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HYPO-q-NORMS ON A CARTESIAN PRODUCT OF
ALGEBRAS OF OPERATORS ON BANACH SPACES

Silvestru Sever Dragomir

Abstract. In this paper we consider the hypo-q-operator norm and hypo-q-
numerical radius on a Cartesian product of algebras of bounded linear opera-
tors on Banach spaces. A representation of these norms in terms of semi-inner
products, the equivalence with the q-norms on a Cartesian product and some
reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-
Schwarz inequality are also given.

1. Introduction

Let (E, ‖·‖) be a normed linear space over the real or complex number field
K. On Kn endowed with the canonical linear structure we consider a norm
‖·‖n and the unit ball

B (‖·‖n) := {λ = (λ1, . . . , λn) ∈ Kn| ‖λ‖n ≤ 1} .

As an example of such norms we should mention the usual p-norms

‖λ‖n,p :=

{
max {|λ1| , . . . , |λn|} if p =∞,

(
∑n
k=1 |λk|

p
)

1
p if p ∈ [1,∞).
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The Euclidean norm is obtained for p = 2, i.e.,

‖λ‖n,2 =

( n∑
k=1

|λk|2
) 1

2

.

It is well known that on En := E×· · ·×E endowed with the canonical linear
structure we can define the following p-norms:

‖x‖n,p :=

{
max {‖x1‖ , . . . , ‖xn‖} if p =∞,

(
∑n
k=1 ‖xk‖

p
)

1
p if p ∈ [1,∞),

where x = (x1, . . . , xn) ∈ En.
Following [6], for a given norm ‖·‖n on Kn, we define the functional ‖·‖h,n :

En → [0,∞) given by

(1.1) ‖x‖h,n := sup
λ∈B(‖·‖n)

∥∥∥∥ n∑
j=1

λjxj

∥∥∥∥,
where x = (x1, . . . , xn) ∈ En.

It is easy to see, by the properties of the norm ‖·‖ , that:
(i) ‖x‖h,n ≥ 0 for any x ∈ En,
(ii) ‖x + y‖h,n ≤ ‖x‖h,n + ‖y‖h,n for any x, y ∈ En,
(iii) ‖αx‖h,n = |α| ‖x‖h,n for each α ∈ K and x ∈ En,
and therefore ‖·‖h,n is a semi-norm on En.

We observe that ‖x‖h,n = 0 if and only if
∑n
j=1 λjxj = 0 for any

(λ1, . . . , λn) ∈ B (‖·‖n) . Since (0, . . . , 1, ..., 0) ∈ B (‖·‖n) then the semi-norm
‖·‖h,n generated by ‖·‖n is a norm on En.

If by Bn,p with p ∈ [1,∞] we denote the balls generated by the p-norms
‖·‖n,p on Kn, then we can obtain the following hypo-q-norms on En :

(1.2) ‖x‖h,n,q := sup
λ∈Bn,p

∥∥∥∥ n∑
j=1

λjxj

∥∥∥∥,
with q > 1 and 1

q + 1
p = 1 if p > 1, q = 1 if p =∞ and q =∞ if p = 1.
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For p = 2, we have the Euclidean ball in Kn, which we denote by Bn, Bn ={
λ = (λ1, . . . , λn) ∈ Kn

∣∣∣∑n
i=1 |λi|

2 ≤ 1
}

that generates the hypo-Euclidean
norm on En, i.e.,

‖x‖h,e := sup
λ∈Bn

∥∥∥∥ n∑
j=1

λjxj

∥∥∥∥.
Moreover, if E = H, where H is an inner product space over K, then the

hypo-Euclidean norm on Hn will be denoted simply by

‖x‖e := sup
λ∈Bn

∥∥∥∥ n∑
j=1

λjxj

∥∥∥∥.
Let (H; 〈·, ·〉) be a Hilbert space over K and n ∈ N, n ≥ 1. In the Cartesian

product Hn := H × · · · × H, for the n-tuples of vectors x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Hn, we can define the inner product 〈·, ·〉 by

〈x,y〉 :=

n∑
j=1

〈xj , yj〉 , x, y ∈ Hn,

which generates the Euclidean norm ‖·‖2 on Hn, i.e.,

‖x‖2 :=

( n∑
j=1

‖xj‖2
) 1

2

, x ∈ Hn.

The following result established in [6] connects the usual Euclidean norm
‖·‖2 with the hypo-Euclidean norm ‖·‖e .

Theorem 1.1 (Dragomir, 2007, [6]). For any x ∈ Hn we have the inequal-
ities

1√
n
‖x‖2 ≤ ‖x‖e ≤ ‖x‖2 ,

i.e., ‖·‖2 and ‖·‖e are equivalent norms on Hn.

The following representation result for the hypo-Euclidean norm plays a
key role in obtaining various bounds for this norm:
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Theorem 1.2 (Dragomir, 2007, [6]). For any x ∈ Hn with x =
(x1, . . . , xn), we have

‖x‖e = sup
‖x‖=1

( n∑
j=1

|〈x, xj〉|2
) 1

2

.

