HYPO- q-NORMS ON A CARTESIAN PRODUCT OF ALGEBRAS OF OPERATORS ON BANACH SPACES

Silvestru Sever Dragomir (${ }^{\text {(}}$

Abstract

In this paper we consider the hypo- q-operator norm and hypo- q numerical radius on a Cartesian product of algebras of bounded linear operators on Banach spaces. A representation of these norms in terms of semi-inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-BuniakowskiSchwarz inequality are also given.

1. Introduction

Let $(E,\|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K}. On \mathbb{K}^{n} endowed with the canonical linear structure we consider a norm $\|\cdot\|_{n}$ and the unit ball

$$
\mathbb{B}\left(\|\cdot\|_{n}\right):=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n} \mid\|\lambda\|_{n} \leq 1\right\} .
$$

As an example of such norms we should mention the usual p-norms

$$
\|\lambda\|_{n, p}:= \begin{cases}\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\} & \text { if } p=\infty, \\ \left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}} & \text { if } p \in[1, \infty) .\end{cases}
$$

Received: 04.03.2019. Accepted: 01.12.2019. Published online: 01.02.2020.
(2010) Mathematics Subject Classification: 46B05; 26D15.

Key words and phrases: normed spaces, cartesian products of normed spaces, inequalities, reverse inequalities, Shisha-Mond type inequalities.

The Euclidean norm is obtained for $p=2$, i.e.,

$$
\|\lambda\|_{n, 2}=\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

It is well known that on $E^{n}:=E \times \cdots \times E$ endowed with the canonical linear structure we can define the following p-norms:

$$
\|\mathbf{x}\|_{n, p}:= \begin{cases}\max \left\{\left\|x_{1}\right\|, \ldots,\left\|x_{n}\right\|\right\} & \text { if } p=\infty \\ \left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{\frac{1}{p}} & \text { if } p \in[1, \infty)\end{cases}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$.
Following [6], for a given norm $\|\cdot\|_{n}$ on \mathbb{K}^{n}, we define the functional $\|\cdot\|_{h, n}$: $E^{n} \rightarrow[0, \infty)$ given by

$$
\begin{equation*}
\|\mathbf{x}\|_{h, n}:=\sup _{\lambda \in B\left(\|\cdot\|_{n}\right)}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\|, \tag{1.1}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$.
It is easy to see, by the properties of the norm $\|\cdot\|$, that:
(i) $\|\mathbf{x}\|_{h, n} \geq 0$ for any $\mathbf{x} \in E^{n}$,
(ii) $\|\mathbf{x}+\mathbf{y}\|_{h, n} \leq\|\mathbf{x}\|_{h, n}+\|\mathbf{y}\|_{h, n}$ for any $\mathbf{x}, \mathbf{y} \in E^{n}$,
(iii) $\|\alpha \mathbf{x}\|_{h, n}=|\alpha|\|\mathbf{x}\|_{h, n}$ for each $\alpha \in \mathbb{K}$ and $\mathbf{x} \in E^{n}$, and therefore $\|\cdot\|_{h, n}$ is a semi-norm on E^{n}.

We observe that $\|\mathbf{x}\|_{h, n}=0$ if and only if $\sum_{j=1}^{n} \lambda_{j} x_{j}=0$ for any $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in B\left(\|\cdot\|_{n}\right)$. Since $(0, \ldots, 1, \ldots, 0) \in B\left(\|\cdot\|_{n}\right)$ then the semi-norm $\|\cdot\|_{h, n}$ generated by $\|\cdot\|_{n}$ is a norm on E^{n}.

If by $\mathbb{B}_{n, p}$ with $p \in[1, \infty]$ we denote the balls generated by the p-norms $\|\cdot\|_{n, p}$ on \mathbb{K}^{n}, then we can obtain the following hypo-q-norms on E^{n} :

$$
\begin{equation*}
\|\mathbf{x}\|_{h, n, q}:=\sup _{\lambda \in \mathbb{B}_{n, p}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\|, \tag{1.2}
\end{equation*}
$$

with $q>1$ and $\frac{1}{q}+\frac{1}{p}=1$ if $p>1, q=1$ if $p=\infty$ and $q=\infty$ if $p=1$.

For $p=2$, we have the Euclidean ball in \mathbb{K}^{n}, which we denote by $\mathbb{B}_{n}, \mathbb{B}_{n}=$ $\left\{\lambda=\left.\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}\left|\sum_{i=1}^{n}\right| \lambda_{i}\right|^{2} \leq 1\right\}$ that generates the hypo-Euclidean norm on E^{n}, i.e.,

$$
\|\mathbf{x}\|_{h, e}:=\sup _{\lambda \in \mathbb{B}_{n}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\|
$$

Moreover, if $E=H$, where H is an inner product space over \mathbb{K}, then the hypo-Euclidean norm on H^{n} will be denoted simply by

$$
\|\mathbf{x}\|_{e}:=\sup _{\lambda \in \mathbb{B}_{n}}\left\|\sum_{j=1}^{n} \lambda_{j} x_{j}\right\|
$$

Let $(H ;\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbb{K} and $n \in \mathbb{N}, n \geq 1$. In the Cartesian product $H^{n}:=H \times \cdots \times H$, for the n-tuples of vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in H^{n}$, we can define the inner product $\langle\cdot, \cdot\rangle$ by

$$
\langle\mathbf{x}, \mathbf{y}\rangle:=\sum_{j=1}^{n}\left\langle x_{j}, y_{j}\right\rangle, \quad \mathbf{x}, \mathbf{y} \in H^{n}
$$

which generates the Euclidean norm $\|\cdot\|_{2}$ on H^{n}, i.e.,

$$
\|\mathbf{x}\|_{2}:=\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}\right)^{\frac{1}{2}}, \quad \mathbf{x} \in H^{n}
$$

The following result established in [6] connects the usual Euclidean norm $\|\cdot\|_{2}$ with the hypo-Euclidean norm $\|\cdot\|_{e}$.

