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NOTES ON A GENERAL SEQUENCE

Reza Farhadian , Rafael Jakimczuk

Abstract. Let {rn}n∈N be a strictly increasing sequence of nonnegative real
numbers satisfying the asymptotic formula rn ∼ αβn, where α, β are real
numbers with α > 0 and β > 1. In this note we prove some limits that connect
this sequence to the number e. We also establish some asymptotic formulae
and limits for the counting function of this sequence. All of the results are
applied to some well-known sequences in mathematics.

1. Introduction

Let {rn}n∈N be a strictly increasing sequence of nonnegative real numbers
satisfying the asymptotic formula

(1.1) rn ∼ αβn, α > 0, β > 1,

i.e., limn→∞
rn
αβn = 1.

In this paper, we are interested in finding some general results for this
sequence. Afterwards, we show that all of the results are applied to some
well-known sequences in mathematics.
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2. Main results

In this section we aim to present our main results on sequences satisfying
asymptotic formula (1.1). We have the following theorems.

Theorem 2.1. Let r1 > 1. The following limit holds:

lim
n→∞

n
√
log r1 log r2... log rn

log rn
=

1

e
.

Proof. By (1.1), we have

(2.1) log log rn = log n+ log log β + o(1).

On the other hand, from the Stirling’s approximation for n! (i.e. n! ∼
(ne )

n
√
2πn) [1], we obtain

(2.2)
n∑
i=1

log i = n log n− n+ o(n).

Hence, (2.1) and (2.2) give

log

(
n
√
log r1 log r2... log rn

log rn

)
=

1

n

(
log log r1 + log log r2 + · · ·+ log log rn

)
− log log rn

=
1

n

(
n∑
i=1

log i+ n log log β + o(n)

)
−
(
log n+ log log β + o(1)

)
= −1 + o(1).

This completes the proof. �

Theorem 2.2. Let r1 > 1. If k is an arbitrary but fixed positive integer,
then

lim
n→∞

(
(log r1)

1k(log r2)
2k . . . (log rn)

nk
) k+1

nk+1

log rn
=

1

ek+1
.
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Proof. By (1.1), we have

(2.3) log log ri = log i+ log log β + f(i) (i ≥ 1),

where

(2.4) f(i)→ 0.

Now, we have (see (2.3))

log
(
(log r1)

1k(log r2)
2k . . . (log rn)

nk
)
=

n∑
i=1

ik log log ri(2.5)

=

n∑
i=1

(
ik log i+ ik log log β + f(i)ik

)
=

n∑
i=1

ik log i+

n∑
i=1

ik log log β +

n∑
i=1

f(i)ik.

We know that the function xk log x (with k ≥ 1) is strictly increasing and
nonnegative on the interval [1,∞). Hence, as an immediate consequence of
the definition of integral as area below the curve xk log x, as well as using
integration by parts, we find that

n∑
i=1

ik log i =

∫ n

1

xk log x dx+O(nk log n)(2.6)

=
nk+1

k + 1
log n− nk+1

(k + 1)2
+ o(nk+1).

A similar argument shows that

(2.7)
n∑
i=1

ik =

∫ n

1

xk dx+O(nk) =
nk+1

k + 1
+ o(nk+1).

Now, given ε > 0, there exists n0 such that if n ≥ n0 we have |f(i)| < ε (see
(2.4)). Hence,∣∣∣∣ n∑

i=1

f(i)ik
∣∣∣∣ ≤ n∑

i=1

|f(i)|ik ≤
n0−1∑
i=1

|f(i)|ik + ε

n∑
i=n0

ik(2.8)

≤
n0−1∑
i=1

|f(i)|ik + ε
n∑
i=1

ik.
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Therefore (see (2.7) and (2.8)) from a certain value of n, we have∣∣∣∣∑n
i=1 f(i)i

k

nk+1

∣∣∣∣ ≤ ∑n0−1
i=1 |f(i)|ik

nk+1
+ ε

(∑n
i=1 i

k

nk+1

)
≤ ε,

where ε is arbitrarily small. That is,

(2.9)
n∑
i=1

f(i)ik = o(nk+1).

Equalities (2.5), (2.6), (2.7), and (2.9) give

(2.10) log
(
(log r1)

1k(log r2)
2k . . . (log rn)

nk
)

=
nk+1

k + 1
log n+

nk+1

k + 1
log log β − nk+1

(k + 1)2
+ o(nk+1).

