2} L_{2 k+1}\right) \\
& =L_{2 k+1}\left(L_{2 k-1}, 2 L_{2 k}\right) \\
& =L_{2 k+1}\left(L_{2 k-1}, 2\right)
\end{aligned}
$$

Because the other proofs are similar, we omit them.

Lemma 3.18. If $L_{n, 3}^{+}{ }^{-}$and $L_{n, 3}^{-}{ }^{+}$are the nth 3 -consecutive $G C D$ numbers, then

$$
L_{4 k+1,3}^{+-}=\left\{\begin{array}{ll}
1, & k \equiv 2(\bmod 3), \\
2, & k \equiv 1(\bmod 3), \\
4, & k \equiv 0(\bmod 3)
\end{array} \quad L_{4 k+1,3}^{-+}= \begin{cases}1, & k \equiv 2(\bmod 3) \\
2, & \text { otherwise }\end{cases}\right.
$$

$$
L_{4 k+3,3}^{+-}=\left\{\begin{array}{ll}
1, & k \equiv 3(\bmod 6), \\
2, & k \equiv 5(\bmod 6), \\
3, & k \equiv 0(\bmod 6), \\
4, & k \equiv 1(\bmod 6), \\
6, & k \equiv 2(\bmod 6), \\
12, & k \equiv 4(\bmod 6),
\end{array} \quad L_{4 k+3,3}^{-+}= \begin{cases}1, & k \equiv 0(\bmod 6) \\
2, & k \equiv 2,4(\bmod 6) \\
3, & k \equiv 3(\bmod 6) \\
6, & k \equiv 1,5(\bmod 6)\end{cases}\right.
$$

Finally, we establish 4 -consecutive $G C D$ sequences $\left\{L_{n, 4}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n, 4}^{-}\right\}_{n \geq 1}$.

Lemma 3.19. Let $L_{n, 4}^{+-}$and $L_{n, 4}^{-}{ }^{+}$be the nth 4-consecutive $G C D$ numbers. Then

$$
\begin{aligned}
& L_{4 k, 4}^{ \pm}= \begin{cases}2, & k \equiv 1(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
& L_{4 k+1,4}^{+-}=\left\{\begin{array}{ll}
1, & k \equiv 1,5(\bmod 6), \\
3, & k \equiv 2,4(\bmod 6), \\
4, & k \equiv 3(\bmod 6), \\
12, & k \equiv 0(\bmod 6),
\end{array} \quad L_{4 k+3,4}^{+-}= \begin{cases}1, & k \equiv 3,5(\bmod 6), \\
3, & k \equiv 0,2(\bmod 6), \\
4, & k \equiv 1(\bmod 6), \\
12, & k \equiv 4(\bmod 6),\end{cases} \right. \\
& L_{4 k+1,4}^{-+}=\left\{\begin{array}{ll}
1, & k \equiv 2,4(\bmod 6), \\
2, & k \equiv 0(\bmod 6), \\
3, & k \equiv 1,5(\bmod 6), \\
6, & k \equiv 3(\bmod 6),
\end{array} \quad L_{4 k+3,4}^{-+}= \begin{cases}1, & k \equiv 0,2(\bmod 6), \\
2, & k \equiv 4(\bmod 6), \\
3, & k \equiv 3,5(\bmod 6), \\
6, & k \equiv 1(\bmod 6),\end{cases} \right. \\
& L_{4 k+2,4}^{+-}= \begin{cases}3, & k \equiv 0,1,3,4,7,9(\bmod 12), \\
6, & k \equiv 5,8,11(\bmod 12), \\
21, & k \equiv 6,10(\bmod 12), \\
42, & k \equiv 2(\bmod 12),\end{cases} \\
& L_{4 k+2,4}^{-+}= \begin{cases}3, & k \equiv 1,3,6,7,9,10(\bmod 12), \\
6, & k \equiv 2,5,11(\bmod 12), \\
21, & k \equiv 0,4(\bmod 12), \\
42, & k \equiv 8(\bmod 12) .\end{cases}
\end{aligned}
$$

4. Conclusion

In this study, two altered Lucas sequences $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ are derived by altering the Lucas numbers with $\{ \pm 1, \pm 3\}$. Thus, the $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$ sequences are separated from the shifted and altered sequences in the literature. But, the L_{n}^{+}and L_{n}^{-}are related to the Fibonacci and Lucas numbers. It is seen that they have two different Fibonacci and Lucas factors. Therefore, we study several different type r-consecutive $G C D$ sequences, $\left\{L_{n, r}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n, r}^{-}\right\}_{n \geq 1}$ for the altered Lucas sequences $\left\{L_{n}^{+}\right\}_{n \geq 1}$ and $\left\{L_{n}^{-}\right\}_{n \geq 1}$, respectively. According to values r, it is seen that these sequences are periodic or unbounded. But for now, we leave other properties of the altered Lucas and r-consecutive $G C D$ sequences for researches in the future.

References

[1] K.-W. Chen, Greatest common divisors in shifted Fibonacci sequences, J. Integer. Seq. 14 (2011), no. 4, Article 11.4.7, 8 pp.
[2] U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences, Fibonacci Quart. 9 (1971), no. 1, 89-91.
[3] L. Hajdu and M. Szikszai, On the GCD-s of k consecutive terms of Lucas sequences, J. Number Theory 132 (2012), no. 12, 3056-3069.
[4] S. Hernández and F. Luca, Common factors of shifted Fibonacci numbers, Period. Math. Hungar. 47 (2003), no. 1-2, 95-110.
[5] L. Jones, Primefree shifted Lucas sequences, Acta Arith. 170 (2015), no. 3, 287-298.
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[7] A. Rahn and M. Kreh, Greatest common divisors of shifted Fibonacci sequences revisited, J. Integer. Seq. 21 (2018), no. 6, Art. 18.6.7, 12 pp.
[8] J. Spilker, The GCD of the shifted Fibonacci sequence, in: J. Sander et al. (eds.), From Arithmetic to Zeta-Functions, Springer, Cham, 2016, pp. 473-483.

Eregli Kemal Akman Vocational School
Necmettin Erbakan University
Konya
Turkey
e-mail: kokenfikri@gmail.com, fkoken@erbakan.edu.tr