Theorem 1.1 (Dragomir, 2007, [6]). For any $\mathbf{x} \in H^{n}$ we have the inequalities

$$
\frac{1}{\sqrt{n}}\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{e} \leq\|\mathbf{x}\|_{2}
$$

i.e., $\|\cdot\|_{2}$ and $\|\cdot\|_{e}$ are equivalent norms on H^{n}.

The following representation result for the hypo-Euclidean norm plays a key role in obtaining various bounds for this norm:

Theorem 1.2 (Dragomir, 2007, [6]). For any $\mathbf{x} \in H^{n}$ with $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\|\mathbf{x}\|_{e}=\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left\langle x, x_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}}
$$

Let $(E,\|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K}. We denote by E^{*} its dual space endowed with the norm $\|\cdot\|$ defined by

$$
\|f\|:=\sup _{\|x\| \leq 1}|f(x)|=\sup _{\|u\|=1}|f(u)|<\infty, \text { where } f \in E^{*}
$$

The following representation result for the hypo-q-norms on E^{n} plays a key role in obtaining different bounds for these norms (see [7]):

Theorem 1.3 (Dragomir, 2017, [7]). Let $(E,\|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K}. For any $\mathbf{x} \in E^{n}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\|\mathbf{x}\|_{h, n, q}=\sup _{\|f\|=1}\left\{\left(\sum_{j=1}^{n}\left|f\left(x_{j}\right)\right|^{q}\right)^{1 / q}\right\}
$$

where $q \geq 1$, and

$$
\|\mathbf{x}\|_{h, n, \infty}=\|\mathbf{x}\|_{n, \infty}=\max _{j \in\{1, \ldots, n\}}\left\|x_{j}\right\|
$$

We have the following inequalities of interest:
Corollary 1.4. With the assumptions of Theorem 1.3 we have for $q \geq 1$ that

$$
\frac{1}{n^{1 / q}}\|\mathbf{x}\|_{n, q} \leq\|\mathbf{x}\|_{h, n, q} \leq\|\mathbf{x}\|_{n, q}
$$

for any any $\mathbf{x} \in E^{n}$.
We have for $r \geq q \geq 1$ that

$$
\|\mathbf{x}\|_{h, n, r} \leq\|\mathbf{x}\|_{h, n, q} \leq n^{\frac{r-q}{r q}}\|\mathbf{x}\|_{h, n, r}
$$

for any $\mathbf{x} \in E^{n}$.

In this paper we introduce the hypo- q-operator norms and hypo- q-numerical radius on a Cartesian product of algebras of bounded linear operators on Banach spaces. A representation of these norms in terms of semi-inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-BuniakowskiSchwarz inequality are also given.

2. Semi-inner products and preliminary results

In what follows, we assume that E is a linear space over the real or complex number field \mathbb{K}.

The following concept was introduced in 1961 by G. Lumer [11] but the main properties of it were discovered by J. R. Giles [9, P. L. Papini [17], P. M. Miličić [12]-[14], I. Roşca [18], B. Nath [16] and others (see also [3]).

In this section we give the definition of this concept and point out the main facts which are derived directly from the definition.

Definition 2.1. The mapping $[\cdot, \cdot]: E \times E \rightarrow \mathbb{K}$ will be called the semiinner product in the sense of Lumer-Giles or L-G-s.i.p., for short, if the following properties are satisfied:
(i) $[x+y, z]=[x, z]+[y, z]$ for all $x, y, z \in E$,
(ii) $[\lambda x, y]=\lambda[x, y]$ for all $x, y \in E$ and λ a scalar in \mathbb{K},
(iii) $[x, x] \geq 0$ for all $x \in E$ and $[x, x]=0$ implies that $x=0$,
(iv) $|[x, y]|^{2} \leq[x, x][y, y]$ (Schwarz's inequality) for all $x, y \in E$,
(v) $[x, \lambda y]=\bar{\lambda}[x, y]$ for all $x, y \in E$ and λ a scalar in \mathbb{K}.

The following result collects some fundamental facts concerning the connection between the semi-inner products and norms.

Proposition 2.2. Let E be a linear space and $[\cdot, \cdot]$ a $L-G$-s.i.p on E. Then the following statements are true:
(i) The mapping $E \ni x \xrightarrow{\|\cdot\|}[x, x]^{\frac{1}{2}} \in \mathbb{R}_{+}$is a norm on E.
(ii) For every $y \in E$ the functional $E \ni x \xrightarrow{f_{y}}[x, y] \in \mathbb{K}$ is a continuous linear functional on E endowed with the norm generated by the $L-G$ s.i.p. Moreover, one has the equality $\left\|f_{y}\right\|=\|y\|$.

Definition 2.3. The mapping $J: E \rightarrow 2^{E^{*}}$, where E^{*} is the dual space of E, given by:

$$
J(x):=\left\{x^{*} \in E^{*} \mid\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\|, \quad\left\|x^{*}\right\|=\|x\|\right\}, \quad x \in E
$$

will be called the normalised duality mapping of normed linear space $(E,\|\cdot\|)$.
Definition 2.4. A mapping $\tilde{J}: E \rightarrow E^{*}$ will be called a section of normalised duality mapping if $\tilde{J}(x) \in J(x)$ for all x in E.

The following theorem due to I. Roşca ([18]) establishes a natural connection between the normalised duality mapping and the semi-inner products in the sense of Lumer-Giles.

Theorem 2.5. Let $(E,\|\cdot\|)$ be a normed space. Then every L-G-s.i.p. which generates the norm $\|\cdot\|$ is of the form

$$
[x, y]=\langle\tilde{J}(y), x\rangle \quad \text { for all } x, y \text { in } E
$$

where \tilde{J} is a section of the normalised duality mapping.
The following proposition is a natural consequence of Roşca's result.
Proposition 2.6. Let $(E,\|\cdot\|)$ be a normed linear space. Then the following statements are equivalent:
(i) E is smooth.
(ii) There exists a unique L-G-s.i.p. which generates the norm $\|\cdot\|$.