Let (E, ‖·‖) be a normed linear space over the real or complex number field
K. We denote by E∗ its dual space endowed with the norm ‖·‖ defined by

‖f‖ := sup
‖x‖≤1

|f (x)| = sup
‖u‖=1

|f (u)| <∞, where f ∈ E∗.

The following representation result for the hypo-q-norms on En plays a key
role in obtaining different bounds for these norms (see [7]):

Theorem 1.3 (Dragomir, 2017, [7]). Let (E, ‖·‖) be a normed linear space
over the real or complex number field K. For any x ∈ Enwith x = (x1, . . . , xn),
we have

‖x‖h,n,q = sup
‖f‖=1


( n∑
j=1

|f(xj)|q
)1/q


where q ≥ 1, and

‖x‖h,n,∞ = ‖x‖n,∞ = max
j∈{1,...,n}

‖xj‖ .

We have the following inequalities of interest:

Corollary 1.4. With the assumptions of Theorem 1.3 we have for q ≥ 1
that

1

n1/q
‖x‖n,q ≤ ‖x‖h,n,q ≤ ‖x‖n,q

for any any x ∈ En.
We have for r ≥ q ≥ 1 that

‖x‖h,n,r ≤ ‖x‖h,n,q ≤ n
r−q
rq ‖x‖h,n,r

for any x ∈ En.
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In this paper we introduce the hypo-q-operator norms and hypo-q-nume-
rical radius on a Cartesian product of algebras of bounded linear operators
on Banach spaces. A representation of these norms in terms of semi-inner
products, the equivalence with the q-norms on a Cartesian product and some
reverse inequalities obtained via the scalar reverses of Cauchy–Buniakowski–
Schwarz inequality are also given.

2. Semi-inner products and preliminary results

In what follows, we assume that E is a linear space over the real or complex
number field K.

The following concept was introduced in 1961 by G. Lumer [11] but the
main properties of it were discovered by J. R. Giles [9], P. L. Papini [17], P.
M. Miličić [12]–[14], I. Roşca [18], B. Nath [16] and others (see also [3]).

In this section we give the definition of this concept and point out the
main facts which are derived directly from the definition.

Definition 2.1. The mapping [·, ·] : E × E → K will be called the semi-
inner product in the sense of Lumer-Giles or L-G-s.i.p., for short, if the fol-
lowing properties are satisfied:
(i) [x+ y, z] = [x, z] + [y, z] for all x, y, z ∈ E,
(ii) [λx, y] = λ [x, y] for all x, y ∈ E and λ a scalar in K,
(iii) [x, x] ≥ 0 for all x ∈ E and [x, x] = 0 implies that x = 0,
(iv) |[x, y]|2 ≤ [x, x] [y, y] (Schwarz’s inequality) for all x, y ∈ E,
(v) [x, λy] = λ̄ [x, y] for all x, y ∈ E and λ a scalar in K.

The following result collects some fundamental facts concerning the con-
nection between the semi-inner products and norms.

Proposition 2.2. Let E be a linear space and [·, ·] a L-G-s.i.p on E. Then
the following statements are true:

(i) The mapping E 3 x ‖·‖−−→ [x, x]
1
2 ∈ R+ is a norm on E.

(ii) For every y ∈ E the functional E 3 x
fy
−−→ [x, y] ∈ K is a continuous

linear functional on E endowed with the norm generated by the L-G-
s.i.p. Moreover, one has the equality ‖fy‖ = ‖y‖.
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Definition 2.3. The mapping J : E → 2E
∗
, where E∗ is the dual space

of E, given by:

J (x) := {x∗ ∈ E∗| 〈x∗, x〉 = ‖x∗‖ ‖x‖ , ‖x∗‖ = ‖x‖} , x ∈ E,

will be called the normalised duality mapping of normed linear space (E, ‖·‖).

Definition 2.4. A mapping J̃ : E → E∗ will be called a section of
normalised duality mapping if J̃ (x) ∈ J (x) for all x in E.

The following theorem due to I. Roşca ([18]) establishes a natural connec-
tion between the normalised duality mapping and the semi-inner products in
the sense of Lumer-Giles.

Theorem 2.5. Let (E, ‖·‖) be a normed space. Then every L-G-s.i.p.
which generates the norm ‖·‖ is of the form

[x, y] =
〈
J̃ (y) , x

〉
for all x, y in E,

where J̃ is a section of the normalised duality mapping.

The following proposition is a natural consequence of Roşca’s result.

Proposition 2.6. Let (E, ‖·‖) be a normed linear space. Then the follow-
ing statements are equivalent:
(i) E is smooth.
(ii) There exists a unique L-G-s.i.p. which generates the norm ‖·‖.

We need the following lemma holding for n-tuples of complex numbers:

Lemma 2.7. Let β = (β1, . . . , βn) ∈ Cn. If p, q > 1 with 1
p + 1

q = 1, or
p = 1, q =∞ or p =∞, q = 1, then

(2.1) sup
‖α‖n,p≤1

∣∣∣∣ n∑
j=1

αjβj

∣∣∣∣ = ‖β‖n,q .