Hence, (2.3) and (2.10) give

log

((
(log r1)

1k(log r2)
2k . . . (log rn)

nk) k+1

nk+1

log rn

)

=
k + 1

nk+1
log
(
(log r1)

1k(log r2)
2k . . . (log rn)

nk
)
− log log rn

= − 1

k + 1
+ o(1).

This completes the proof. �

Theorem 2.3. The following limit holds:

lim
n→∞

(
log rn+1

log rn

)n
= e.

Proof. Condition (1.1) gives

log rn = n log β + logα+ o(1).
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Therefore if we put, for sake of simplicity, c = logα
log β , then(

log rn+1

log rn

)n
=

(
(n+ 1) log β + logα+ o(1)

n log β + logα+ o(1)

)n

=

(
1 +

1

n

)n (1 + c+o(1)
n+1

)n
(
1 + c+o(1)

n

)n → e
ec

ec
= e :

in fact, it is well-known that if the sequence an →∞, then

lim
n→∞

(
1 +

1

an

)an
= e,

hence (
1 +

c+ o(1)

n+ 1

)n
=

((
1 +

1
n+1
c+o(1)

) n+1
c+o(1)

) n
n+1 (c+o(1))

→ ec,

analogously the other limit. This completes the proof. �

Now, let A(x) be the number of rn not exceeding x, that is A(x) is the
counting function of the sequence {rn}n∈N. In following we establish some
asymptotic formulae for the function A(x), and we also obtain some general
results for the sequence {A(n)}n∈N.

Theorem 2.4. We have

A(x) ∼ 1

log β
log x.(2.11)

More precisely, we have

A(x) =
1

log β
log x+O(1).(2.12)

Proof. By (1.1), we have log rn ∼ n log β, that is, log rn ∼ A(rn) log β,
thus, A(rn) ∼ 1

log β log rn. Clearly
log rn+1

log rn
→ 1 and if x ∈ [rn, rn+1), then

A(x) = A(rn). Therefore

1← log rn
log rn+1

A(rn)
1

log β log rn
=

A(rn)
1

log β log rn+1

≤ A(x)
1

log β log x
≤ A(rn)

1
log β log rn

→ 1.

Property (2.11) is proved.
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We have log rn = logα+ n log β + o(1) and consequently

A(rn) =
log rn − logα− o(1)

log β
.

If x ∈ [rn, rn+1), then A(x) = A(rn) and the last equation can be written in
the form

A(x) =
log x− (log x− log rn)− logα− o(1)

log β
=

log x

log β
+O(1),

since 0 ≤ log x− log rn ≤ log rn+1− log rn = log β+o(1). This proves equality
(2.12). The theorem is proved. �

Theorem 2.5. If k is an arbitrary but fixed positive integer, then

(
A(1)k +A(2)k + · · ·+A(n)k

)
∼ 1

logk β
n logk n,(2.13)

A(1)k +A(2)k + · · ·+A(n)k

n
∼ A(n)k.(2.14)

Proof. First, let us recall the well-known proposition (see [7, page 332])
that states for two series of positive terms

∑∞
i=1 ai and

∑∞
i=1 bi, if

∑∞
i=1 bi

diverges and ai ∼ bi, then
∑n
i=1 ai ∼

∑n
i=1 bi and consequently also

∑∞
i=1 ai

diverges. Now, using this fact and by use of (2.11), we have

(2.15)
(
A(1)k +A(2)k + · · ·+A(n)k

)
∼

n∑
i=1

logk i

logk β
.

On the other hand, we know that logk x
logk β

is increasing and positive in the inter-
val (1,∞). Hence, as an immediate consequence of the definition of integral
as area below the curve logk x

logk β
, we find that

n∑
i=1

logk i

logk β
=

∫ n

1

logk x

logk β
dx+O

(
logk n

logk β

)
∼ n logk n

logk β
,(2.16)

since (L’Hospital’s rule) limx→∞

∫ x
1

logk t dt

x logk x
= 1 (see also [3]). Hence, (2.15)

and (2.16) give equality (2.13). Property (2.14) is an immediate consequence
of (2.11) and (2.13). The theorem is proved. �
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Meanwhile, as an immediate consequence of previous theorem, we obtain
the following corollary.