We need the following lemma holding for n-tuples of complex numbers:
Lemma 2.7. Let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{C}^{n}$. If $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, or $p=1, q=\infty$ or $p=\infty, q=1$, then

$$
\begin{equation*}
\sup _{\|\alpha\|_{n, p} \leq 1}\left|\sum_{j=1}^{n} \alpha_{j} \beta_{j}\right|=\|\beta\|_{n, q} \tag{2.1}
\end{equation*}
$$

The proof follows by using Hölder's discrete inequality and its sharpness for the three cases under consideration and we omit the details.

ThEOREM 2.8. Let $(E,\|\cdot\|)$ be a normed linear space over the real or complex number field \mathbb{K} and $[\cdot, \cdot]$ a L-G-s.i.p on E that generates the norm $\|\cdot\|$, i.e. $[x, x]^{1 / 2}=\|x\|$. For any $\mathbf{x} \in E^{n}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\begin{equation*}
\|\mathbf{x}\|_{h, n, q}=\sup _{\|u\|=1}\left\{\left(\sum_{j=1}^{n}\left|\left[x_{j}, u\right]\right|^{q}\right)^{1 / q}\right\} \tag{2.2}
\end{equation*}
$$

where $q \geq 1$.
Proof. If $[\cdot, \cdot]$ is a L-G-s.i.p. that generates the norm $\|\cdot\|$, then

$$
\begin{equation*}
\sup _{\|u\|=1}|[x, u]|=\|x\| \text { for any } x \in X \tag{2.3}
\end{equation*}
$$

Indeed, if $x=0$ the equality is obvious. If $x \neq 0$, then by Schwarz's inequality we have

$$
|[x, u]| \leq\|x\|\|u\| \text { for any } u \in X
$$

By taking the supremum in this inequality we have

$$
\sup _{\|u\|=1}|[x, u]| \leq\|x\|
$$

On the other hand by taking $u_{0}:=\frac{x}{\|x\|}$ we have that $\left\|u_{0}\right\|=1$ and since

$$
\sup _{\|u\|=1}|[x, u]| \geq\left|\left[x, u_{0}\right]\right|=\left|\left[x, \frac{x}{\|x\|}\right]\right|=\frac{\|x\|^{2}}{\|x\|}=\|x\|
$$

then we get the desired equality 2.3 .
Assume that $\mathbf{x} \in E^{n}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by the definition $\sqrt[1.2]{ }$ and representation 2.3 we have

$$
\begin{align*}
\|\mathbf{x}\|_{h, n, q} & :=\sup _{|\alpha|_{p} \leq 1}\left\|\sum_{j=1}^{n} \alpha_{j} x_{j}\right\|=\sup _{|\alpha|_{p} \leq 1}\left(\sup _{\|u\|=1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} x_{j}\right), u\right]\right|\right) \tag{2.4}\\
& =\sup _{\|u\|=1}\left(\sup _{|\alpha|_{p} \leq 1}\left|\sum_{j=1}^{n} \alpha_{j}\left[x_{j}, u\right]\right|\right)=\sup _{\|u\|=1}\left(\sum_{j=1}^{n}\left|\left[x_{j}, u\right]\right|^{q}\right)^{1 / q}
\end{align*}
$$

where the last equality in (2.4) follows by the representation (2.1) for $\beta_{j}=\left[x_{j}, u\right], j \in\{1, \ldots, n\}$.

For $q=1, p=\infty$ the representation 2.2 follows in a similar way by utilising the equality (2.1). We omit the details.

REMARK 2.9. If $(E,\|\cdot\|)$ is an inner product space with $\langle\cdot, \cdot\rangle$ generating the norm, then we recapture the representation result obtained in the recent paper [8].

Remark 2.10. We observe that the representation 2.2 provides a stronger result than the one from Theorem 1.3 since it makes use of a smaller class of bounded linear functionals, namely the ones generated by a given L-G-s.i.p on E that generates the norm $\|\cdot\|$.

3. The case of operators on Banach spaces

A fundamental result due to Lumer ([11), in the theory of operators on complex Banach spaces X, is that if $T \in \mathcal{B}(X)$, then

$$
\begin{equation*}
w(T) \leq\|T\| \leq 4 w(T) \tag{3.1}
\end{equation*}
$$

where $w(T):=\sup _{\|x\|=1}|[T x, x]|$ is the numerical radius of the operator T and $[\cdot, \cdot]$ is a s-L-G-s.i.p. that generates the norm $\|\cdot\|$. The numerical radius is independent of the choice of $[\cdot, \cdot]$ (see [11], Theorem 14). Also, the numerical radius is a norm.

As shown by Glickfeld ([10]), the second inequality in (3.1) holds with $e=\exp (1)$ instead of 4 and e is the best possible constant. Therefore we have the sharp inequalities

$$
\begin{equation*}
\frac{1}{e}\|T\| \leq w(T) \leq\|T\| \tag{3.2}
\end{equation*}
$$

for any $T \in \mathcal{B}(X)$.
On the Cartesian product $B^{(n)}(X):=\mathcal{B}(X) \times \ldots \times \mathcal{B}(X)$ we can define the hypo-q-operator norms of $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ by

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q}:=\sup _{\|\lambda\|_{n, p} \leq 1}\left\|\sum_{j=1}^{n} \lambda_{j} T_{j}\right\| \quad \text { where } p, q \in[1, \infty] \tag{3.3}
\end{equation*}
$$

with the convention that if $p=1, q=\infty$; if $p=\infty, q=1$ and if $p>1$, then $\frac{1}{p}+\frac{1}{q}=1$.

If $[\cdot, \cdot]$ is a s-L-G-s.i.p. that generates the norm $\|\cdot\|$ of X and $w(T):=$ $\sup _{\|x\|=1}|[T x, x]|$ is the numerical radius of the operator T we can also define the hypo- q-numerical radius of $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ by

$$
\begin{equation*}
w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right):=\sup _{\|\lambda\|_{n, p} \leq 1} w\left(\sum_{j=1}^{n} \lambda_{j} T_{j}\right) \quad \text { with } p, q \in[1, \infty] \tag{3.4}
\end{equation*}
$$

with the convention that if $p=1, q=\infty$; if $p=\infty, q=1$ and if $p>1$, then $\frac{1}{p}+\frac{1}{q}=1$.