The proof follows by using Hölder’s discrete inequality and its sharpness
for the three cases under consideration and we omit the details.
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Theorem 2.8. Let (E, ‖·‖) be a normed linear space over the real or com-
plex number field K and [·, ·] a L-G-s.i.p on E that generates the norm ‖·‖ ,
i.e. [x, x]

1/2
= ‖x‖ . For any x ∈ En with x = (x1, . . . , xn) , we have

(2.2) ‖x‖h,n,q = sup
‖u‖=1


( n∑
j=1

|[xj , u]|q
)1/q

 ,

where q ≥ 1.

Proof. If [·, ·] is a L-G-s.i.p. that generates the norm ‖·‖ , then

(2.3) sup
‖u‖=1

|[x, u]| = ‖x‖ for any x ∈ X.

Indeed, if x = 0 the equality is obvious. If x 6= 0, then by Schwarz’s inequality
we have

|[x, u]| ≤ ‖x‖ ‖u‖ for any u ∈ X.

By taking the supremum in this inequality we have

sup
‖u‖=1

|[x, u]| ≤ ‖x‖ .

On the other hand by taking u0 := x
‖x‖ we have that ‖u0‖ = 1 and since

sup
‖u‖=1

|[x, u]| ≥ |[x, u0]| =
∣∣∣∣[x, x

‖x‖

]∣∣∣∣ =
‖x‖2

‖x‖
= ‖x‖ ,

then we get the desired equality (2.3).
Assume that x ∈ En with x = (x1, . . . , xn) and let p, q > 1 with 1

p+ 1
q = 1,

then by the definition (1.2) and representation (2.3) we have

‖x‖h,n,q := sup
|α|p≤1

∥∥∥∥ n∑
j=1

αjxj

∥∥∥∥ = sup
|α|p≤1

(
sup
‖u‖=1

∣∣∣∣[( n∑
j=1

αjxj

)
, u

]∣∣∣∣
)

(2.4)

= sup
‖u‖=1

(
sup
|α|p≤1

∣∣∣∣ n∑
j=1

αj [xj , u]

∣∣∣∣
)

= sup
‖u‖=1

( n∑
j=1

|[xj , u]|q
)1/q

,

where the last equality in (2.4) follows by the representation (2.1) for
βj = [xj , u] , j ∈ {1, ..., n} .
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For q = 1, p = ∞ the representation (2.2) follows in a similar way by
utilising the equality (2.1). We omit the details. �

Remark 2.9. If (E, ‖·‖) is an inner product space with 〈·, ·〉 generating
the norm, then we recapture the representation result obtained in the recent
paper [8].

Remark 2.10. We observe that the representation (2.2) provides a stronger
result than the one from Theorem 1.3 since it makes use of a smaller class of
bounded linear functionals, namely the ones generated by a given L-G-s.i.p
on E that generates the norm ‖·‖ .

3. The case of operators on Banach spaces

A fundamental result due to Lumer ([11]), in the theory of operators on
complex Banach spaces X, is that if T ∈ B (X) , then

(3.1) w (T ) ≤ ‖T‖ ≤ 4w (T ) ,

where w (T ) := sup‖x‖=1 |[Tx, x]| is the numerical radius of the operator T
and [·, ·] is a s-L-G-s.i.p. that generates the norm ‖·‖ . The numerical radius is
independent of the choice of [·, ·] (see [11], Theorem 14). Also, the numerical
radius is a norm.

As shown by Glickfeld ([10]), the second inequality in (3.1) holds with
e = exp (1) instead of 4 and e is the best possible constant. Therefore we have
the sharp inequalities

(3.2)
1

e
‖T‖ ≤ w (T ) ≤ ‖T‖

for any T ∈ B (X) .
On the Cartesian product B(n) (X) := B (X) × ... × B (X) we can define

the hypo-q-operator norms of (T1, . . . , Tn) ∈ B(n) (X) by

(3.3) ‖(T1, . . . , Tn)‖h,n,q := sup
‖λ‖n,p≤1

∥∥∥∥ n∑
j=1

λjTj

∥∥∥∥ where p, q ∈ [1,∞] ,

with the convention that if p = 1, q =∞; if p =∞, q = 1 and if p > 1, then
1
p + 1

q = 1.
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If [·, ·] is a s-L-G-s.i.p. that generates the norm ‖·‖ of X and w (T ) :=
sup‖x‖=1 |[Tx, x]| is the numerical radius of the operator T we can also define
the hypo-q-numerical radius of (T1, . . . , Tn) ∈ B(n) (X) by

(3.4) wh,n,q (T1, . . . , Tn) := sup
‖λ‖n,p≤1

w

( n∑
j=1

λjTj

)
with p, q ∈ [1,∞] ,

with the convention that if p = 1, q =∞; if p =∞, q = 1 and if p > 1, then
1
p + 1

q = 1.

We observe that (3.3) and (3.4) are special cases of (1.1), for two different
norms on E = B(X).

Using (3.2) we have

1

e

∥∥∥∥ n∑
j=1

λjTj

∥∥∥∥ ≤ w( n∑
j=1

λjTj

)
≤
∥∥∥∥ n∑
j=1

λjTj

∥∥∥∥
and by taking the supremum over ‖λ‖n,p ≤ 1 in this inequality, we get the
following fundamental result

(3.5)
1

e
‖(T1, . . . , Tn)‖h,n,q ≤ wh,n,q (T1, . . . , Tn) ≤ ‖(T1, . . . , Tn)‖h,n,q

for any (T1, . . . , Tn) ∈ B(n) (X) and q ≥ 1. The inequalities (3.5) are sharp,
which follow by the unidimensional case.