Corollary 2.6. If k is an arbitrary but fixed positive integer, then(
A(1)k +A(2)k + · · ·+A(n)k

) 1
log n → e,(2.17) (

A(1)k +A(2)k + · · ·+A(n)k
) 1

A(n) → β.(2.18)

Proof. Equality (2.17) is an immediate consequence of (2.13). Equality
(2.18) is an immediate consequence of (2.11) and (2.13). The corollary is
proved. �

3. Some sequences with property (1.1)

Some well-known sequences follow condition (1.1). For example, the Fi-
bonacci sequence {Fn}n≥0 is one of them, which is defined as follows:

Fn+1 = Fn + Fn−1,

with F0 = 0 and F1 = 1. The Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

Now, we shall show that the Fibonacci sequence satisfies condition (1.1). By
the well-known Binet’s formula, we have

(3.1) Fn =
ϕn − (− 1

ϕ)
n

√
5

,

where ϕ = 1+
√
5

2 (≈ 1.6180339...) is the golden ratio.
Hence, the Binet’s formula can also be written as

Fn =
1√
5

(
ϕn +

(−1)n+1

ϕn

)
=

1√
5
ϕn
(
1 +

(−1)n+1

ϕ2n

)
,

which implies that

Fn ∼
1√
5
ϕn.
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Therefore, the Fibonacci sequence holds under condition (1.1), and then all
of the results proved in this paper can be applied to the Fibonacci sequence.
Note that Theorem 2.1 and Theorem 2.2 hold for the sequence {Fn}n≥3 of
Fibonacci numbers, and therefore

lim
n→∞

n
√
logF3 logF4... logFn

logFn
=

1

e
,

lim
n→∞

(
(logF3)

3k(logF4)
4k . . . (logFn)

nk
) k+1

nk+1

logFn
=

1

ek+1
.

By Theorem 2.3, we have also the following limit which connects the num-
ber e with Fibonacci numbers:

lim
n→∞

(
logFn+1

logFn

)n
= e.

Now, recall the golden ratio ϕ. It is well-known that the ratio of two
consecutive Fibonacci numbers tends to the golden number, i.e.,

(3.2) lim
n→∞

Fn+1

Fn
= ϕ.

In fact, the limit in (3.2) is an immediate consequence of Binet’s formula
(3.1). The golden number ϕ, can be expressed exactly by the following infi-
nite series of continued fractions and that of continued square roots (see, for
example, [8]):

ϕ = 1 +
1

1 +
1

1 +
1

1 + . . .

,

and

ϕ =

√
1 +

√
1 +

√
1 +
√
1 + · · · .

Here, Corollary 2.6 gives a new expansion of the golden number ϕ. Clearly, our
new expansion is based on the counting function of the Fibonacci numbers.
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More exactly, if ℘(x) denotes the counting function of the Fibonacci numbers,
i.e., the number of Fn not exceeding x, then (2.18) gives

(3.3) lim
n→∞

℘(n)
√
℘(1) + ℘(2) + · · ·+ ℘(n) = ϕ.

As can be seen, the new expansion in (3.3) shows a new strong relationship
of Fibonacci numbers with the golden ratio.

Further examples of the sequences that apply to condition (1.1) are the
Lucas, Jacobsthal, Pell, Pell-Lucas, and Jacobsthal-Lucas sequences that are
defined as follows (for n ≥ 0), respectively:

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1,

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1,

Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1,

Qn+2 = 2Qn+1 +Qn, Q0 = 2, Q1 = 2,

jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1.

The Lucas, Jacobsthal, Pell, Pell-Lucas, and Jacobsthal-Lucas numbers are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . ,

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . . ,

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, . . . ,

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, . . . ,

and

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, . . . ,

respectively. For more information see, [2],[4], [6], and [9].
Similarly, the following well-known formulae exist for the Lucas, Jacob-

sthal, Pell, Pell-Lucas, and Jacobsthal-Lucas numbers (see [5]), respectively:

Ln =
(1 +

√
5)n + (1−

√
5)n

2n
,

Jn =
2n − (−1)n

3
,
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Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

,

Qn = (1 +
√
2)n + (1−

√
2)n,

jn = 2n + (−1)n.

Consequently Ln ∼ (1+
√
5

2 )n, Jn ∼ 1
32
n, Pn ∼ 1

2
√
2
(1+
√
2)n,Qn ∼ 1

2(1+
√
2)n,

and jn ∼ 2n. Hence, the Lucas, Jacobsthal, Pell, Pell-Lucas, and Jacobsthal-
Lucas numbers satisfy condition (1.1).

We invite the interested reader to research further sequences.
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