We observe that (3.3) and (3.4) are special cases of (1.1), for two different norms on $E=B(X)$.

Using (3.2) we have

$$
\frac{1}{e}\left\|\sum_{j=1}^{n} \lambda_{j} T_{j}\right\| \leq w\left(\sum_{j=1}^{n} \lambda_{j} T_{j}\right) \leq\left\|\sum_{j=1}^{n} \lambda_{j} T_{j}\right\|
$$

and by taking the supremum over $\|\lambda\|_{n, p} \leq 1$ in this inequality, we get the following fundamental result

$$
\begin{equation*}
\frac{1}{e}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q} \leq w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right) \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q} \tag{3.5}
\end{equation*}
$$

for any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ and $q \geq 1$. The inequalities 3.5 are sharp, which follow by the unidimensional case.

Theorem 3.1. Let $(X,\|\cdot\|)$ be a Banach space and $[\cdot, \cdot]$ a s-L-G-s.i.p. that generates the norm $\|\cdot\|$ of X. Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ and $x, y \in X$, then for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ or $p=1, q=\infty$ or $p=\infty, q=1$, we have

$$
\begin{equation*}
\sup _{\|\alpha\|_{n, p} \leq 1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x, y\right]\right|=\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} \tag{3.6}
\end{equation*}
$$

Proof. If we take $\beta=\left(\left[T_{1} x, y\right], \ldots,\left[T_{n} x, y\right]\right) \in \mathbb{C}^{n}$ in 2.1 , then we get

$$
\begin{aligned}
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} & =\|\beta\|_{n, q}=\sup _{\|\alpha\|_{p} \leq 1}\left|\sum_{j=1}^{n} \alpha_{j} \beta_{j}\right| \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left|\sum_{j=1}^{n} \alpha_{j}\left[T_{j} x, y\right]\right|=\sup _{\|\alpha\|_{n, p} \leq 1}\left|\left[\sum_{j=1}^{n} \alpha_{j} T_{j} x, y\right]\right|,
\end{aligned}
$$

which proves (3.6).

Corollary 3.2. With the assumptions of Theorem 3.1, if $\left(T_{1}, \ldots, T_{n}\right) \in$ $B^{(n)}(X)$ and $x \in X$, then for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ or $p=1, q=\infty$ or $p=\infty, q=1$, we have

$$
\begin{equation*}
\sup _{\|\alpha\|_{n, p} \leq 1}\left\|\sum_{j=1}^{n} \alpha_{j} T_{j} x\right\|=\sup _{\|y\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} \tag{3.7}
\end{equation*}
$$

Proof. By the properties of semi-inner product, we have for any $u \in X$, $u \neq 0$ (see also 2.3) that

$$
\begin{equation*}
\|u\|=\sup _{\|y\|=1}|[u, y]| \tag{3.8}
\end{equation*}
$$

Let $x \in X$, then by taking the supremum over $\|y\|=1$ in (3.6) we get for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ that

$$
\begin{aligned}
\sup _{\|y\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} & =\sup _{\|y\|=1}\left(\sup _{\|\alpha\|_{n, p} \leq 1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x, y\right]\right|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left(\sup _{\|y\|=1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x, y\right]\right|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left\|\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x\right\|
\end{aligned}
$$

which proves the equality (3.7). We used for the last equality the property (3.8).

We can state and prove our main representation result.
Theorem 3.3. Let $(X,\|\cdot\|)$ be a Banach space, $[\cdot, \cdot]$ a s-L-G-s.i.p. that generates the norm $\|\cdot\|$ of X and $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$.
(i) For $q \geq 1$ we have the representation for the hypo- q-operator norm

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q}=\sup _{\|x\|=\|y\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} \tag{3.9}
\end{equation*}
$$

and

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, \infty}=\max _{j \in\{1, \ldots, n\}}\left\|T_{j}\right\|
$$

(ii) For $q \geq 1$ we have the representation for the hypo-q-numerical radius

$$
\begin{equation*}
w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right)=\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{q}\right)^{1 / q} \tag{3.10}
\end{equation*}
$$

and

$$
w_{h, n, \infty}\left(T_{1}, \ldots, T_{n}\right)=\max _{j \in\{1, \ldots, n\}} w\left(T_{j}\right)
$$

Proof. (i) By using the equality (3.7) we have for $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ that

$$
\begin{aligned}
\sup _{\|x\|=\|y\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} & =\sup _{\|x\|=1}\left(\sup _{\|y\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q}\right) \\
& =\sup _{\|x\|=1}\left(\sup _{\|\alpha\|_{n, p} \leq 1}\left\|\sum_{j=1}^{n} \alpha_{j} T_{j} x\right\|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left(\sup _{\|x\|=1}\left\|\sum_{j=1}^{n} \alpha_{j} T_{j} x\right\|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left\|\sum_{j=1}^{n} \alpha_{j} T_{j}\right\|=\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q}
\end{aligned}
$$

which proves (3.9). The rest is obvious.
(ii) By using the equality (3.6) we have for $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ that

$$
\begin{aligned}
\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{q}\right)^{1 / q} & =\sup _{\|x\|=1}\left(\sup _{\|\alpha\|_{n, p} \leq 1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x, x\right]\right|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1}\left(\sup _{\|x\|=1}\left|\left[\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right) x, x\right]\right|\right) \\
& =\sup _{\|\alpha\|_{n, p} \leq 1} w\left(\sum_{j=1}^{n} \alpha_{j} T_{j}\right)=w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right)
\end{aligned}
$$

which proves 3.10 . The rest is obvious.