Theorem 3.1. Let (X, ‖·‖) be a Banach space and [·, ·] a s-L-G-s.i.p. that
generates the norm ‖·‖ of X. Let (T1, . . . , Tn) ∈ B(n) (X) and x, y ∈ X, then
for p, q > 1 with 1

p + 1
q = 1 or p = 1, q =∞ or p =∞, q = 1, we have

(3.6) sup
‖α‖n,p≤1

∣∣∣∣[( n∑
j=1

αjTj

)
x, y

]∣∣∣∣ =

( n∑
j=1

|[Tjx, y]|q
)1/q

.

Proof. If we take β = ([T1x, y] , . . . , [Tnx, y]) ∈ Cn in (2.1), then we get( n∑
j=1

|[Tjx, y]|q
)1/q

= ‖β‖n,q = sup
‖α‖p≤1

∣∣∣∣ n∑
j=1

αjβj

∣∣∣∣
= sup
‖α‖n,p≤1

∣∣∣∣ n∑
j=1

αj [Tjx, y]

∣∣∣∣ = sup
‖α‖n,p≤1

∣∣∣∣[ n∑
j=1

αjTjx, y

]∣∣∣∣,
which proves (3.6). �
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Corollary 3.2. With the assumptions of Theorem 3.1, if (T1, . . . , Tn) ∈
B(n) (X) and x ∈ X, then for p, q > 1 with 1

p + 1
q = 1 or p = 1, q = ∞ or

p =∞, q = 1, we have

(3.7) sup
‖α‖n,p≤1

∥∥∥∥ n∑
j=1

αjTjx

∥∥∥∥ = sup
‖y‖=1

( n∑
j=1

|[Tjx, y]|q
)1/q

.

Proof. By the properties of semi-inner product, we have for any u ∈ X,
u 6= 0 (see also (2.3)) that

(3.8) ‖u‖ = sup
‖y‖=1

|[u, y]| .

Let x ∈ X, then by taking the supremum over ‖y‖ = 1 in (3.6) we get for
p, q > 1 with 1

p + 1
q = 1 that

sup
‖y‖=1

( n∑
j=1

|[Tjx, y]|q
)1/q

= sup
‖y‖=1

(
sup

‖α‖n,p≤1

∣∣∣∣[( n∑
j=1

αjTj

)
x, y

]∣∣∣∣
)

= sup
‖α‖n,p≤1

(
sup
‖y‖=1

∣∣∣∣[( n∑
j=1

αjTj

)
x, y

]∣∣∣∣
)

= sup
‖α‖n,p≤1

∥∥∥∥( n∑
j=1

αjTj

)
x

∥∥∥∥,
which proves the equality (3.7). We used for the last equality the prop-
erty (3.8). �

We can state and prove our main representation result.

Theorem 3.3. Let (X, ‖·‖) be a Banach space, [·, ·] a s-L-G-s.i.p. that
generates the norm ‖·‖ of X and (T1, . . . , Tn) ∈ B(n) (X) .

(i) For q ≥ 1 we have the representation for the hypo-q-operator norm

(3.9) ‖(T1, . . . , Tn)‖h,n,q = sup
‖x‖=‖y‖=1

( n∑
j=1

|[Tjx, y]|q
)1/q

and

‖(T1, . . . , Tn)‖h,n,∞ = max
j∈{1,...,n}

‖Tj‖ .
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(ii) For q ≥ 1 we have the representation for the hypo-q-numerical radius

(3.10) wh,n,q (T1, . . . , Tn) = sup
‖x‖=1

( n∑
j=1

|[Tjx, x]|q
)1/q

and

wh,n,∞ (T1, . . . , Tn) = max
j∈{1,...,n}

w (Tj) .

Proof. (i) By using the equality (3.7) we have for (T1, . . . , Tn) ∈ B(n) (X)
that

sup
‖x‖=‖y‖=1

( n∑
j=1

|[Tjx, y]|q
)1/q

= sup
‖x‖=1

(
sup
‖y‖=1

( n∑
j=1

|[Tjx, y]|q
)1/q

)

= sup
‖x‖=1

(
sup

‖α‖n,p≤1

∥∥∥∥ n∑
j=1

αjTjx

∥∥∥∥
)

= sup
‖α‖n,p≤1

(
sup
‖x‖=1

∥∥∥∥ n∑
j=1

αjTjx

∥∥∥∥
)

= sup
‖α‖n,p≤1

∥∥∥∥ n∑
j=1

αjTj

∥∥∥∥ = ‖(T1, . . . , Tn)‖h,n,q ,

which proves (3.9). The rest is obvious.
(ii) By using the equality (3.6) we have for (T1, . . . , Tn) ∈ B(n) (X) that

sup
‖x‖=1

( n∑
j=1

|[Tjx, x]|q
)1/q

= sup
‖x‖=1

(
sup

‖α‖n,p≤1

∣∣∣∣[( n∑
j=1

αjTj

)
x, x

]∣∣∣∣
)