We can consider on $B^{(n)}(X)$ the following usual operator and numerical radius q-norms, for $q \geq 1$

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, q}:=\left(\sum_{j=1}^{n}\left\|T_{j}\right\|^{q}\right)^{1 / q}
$$

and

$$
w_{n, q}\left(T_{1}, \ldots, T_{n}\right):=\left(\sum_{j=1}^{n} w^{q}\left(T_{j}\right)\right)^{1 / q}
$$

where $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$. For $q=\infty$ we put

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}:=\max _{j \in\{1, \ldots, n\}}\left\|T_{j}\right\|
$$

and

$$
w_{n, \infty}\left(T_{1}, \ldots, T_{n}\right):=\max _{j \in\{1, \ldots, n\}} w\left(T_{j}\right)
$$

Corollary 3.4. With the assumptions of Theorem 3.3 we have for $q \geq 1$ that

$$
\frac{1}{n^{1 / q}}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, q} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, q}
$$

and

$$
\frac{1}{n^{1 / q}} w_{n, q}\left(T_{1}, \ldots, T_{n}\right) \leq w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right) \leq w_{n, q}\left(T_{1}, \ldots, T_{n}\right)
$$

for any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$.
The proof follows from Corollary 3.2 for $E=B(X)$ and we omit the details.

Corollary 3.5. With the assumptions of Theorem 3.3 we have for $r \geq q \geq 1$ that

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, r} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q} \leq n^{\frac{r-q}{r q}}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, r} \tag{3.11}
\end{equation*}
$$ and

$$
\begin{equation*}
w_{h, n, r}\left(T_{1}, \ldots, T_{n}\right) \leq w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right) \leq n^{\frac{r-q}{r q}} w_{h, n, r}\left(T_{1}, \ldots, T_{n}\right) \tag{3.12}
\end{equation*}
$$

for any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$.

Proof. We use the following elementary inequalities for the nonnegative numbers $a_{j}, j=1, \ldots, n$ and $r \geq q>0$ (see for instance [19] and [15])

$$
\begin{equation*}
\left(\sum_{j=1}^{n} a_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{n} a_{j}^{q}\right)^{1 / q} \leq n^{\frac{r-q}{r q}}\left(\sum_{j=1}^{n} a_{j}^{r}\right)^{1 / r} \tag{3.13}
\end{equation*}
$$

Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ and $x, y \in X$ with $\|x\|=\|y\|=1$. Then by (3.13) we get

$$
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{q}\right)^{1 / q} \leq n^{\frac{r-q}{r q}}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{r}\right)^{1 / r}
$$

By taking the supremum over $\|x\|=\|y\|=1$ we get 3.11.
The inequality 3.12 follows in a similar way and we omit the details.
For $q=2$, we put

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, e}:=\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, 2}
$$

and

$$
w_{h, n, e}\left(T_{1}, \ldots, T_{n}\right):=w_{h, n, 2}\left(T_{1}, \ldots, T_{n}\right)
$$

Remark 3.6. We draw the readers' particular attention to special cases of Corollary 3.5 $r=2, q=2, q=1$.

We have:
Proposition 3.7. For any $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q} \geq \frac{1}{n^{1 / p}}\left\|\sum_{j=1}^{n} T_{j}\right\|
$$

and

$$
\begin{equation*}
w_{h, n, q}\left(T_{1}, \ldots, T_{n}\right) \geq \frac{1}{n^{1 / p}} w\left(\sum_{j=1}^{n} T_{j}\right) \tag{3.14}
\end{equation*}
$$

Proof. Let $\lambda_{j}=\frac{1}{n^{1 / p}}$ for $j \in\{1, \ldots, n\}$, then $\sum_{j=1}^{n}\left|\lambda_{j}\right|^{p}=1$. Therefore by (3.3) we get

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, q}=\sup _{\|\lambda\|_{n, p} \leq 1}\left\|\sum_{j=1}^{n} \lambda_{j} T_{j}\right\| \geq\left\|\sum_{j=1}^{n} \frac{1}{n^{1 / p}} T_{j}\right\|=\frac{1}{n^{1 / p}}\left\|\sum_{j=1}^{n} T_{j}\right\|
$$

The inequality (3.14) follows in a similar way.
We can also introduce the following norms for $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$,

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{s, n, p}:=\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left\|T_{j} x\right\|^{p}\right)^{1 / p}
$$

where $p \geq 1$ and

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{s, n, \infty}:=\sup _{\|x\|=1}\left(\max _{j \in\{1, \ldots, n\}}\left\|T_{j} x\right\|\right)=\max _{j \in\{1, \ldots, n\}}\left\|T_{j}\right\|
$$

The triangle inequality for $\|\cdot\|_{s, n, q}$ follows from Minkowski inequality, while the other properties of the norm are obvious.

Proposition 3.8. Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$. We have for $p \geq 1$, that

$$
\begin{equation*}
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, p} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{s, n, p} \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, p} \tag{3.15}
\end{equation*}
$$

Proof. We have for $p \geq 2$ and $x, y \in X$ with $\|x\|=\|y\|=1$, that

$$
\left|\left[T_{j} x, y\right]\right|^{p} \leq\left\|T_{j} x\right\|^{p}\|y\|^{p}=\left\|T_{j} x\right\|^{p} \leq\left\|T_{j}\right\|^{p}\|x\|^{p}=\left\|T_{j}\right\|^{p}
$$

for $j \in\{1, \ldots, n\}$.
This implies

$$
\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{p} \leq \sum_{j=1}^{n}\left\|T_{j} x\right\|^{p} \leq \sum_{j=1}^{n}\left\|T_{j}\right\|^{p}
$$

so

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{p}\right)^{1 / p} \leq\left(\sum_{j=1}^{n}\left\|T_{j} x\right\|^{p}\right)^{1 / p} \leq\left(\sum_{j=1}^{n}\left\|T_{j}\right\|^{p}\right)^{1 / p} \tag{3.16}
\end{equation*}
$$

for any $x, y \in X$ with $\|x\|=\|y\|=1$.

Taking the supremum over $\|x\|=\|y\|=1$ in (3.16), we get the desired result 3.15).

4. Reverse inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality ([2], see also [1, Theorem 5.14]):

Lemma 4.1. Let $a, A \in \mathbb{R}$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of real numbers with the property that:

$$
a y_{j} \leq z_{j} \leq A y_{j} \quad \text { for each } j \in\{1, \ldots, n\}
$$

Then for any $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ a sequence of positive real numbers, one has the inequality

$$
\begin{equation*}
0 \leq \sum_{j=1}^{n} w_{j} z_{j}^{2} \sum_{j=1}^{n} w_{j} y_{j}^{2}-\left(\sum_{j=1}^{n} w_{j} z_{j} y_{j}\right)^{2} \leq \frac{1}{4}(A-a)^{2}\left(\sum_{j=1}^{n} w_{j} y_{j}^{2}\right)^{2} \tag{4.1}
\end{equation*}
$$

The constant $\frac{1}{4}$ is sharp in 4.1.
O. Shisha and B. Mond obtained in 1967 (see [19]) the following counterparts of $(C B S)$-inequality (see also [1, Theorem $5.20 \& 5.21]$):

Lemma 4.2. Assume that $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ are such that there exist a, A, b, B with the property that:

$$
0 \leq a \leq a_{j} \leq A \quad \text { and } \quad 0<b \leq b_{j} \leq B \quad \text { for any } j \in\{1, \ldots, n\}
$$

Then we have the inequality

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}^{2} \sum_{j=1}^{n} b_{j}^{2}-\left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2} \leq\left(\sqrt{\frac{A}{b}}-\sqrt{\frac{a}{B}}\right)^{2} \sum_{j=1}^{n} a_{j} b_{j} \sum_{j=1}^{n} b_{j}^{2} \tag{4.2}
\end{equation*}
$$

and

Lemma 4.3. Assume that \mathbf{a}, \mathbf{b} are nonnegative sequences and there exist γ, Γ with the property that:

$$
0 \leq \gamma \leq \frac{a_{j}}{b_{j}} \leq \Gamma<\infty \quad \text { for any } j \in\{1, \ldots, n\}
$$

Then we have the inequality

$$
\begin{equation*}
0 \leq\left(\sum_{j=1}^{n} a_{j}^{2} \sum_{j=1}^{n} b_{j}^{2}\right)^{\frac{1}{2}}-\sum_{j=1}^{n} a_{j} b_{j} \leq \frac{(\Gamma-\gamma)^{2}}{4(\gamma+\Gamma)} \sum_{j=1}^{n} b_{j}^{2} \tag{4.3}
\end{equation*}
$$

We have:

Theorem 4.4. Let $(X,\|\cdot\|)$ be a Banach space, $[\cdot, \cdot]$ a s-L-G-s.i.p. that generates the norm $\|\cdot\|$ of X and $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(X)$.
(i) We have
(4.4) $0 \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, e}^{2}-\frac{1}{n}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, 1}^{2} \leq \frac{1}{4} n\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}^{2}$ and
(4.5) $0 \leq w_{n, e}^{2}\left(T_{1}, \ldots, T_{n}\right)-\frac{1}{n} w_{h, n, 1}^{2}\left(T_{1}, \ldots, T_{n}\right) \leq \frac{1}{4} n\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}^{2}$.
(ii) We have

$$
\begin{align*}
0 & \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, e}^{2}-\frac{1}{n}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, 1}^{2} \tag{4.6}\\
& \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, 1}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq w_{n, e}^{2}\left(T_{1}, \ldots, T_{n}\right)-\frac{1}{n} w_{h, n, 1}^{2}\left(T_{1}, \ldots, T_{n}\right) \tag{4.7}\\
& \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty} w_{h, n, 1}\left(T_{1}, \ldots, T_{n}\right)
\end{align*}
$$

(iii) We have

$$
\begin{align*}
0 & \leq\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, e}-\frac{1}{\sqrt{n}}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{h, n, 1} \tag{4.8}\\
& \leq \frac{1}{4} \sqrt{n}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq w_{n, e}\left(T_{1}, \ldots, T_{n}\right)-\frac{1}{\sqrt{n}} w_{h, n, 1}\left(T_{1}, \ldots, T_{n}\right) \tag{4.9}\\
& \leq \frac{1}{4} \sqrt{n}\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}
\end{align*}
$$

Proof. (i). Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ and put

$$
R=\max _{j \in\{1, \ldots, n\}}\left\|T_{j}\right\|=\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{n, \infty}
$$

If $x, y \in H$ with $\|x\|=\|y\|=1$ then

$$
\left|\left[T_{j} x, y\right]\right| \leq\left\|T_{j} x\right\| \leq\left\|T_{j}\right\| \leq R
$$

for any $j \in\{1, \ldots, n\}$.
If we write the inequality (4.1) for $z_{j}=\left|\left[T_{j} x, y\right]\right|, w_{j}=y_{j}=1, A=R$ and $a=0$, we get

$$
0 \leq n \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2}-\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|\right)^{2} \leq \frac{1}{4} n^{2} R^{2}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
This implies that

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2} \leq \frac{1}{n}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|\right)^{2}+\frac{1}{4} n R^{2} \tag{4.10}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and, in particular

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} \leq \frac{1}{n}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|\right)^{2}+\frac{1}{4} n R^{2} \tag{4.11}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.

Taking the supremum over $\|x\|=\|y\|=1$ in 4.10 and over $\|x\|=1$ in (4.11), we get (4.4) and (4.5).
(ii). Let $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$. If we write the inequality 4.2 for $a_{j}=$ $\left|\left[T_{j} x, y\right]\right|, b_{j}=1, b=B=1, a=0$ and $A=R$, then we get

$$
0 \leq n \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2}-\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|\right)^{2} \leq n R \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
This implies that

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2} \leq \frac{1}{n}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|\right)^{2}+R \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right| \tag{4.12}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and, in particular

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} \leq \frac{1}{n}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|\right)^{2}+R \sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right| \tag{4.13}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Taking the supremum over $\|x\|=\|y\|=1$ in 4.12 and over $\|x\|=1$ in (4.13), we get 4.6) and (4.7).
(iii). If we write the inequality 4.3 for $a_{j}=\left|\left[T_{j} x, y\right]\right|, b_{j}=1, b=B=1$, $\gamma=0$ and $\Gamma=R$ we have

$$
0 \leq\left(n \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2}\right)^{\frac{1}{2}}-\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right| \leq \frac{1}{4} n R
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
This implies that

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|^{2}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left|\left[T_{j} x, y\right]\right|+\frac{1}{4} \sqrt{n} R \tag{4.14}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and, in particular

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|+\frac{1}{4} \sqrt{n} R, \tag{4.15}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.