= sup
‖α‖n,p≤1

(
sup
‖x‖=1

∣∣∣∣[( n∑
j=1

αjTj

)
x, x

]∣∣∣∣
)

= sup
‖α‖n,p≤1

w

( n∑
j=1

αjTj

)
= wh,n,q (T1, . . . , Tn) ,

which proves (3.10). The rest is obvious. �
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We can consider on B(n) (X) the following usual operator and numerical
radius q-norms, for q ≥ 1

‖(T1, . . . , Tn)‖n,q :=

( n∑
j=1

‖Tj‖q
)1/q

and

wn,q (T1, . . . , Tn) :=

( n∑
j=1

wq (Tj)

)1/q

where (T1, . . . , Tn) ∈ B(n) (X) . For q =∞ we put

‖(T1, . . . , Tn)‖n,∞ := max
j∈{1,...,n}

‖Tj‖

and

wn,∞ (T1, . . . , Tn) := max
j∈{1,...,n}

w (Tj) .

Corollary 3.4. With the assumptions of Theorem 3.3 we have for q ≥ 1
that

1

n1/q
‖(T1, . . . , Tn)‖n,q ≤ ‖(T1, . . . , Tn)‖h,n,q ≤ ‖(T1, . . . , Tn)‖n,q

and

1

n1/q
wn,q (T1, . . . , Tn) ≤ wh,n,q (T1, . . . , Tn) ≤ wn,q (T1, . . . , Tn)

for any (T1, . . . , Tn) ∈ B(n) (X) .

The proof follows from Corollary 3.2 for E = B(X) and we omit the
details.

Corollary 3.5. With the assumptions of Theorem 3.3 we have for
r ≥ q ≥ 1 that

(3.11) ‖(T1, . . . , Tn)‖h,n,r ≤ ‖(T1, . . . , Tn)‖h,n,q ≤ n
r−q
rq ‖(T1, . . . , Tn)‖h,n,r

and

(3.12) wh,n,r (T1, . . . , Tn) ≤ wh,n,q (T1, . . . , Tn) ≤ n
r−q
rq wh,n,r (T1, . . . , Tn)

for any (T1, . . . , Tn) ∈ B(n) (X) .
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Proof. We use the following elementary inequalities for the nonnegative
numbers aj , j = 1, ..., n and r ≥ q > 0 (see for instance [19] and [15])

(3.13)
( n∑
j=1

arj

)1/r

≤
( n∑
j=1

aqj

)1/q

≤ n
r−q
rq

( n∑
j=1

arj

)1/r

.

Let (T1, . . . , Tn) ∈ B(n) (X) and x, y ∈ X with ‖x‖ = ‖y‖ = 1. Then by (3.13)
we get( n∑

j=1

|[Tjx, y]|r
)1/r

≤
( n∑
j=1

|[Tjx, y]|q
)1/q

≤ n
r−q
rq

( n∑
j=1

|[Tjx, y]|r
)1/r

.

By taking the supremum over ‖x‖ = ‖y‖ = 1 we get (3.11).
The inequality (3.12) follows in a similar way and we omit the details. �

For q = 2, we put

‖(T1, . . . , Tn)‖h,n,e := ‖(T1, . . . , Tn)‖h,n,2

and

wh,n,e (T1, . . . , Tn) := wh,n,2 (T1, . . . , Tn) .

Remark 3.6. We draw the readers’ particular attention to special cases
of Corollary 3.5: r = 2, q = 2, q = 1.

We have:

Proposition 3.7. For any (T1, . . . , Tn) ∈ B(n) (X) and p, q > 1 with
1
p + 1

q = 1, we have

‖(T1, . . . , Tn)‖h,n,q ≥
1

n1/p

∥∥∥∥ n∑
j=1

Tj

∥∥∥∥
and

(3.14) wh,n,q (T1, . . . , Tn) ≥ 1

n1/p
w

( n∑
j=1

Tj

)
.
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Proof. Let λj = 1
n1/p for j ∈ {1, ..., n} , then

∑n
j=1 |λj |

p
= 1. Therefore

by (3.3) we get

‖(T1, . . . , Tn)‖h,n,q = sup
‖λ‖n,p≤1

∥∥∥∥ n∑
j=1

λjTj

∥∥∥∥ ≥ ∥∥∥∥ n∑
j=1

1

n1/p
Tj

∥∥∥∥ =
1

n1/p

∥∥∥∥ n∑
j=1

Tj

∥∥∥∥.
The inequality (3.14) follows in a similar way. �

We can also introduce the following norms for (T1, . . . , Tn) ∈ B(n) (X) ,

‖(T1, . . . , Tn)‖s,n,p := sup
‖x‖=1

( n∑
j=1

‖Tjx‖p
)1/p

,

where p ≥ 1 and

‖(T1, . . . , Tn)‖s,n,∞ := sup
‖x‖=1

(
max

j∈{1,...,n}
‖Tjx‖

)
= max
j∈{1,...,n}

‖Tj‖ .

The triangle inequality for ‖·‖s,n,q follows fromMinkowski inequality, while
the other properties of the norm are obvious.