Taking the supremum over $\|x\|=\|y\|=1$ in (4.14) and over $\|x\|=1$ in 4.15), we get 4.8) and 4.9).

Before we proceed with establishing some reverse inequalities for the hypoEuclidean numerical radius, we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for complex numbers as follows:

If $\gamma, \Gamma \in \mathbb{C}$ and $\alpha_{j} \in \mathbb{C}, j \in\{1, \ldots, n\}$ with the property that

$$
\begin{align*}
0 & \leq \operatorname{Re}\left[\left(\Gamma-\alpha_{j}\right)\left(\overline{\alpha_{j}}-\bar{\gamma}\right)\right] \tag{4.16}\\
& =\left(\operatorname{Re} \Gamma-\operatorname{Re} \alpha_{j}\right)\left(\operatorname{Re} \alpha_{j}-\operatorname{Re} \gamma\right)+\left(\operatorname{Im} \Gamma-\operatorname{Im} \alpha_{j}\right)\left(\operatorname{Im} \alpha_{j}-\operatorname{Im} \gamma\right)
\end{align*}
$$

or, equivalently,

$$
\left|\alpha_{j}-\frac{\gamma+\Gamma}{2}\right| \leq \frac{1}{2}|\Gamma-\gamma|
$$

for each $j \in\{1, \ldots, n\}$, then (see for instance [4, p. 9])

$$
\begin{equation*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}-\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2} \leq \frac{1}{4} n^{2}|\Gamma-\gamma|^{2} \tag{4.17}
\end{equation*}
$$

In addition, if $\operatorname{Re}(\Gamma \bar{\gamma})>0$, then (see for example [4, p. 26]):

$$
\begin{align*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2} & \leq \frac{1}{4} \frac{\left\{\operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{j=1}^{n} \alpha_{j}\right]\right\}^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})} \tag{4.18}\\
& \leq \frac{1}{4} \frac{|\Gamma+\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2}
\end{align*}
$$

Also, if $\Gamma \neq-\gamma$, then (see for instance [4, p. 32]):

$$
\begin{equation*}
\left(n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}-\left|\sum_{j=1}^{n} \alpha_{j}\right| \leq \frac{1}{4} n \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \tag{4.19}
\end{equation*}
$$

Finally, from [5] we can also state that

$$
\begin{equation*}
n \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}-\left|\sum_{j=1}^{n} \alpha_{j}\right|^{2} \leq n[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}]\left|\sum_{j=1}^{n} \alpha_{j}\right| \tag{4.20}
\end{equation*}
$$

provided $\operatorname{Re}(\Gamma \bar{\gamma})>0$.

We notice that a simple sufficient condition for 4.16 to hold is that

$$
\operatorname{Re} \Gamma \geq \operatorname{Re} \alpha_{j} \geq \operatorname{Re} \gamma \quad \text { and } \quad \operatorname{Im} \Gamma \geq \operatorname{Im} \alpha_{j} \geq \operatorname{Im} \gamma
$$

for each $j \in\{1, \ldots, n\}$.
Theorem 4.5. Let $(X,\|\cdot\|)$ be a Banach space, $[\cdot, \cdot]$ a s-L-G-s.i.p. that generates the norm $\|\cdot\|$ of X and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma \neq \gamma$. Assume that

$$
\begin{equation*}
w\left(T_{j}-\frac{\gamma+\Gamma}{2} I\right) \leq \frac{1}{2}|\Gamma-\gamma| \text { for any } j \in\{1, \ldots, n\} \tag{4.21}
\end{equation*}
$$

(i) We have

$$
\begin{equation*}
w_{h, n, e}^{2}\left(T_{1}, \ldots, T_{n}\right) \leq \frac{1}{n} w^{2}\left(\sum_{j=1}^{n} T_{j}\right)+\frac{1}{4} n|\Gamma-\gamma|^{2} \tag{4.22}
\end{equation*}
$$

(ii) If $\operatorname{Re}(\Gamma \bar{\gamma})>0$, then

$$
\begin{equation*}
w_{h, n, e}\left(T_{1}, \ldots, T_{n}\right) \leq \frac{1}{2 \sqrt{n}} \frac{|\Gamma+\gamma|}{\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}} w\left(\sum_{j=1}^{n} T_{j}\right) \tag{4.23}
\end{equation*}
$$

and

$$
\begin{align*}
w_{h, n, e}^{2}\left(T_{1}, \ldots, T_{n}\right) \leq & {\left[\frac{1}{n} w^{2}\left(\sum_{j=1}^{n} T_{j}\right)+[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}]\right] } \tag{4.24}\\
& \times w\left(\sum_{j=1}^{n} T_{j}\right)
\end{align*}
$$

(iii) If $\Gamma \neq-\gamma$, then

$$
\begin{equation*}
w_{h, n, e}\left(T_{1}, \ldots, T_{n}\right) \leq \frac{1}{\sqrt{n}}\left(w\left(\sum_{j=1}^{n} T_{j}\right)+\frac{1}{4} n \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}\right) \tag{4.25}
\end{equation*}
$$