Proposition 3.8. Let (T1, . . . , Tn) ∈ B(n) (X) . We have for p ≥ 1, that

(3.15) ‖(T1, . . . , Tn)‖h,n,p ≤ ‖(T1, . . . , Tn)‖s,n,p ≤ ‖(T1, . . . , Tn)‖n,p .

Proof. We have for p ≥ 2 and x, y ∈ X with ‖x‖ = ‖y‖ = 1, that

|[Tjx, y]|p ≤ ‖Tjx‖p ‖y‖p = ‖Tjx‖p ≤ ‖Tj‖p ‖x‖p = ‖Tj‖p

for j ∈ {1, ..., n} .
This implies

n∑
j=1

|[Tjx, y]|p ≤
n∑
j=1

‖Tjx‖p ≤
n∑
j=1

‖Tj‖p ,

so

(3.16)
( n∑
j=1

|[Tjx, y]|p
)1/p

≤
( n∑
j=1

‖Tjx‖p
)1/p

≤
( n∑
j=1

‖Tj‖p
)1/p

,

for any x, y ∈ X with ‖x‖ = ‖y‖ = 1.
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Taking the supremum over ‖x‖ = ‖y‖ = 1 in (3.16), we get the desired
result (3.15). �

4. Reverse inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality
([2], see also [1, Theorem 5.14]):

Lemma 4.1. Let a, A ∈ R and z = (z1, . . . , zn) , y = (y1, . . . , yn) be two
sequences of real numbers with the property that:

ayj ≤ zj ≤ Ayj for each j ∈ {1, . . . , n} .

Then for any w = (w1, . . . , wn) a sequence of positive real numbers, one has
the inequality

(4.1) 0 ≤
n∑
j=1

wjz
2
j

n∑
j=1

wjy
2
j −

( n∑
j=1

wjzjyj

)2

≤ 1

4
(A− a)

2

( n∑
j=1

wjy
2
j

)2

.

The constant 1
4 is sharp in (4.1).

O. Shisha and B. Mond obtained in 1967 (see [19]) the following counter-
parts of (CBS)-inequality (see also [1, Theorem 5.20 & 5.21]):

Lemma 4.2. Assume that a = (a1, . . . , an) and b = (b1, . . . , bn) are such
that there exist a, A, b, B with the property that:

0 ≤ a ≤ aj ≤ A and 0 < b ≤ bj ≤ B for any j ∈ {1, . . . , n} .

Then we have the inequality

(4.2)
n∑
j=1

a2j

n∑
j=1

b2j −
( n∑
j=1

ajbj

)2

≤

(√
A

b
−
√
a

B

)2 n∑
j=1

ajbj

n∑
j=1

b2j .

and
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Lemma 4.3. Assume that a, b are nonnegative sequences and there exist
γ, Γ with the property that:

0 ≤ γ ≤ aj
bj
≤ Γ <∞ for any j ∈ {1, . . . , n} .

Then we have the inequality

(4.3) 0 ≤
( n∑
j=1

a2j

n∑
j=1

b2j

) 1
2

−
n∑
j=1

ajbj ≤
(Γ− γ)

2

4 (γ + Γ)

n∑
j=1

b2j .

We have:

Theorem 4.4. Let (X, ‖·‖) be a Banach space, [·, ·] a s-L-G-s.i.p. that
generates the norm ‖·‖ of X and (T1, . . . , Tn) ∈ B(n) (X) .

(i) We have

(4.4) 0 ≤ ‖(T1, . . . , Tn)‖2h,n,e−
1

n
‖(T1, . . . , Tn)‖2h,n,1 ≤

1

4
n ‖(T1, . . . , Tn)‖2n,∞

and

(4.5) 0 ≤ w2
n,e (T1, . . . , Tn)− 1

n
w2
h,n,1 (T1, . . . , Tn) ≤ 1

4
n ‖(T1, . . . , Tn)‖2n,∞ .

(ii) We have

0 ≤ ‖(T1, . . . , Tn)‖2h,n,e −
1

n
‖(T1, . . . , Tn)‖2h,n,1(4.6)

≤ ‖(T1, . . . , Tn)‖n,∞ ‖(T1, . . . , Tn)‖h,n,1

and

0 ≤ w2
n,e (T1, . . . , Tn)− 1

n
w2
h,n,1 (T1, . . . , Tn)(4.7)

≤ ‖(T1, . . . , Tn)‖n,∞wh,n,1 (T1, . . . , Tn) .
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(iii) We have

0 ≤ ‖(T1, . . . , Tn)‖h,n,e −
1√
n
‖(T1, . . . , Tn)‖h,n,1(4.8)

≤ 1

4

√
n ‖(T1, . . . , Tn)‖n,∞

and

0 ≤ wn,e (T1, . . . , Tn)− 1√
n
wh,n,1 (T1, . . . , Tn)(4.9)

≤ 1

4

√
n ‖(T1, . . . , Tn)‖n,∞ .

Proof. (i). Let (T1, . . . , Tn) ∈ B(n) (H) and put

R = max
j∈{1,...,n}

‖Tj‖ = ‖(T1, . . . , Tn)‖n,∞ .

If x, y ∈ H with ‖x‖ = ‖y‖ = 1 then

|[Tjx, y]| ≤ ‖Tjx‖ ≤ ‖Tj‖ ≤ R

for any j ∈ {1, ..., n} .
If we write the inequality (4.1) for zj = |[Tjx, y]| , wj = yj = 1, A = R

and a = 0, we get

0 ≤ n
n∑
j=1

|[Tjx, y]|2 −
( n∑
j=1

|[Tjx, y]|
)2

≤ 1

4
n2R2

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
This implies that

(4.10)
n∑
j=1

|[Tjx, y]|2 ≤ 1

n

( n∑
j=1

|[Tjx, y]|
)2

+
1

4
nR2

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and, in particular

(4.11)
n∑
j=1

|[Tjx, x]|2 ≤ 1

n

( n∑
j=1

|[Tjx, x]|
)2

+
1

4
nR2

for any x ∈ H with ‖x‖ = 1.
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Taking the supremum over ‖x‖ = ‖y‖ = 1 in (4.10) and over ‖x‖ = 1 in
(4.11), we get (4.4) and (4.5).

(ii). Let (T1, . . . , Tn) ∈ B(n) (H) . If we write the inequality (4.2) for aj =
|[Tjx, y]| , bj = 1, b = B = 1, a = 0 and A = R, then we get

0 ≤ n
n∑
j=1

|[Tjx, y]|2 −
( n∑
j=1

|[Tjx, y]|
)2

≤ nR
n∑
j=1

|[Tjx, y]| ,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
This implies that

(4.12)
n∑
j=1

|[Tjx, y]|2 ≤ 1

n

( n∑
j=1

|[Tjx, y]|
)2

+R

n∑
j=1

|[Tjx, y]| ,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and, in particular

(4.13)
n∑
j=1

|[Tjx, x]|2 ≤ 1

n

( n∑
j=1

|[Tjx, x]|
)2

+R

n∑
j=1

|[Tjx, x]| ,

for any x ∈ H with ‖x‖ = 1.
Taking the supremum over ‖x‖ = ‖y‖ = 1 in (4.12) and over ‖x‖ = 1 in

(4.13), we get (4.6) and (4.7).
(iii). If we write the inequality (4.3) for aj = |[Tjx, y]| , bj = 1, b = B = 1,

γ = 0 and Γ = R we have

0 ≤
(
n

n∑
j=1

|[Tjx, y]|2
) 1

2

−
n∑
j=1

|[Tjx, y]| ≤ 1

4
nR,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
This implies that

(4.14)
( n∑
j=1

|[Tjx, y]|2
) 1

2

≤ 1√
n

n∑
j=1

|[Tjx, y]|+ 1

4

√
nR,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and, in particular

(4.15)
( n∑
j=1

|[Tjx, x]|2
) 1

2

≤ 1√
n

n∑
j=1

|[Tjx, x]|+ 1

4

√
nR,

for any x ∈ H with ‖x‖ = 1.
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Taking the supremum over ‖x‖ = ‖y‖ = 1 in (4.14) and over ‖x‖ = 1 in
(4.15), we get (4.8) and (4.9). �

Before we proceed with establishing some reverse inequalities for the hypo-
Euclidean numerical radius, we recall some reverse results of the Cauchy-
Bunyakovsky-Schwarz inequality for complex numbers as follows:

If γ, Γ ∈ C and αj ∈ C, j ∈ {1, . . . , n} with the property that

0 ≤ Re [(Γ− αj) (αj − γ̄)](4.16)
= (Re Γ− Reαj) (Reαj − Re γ) + (Im Γ− Imαj) (Imαj − Im γ)

or, equivalently, ∣∣∣∣αj − γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ|

for each j ∈ {1, . . . , n} , then (see for instance [4, p. 9])

(4.17) n

n∑
j=1

|αj |2 −
∣∣∣∣ n∑
j=1

αj

∣∣∣∣2 ≤ 1

4
n2 |Γ− γ|2 .

In addition, if Re (Γγ̄) > 0, then (see for example [4, p. 26]):

n

n∑
j=1

|αj |2 ≤
1

4

{
Re
[(

Γ̄ + γ̄
)∑n

j=1 αj

]}2

Re (Γγ̄)
(4.18)

≤ 1

4

|Γ + γ|2

Re (Γγ̄)

∣∣∣∣ n∑
j=1

αj

∣∣∣∣2.
Also, if Γ 6= −γ, then (see for instance [4, p. 32]):

(4.19)
(
n

n∑
j=1

|αj |2
) 1

2

−
∣∣∣∣ n∑
j=1

αj

∣∣∣∣ ≤ 1

4
n
|Γ− γ|2

|Γ + γ|
.

Finally, from [5] we can also state that

(4.20) n

n∑
j=1

|αj |2 −
∣∣∣∣ n∑
j=1

αj

∣∣∣∣2 ≤ n [|Γ + γ| − 2
√

Re (Γγ̄)
] ∣∣∣∣ n∑

j=1

αj

∣∣∣∣,
provided Re (Γγ̄) > 0.
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We notice that a simple sufficient condition for (4.16) to hold is that

Re Γ ≥ Reαj ≥ Re γ and Im Γ ≥ Imαj ≥ Im γ

for each j ∈ {1, . . . , n} .

Theorem 4.5. Let (X, ‖·‖) be a Banach space, [·, ·] a s-L-G-s.i.p. that
generates the norm ‖·‖ of X and γ, Γ ∈ C with Γ 6= γ. Assume that

(4.21) w

(
Tj −

γ + Γ

2
I

)
≤ 1

2
|Γ− γ| for any j ∈ {1, . . . , n} .

(i) We have

(4.22) w2
h,n,e (T1, . . . , Tn) ≤ 1

n
w2

( n∑
j=1

Tj

)
+

1

4
n |Γ− γ|2 .

(ii) If Re (Γγ̄) > 0, then

(4.23) wh,n,e (T1, . . . , Tn) ≤ 1

2
√
n

|Γ + γ|√
Re (Γγ̄)

w

( n∑
j=1

Tj

)

and

w2
h,n,e (T1, . . . , Tn) ≤

[
1

n
w2

( n∑
j=1

Tj

)
+
[
|Γ + γ| − 2

√
Re (Γγ̄)

] ]
(4.24)

× w
( n∑
j=1

Tj

)
.

(iii) If Γ 6= −γ, then

(4.25) wh,n,e (T1, . . . , Tn) ≤ 1√
n

(
w

( n∑
j=1

Tj

)
+

1

4
n
|Γ− γ|2

|Γ + γ|

)
.
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Proof. Let x ∈ H with ‖x‖ = 1 and (T1, . . . , Tn) ∈ B(n) (H) with the
property (4.21). By taking αj = [Tjx, x] we have∣∣∣∣αj − γ + Γ

2

∣∣∣∣ =

∣∣∣∣[Tjx, x]− γ + Γ

2
[x, x]

∣∣∣∣ =

∣∣∣∣[(Tj − γ + Γ

2
I

)
x, x

]∣∣∣∣
≤ sup
‖x‖=1

∣∣∣∣[(Tj − γ + Γ

2
I

)
x, x

]∣∣∣∣ = w

(
Tj −

γ + Γ

2
I

)

≤ 1

2
|Γ− γ|

for any j ∈ {1, . . . , n} .
(i) By using the inequality (4.17), we have

n∑
j=1

|[Tjx, x]|2 ≤ 1

n

∣∣∣∣ n∑
j=1

[Tjx, x]

∣∣∣∣2 +
1

4
n |Γ− γ|2(4.26)

=
1

n

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2 +
1

4
n |Γ− γ|2

for any x ∈ H with ‖x‖ = 1.
By taking the supremum over ‖x‖ = 1 in (4.26) we get

sup
‖x‖=1

( n∑
j=1

|[Tjx, x]|2
)
≤ 1

n
sup
‖x‖=1

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2 +
1

4
n |Γ− γ|2

=
1

n
w2

( n∑
j=1

Tj

)
+

1

4
n |Γ− γ|2 ,

which proves (4.22).
(ii) If Re (Γγ̄) > 0, then by (4.18) we have for αj = [Tjx, x] , j ∈ {1, . . . , n}

that

n∑
j=1

|[Tjx, x]|2 ≤ 1

4n

|Γ + γ|2

Re (Γγ̄)

∣∣∣∣ n∑
j=1

[Tjx, x]

∣∣∣∣2(4.27)

=
1

4n

|Γ + γ|2

Re (Γγ̄)

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2
for any x ∈ H with ‖x‖ = 1.
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Taking the supremum over ‖x‖ = 1 in (4.27) we get (4.23).
Also, by (4.20) we get

n∑
j=1

|[Tjx, x]|2 ≤ 1

n

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2 +
[
|Γ + γ| − 2

√
Re (Γγ̄)

] ∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣
for any x ∈ H with ‖x‖ = 1.

By taking the supremum over ‖x‖ = 1 in this inequality, we have

sup
‖x‖=1

n∑
j=1

|[Tjx, x]|2

≤ sup
‖x‖=1

[
1

n

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2 +
[
|Γ + γ| − 2

√
Re (Γγ̄)

] ∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣
]

≤ 1

n
sup
‖x‖=1

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣2 +
[
|Γ + γ| − 2

√
Re (Γγ̄)

]
sup
‖x‖=1

∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣
=

1

n
w2

( n∑
j=1

Tj

)
+
[
|Γ + γ| − 2

√
Re (Γγ̄)

]
w

( n∑
j=1

Tj

)
,

which proves (4.24).
(iii) By the inequality (4.19) we have( n∑

j=1

|[Tjx, x]|2
) 1

2

≤ 1√
n

(∣∣∣∣ n∑
j=1

[Tjx, x]

∣∣∣∣+
1

4
n
|Γ− γ|2

|Γ + γ|

)

=
1√
n

(∣∣∣∣[ n∑
j=1

Tjx, x

]∣∣∣∣+
1

4
n
|Γ− γ|2

|Γ + γ|

)

for any x ∈ H with ‖x‖ = 1.
By taking the supremum over ‖x‖ = 1 in this inequality, we get (4.25). �

Remark 4.6. By the use of the elementary inequality w (T ) ≤ ‖T‖ that
holds for any T ∈ B (X), a sufficient condition for (4.21) to hold is that∥∥∥∥Tj − γ + Γ

2

∥∥∥∥ ≤ 1

2
|Γ− γ| for any j ∈ {1, . . . , n} .
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