Proof. Let $x \in H$ with $\|x\|=1$ and $\left(T_{1}, \ldots, T_{n}\right) \in B^{(n)}(H)$ with the property 4.21. By taking $\alpha_{j}=\left[T_{j} x, x\right]$ we have

$$
\begin{aligned}
\left|\alpha_{j}-\frac{\gamma+\Gamma}{2}\right| & =\left|\left[T_{j} x, x\right]-\frac{\gamma+\Gamma}{2}[x, x]\right|=\left|\left[\left(T_{j}-\frac{\gamma+\Gamma}{2} I\right) x, x\right]\right| \\
& \leq \sup _{\|x\|=1}\left|\left[\left(T_{j}-\frac{\gamma+\Gamma}{2} I\right) x, x\right]\right|=w\left(T_{j}-\frac{\gamma+\Gamma}{2} I\right) \\
& \leq \frac{1}{2}|\Gamma-\gamma|
\end{aligned}
$$

for any $j \in\{1, \ldots, n\}$.
(i) By using the inequality 4.17, we have

$$
\begin{align*}
\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} & \leq \frac{1}{n}\left|\sum_{j=1}^{n}\left[T_{j} x, x\right]\right|^{2}+\frac{1}{4} n|\Gamma-\gamma|^{2} \tag{4.26}\\
& =\frac{1}{n}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}+\frac{1}{4} n|\Gamma-\gamma|^{2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$ in 4.26 we get

$$
\begin{aligned}
\sup _{\|x\|=1}\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2}\right) & \leq \frac{1}{n} \sup _{\|x\|=1}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}+\frac{1}{4} n|\Gamma-\gamma|^{2} \\
& =\frac{1}{n} w^{2}\left(\sum_{j=1}^{n} T_{j}\right)+\frac{1}{4} n|\Gamma-\gamma|^{2}
\end{aligned}
$$

which proves 4.22).
(ii) If $\operatorname{Re}(\Gamma \bar{\gamma})>0$, then by 4.18$)$ we have for $\alpha_{j}=\left[T_{j} x, x\right], j \in\{1, \ldots, n\}$ that

$$
\begin{align*}
\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} & \leq \frac{1}{4 n} \frac{|\Gamma+\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{j=1}^{n}\left[T_{j} x, x\right]\right|^{2} \tag{4.27}\\
& =\frac{1}{4 n} \frac{|\Gamma+\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

Taking the supremum over $\|x\|=1$ in (4.27) we get 4.23).
Also, by 4.20 we get

$$
\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} \leq \frac{1}{n}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}+[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}]\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|
$$

for any $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$ in this inequality, we have

$$
\begin{aligned}
& \sup _{\|x\|=1} \sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2} \\
& \leq \sup _{\|x\|=1}\left[\frac{1}{n}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}+[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}]\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|\right] \\
& \leq \frac{1}{n} \sup _{\|x\|=1}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|^{2}+[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}] \sup _{\|x\|=1}\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right| \\
& =\frac{1}{n} w^{2}\left(\sum_{j=1}^{n} T_{j}\right)+[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}] w\left(\sum_{j=1}^{n} T_{j}\right)
\end{aligned}
$$

which proves 4.24.
(iii) By the inequality (4.19) we have

$$
\begin{aligned}
\left(\sum_{j=1}^{n}\left|\left[T_{j} x, x\right]\right|^{2}\right)^{\frac{1}{2}} & \leq \frac{1}{\sqrt{n}}\left(\left|\sum_{j=1}^{n}\left[T_{j} x, x\right]\right|+\frac{1}{4} n \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}\right) \\
& =\frac{1}{\sqrt{n}}\left(\left|\left[\sum_{j=1}^{n} T_{j} x, x\right]\right|+\frac{1}{4} n \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}\right)
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
By taking the supremum over $\|x\|=1$ in this inequality, we get 4.25.
REmARK 4.6. By the use of the elementary inequality $w(T) \leq\|T\|$ that holds for any $T \in B(X)$, a sufficient condition for 4.21) to hold is that

$$
\left\|T_{j}-\frac{\gamma+\Gamma}{2}\right\| \leq \frac{1}{2}|\Gamma-\gamma| \quad \text { for any } j \in\{1, \ldots, n\}
$$

Acknowledgement. The author would like to thanks the anonymous referee for valuable suggestions that helped improving the presentation of the paper.

References

[1] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Art. 63, 142 pp. Available at https://www.emis.de/journals/JIPAM/article301.html?sid=301
[2] S.S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J. 20 (2004), no. 1, 1-10. Preprint RGMIA Res. Rep. Coll. 6 (2003), Supplement, Art. 18. Available at http://rgmia.org/papers/v6e/CSIIPS.pdf
[3] S.S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004.
[4] S.S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., Hauppauge, NY, 2005.
[5] S.S. Dragomir, Reverses of the Schwarz inequality generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73 (2006), no. 1, 69-78.
[6] S.S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Art. 52, 22 pp. Available at https://www.emis.de/journals/JIPAM/article854.html?sid=854.
[7] S.S. Dragomir, Hypo-q-norms on a Cartesian product of normed linear spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 153. Available at http://rgmia.org/papers/v20/v20a153.pdf.
[8] S.S. Dragomir, Inequalities for hypo-q-norms on a Cartesian product of inner product spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 168. Available at http://rgmia.org/papers/v20/v20a168.pdf
[9] J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.
[10] B.W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner product space theory, Illinois J. Math. 14 (1970), 76-81.
[11] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
[12] P.M. Miličić, Sur le semi-produit scalaire dans quelques espaces vectoriels normés, Mat. Vesnik 8(23) (1971), 181-185.
[13] P.M. Miličić, Une généralisation naturelle du produit scalaire dans un espace normé et son utilisation, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 63-70.
[14] P.M. Miličić, La fonctionelle g et quelques problèmes des meilleures approximations dans des espaces normés, Publ. Inst. Math. (Beograd) (N.S.) 48(62) (1990), 110-118.
[15] M.S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities, Math. Scand. 120 (2017), no. 1, 129-144.
[16] B. Nath, On a generalization of semi-inner product spaces, Math. J. Okayama Univ. 15 (1971), no. 1, 1-6.
[17] P.L. Papini, Un'osservazione sui prodotti semi-scalari negli spazi di Banach, Boll. Un. Mat. Ital. (4) 2 (1969), 686-689.
[18] I. Roşca, Semi-produit scalaire et représentations de type de Riesz pour les fonctionelles linéaires et bornées sur les espaces normés, C.R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Ai, A79-A81.
[19] O. Shisha and B. Mond, Bounds on differences of means, in: O. Shisha (ed.), Inequalities, Academic Press, Inc., New York, 1967, pp. 293-308.

Mathematics, College of Engineering \& Science
Victoria University
PO Box 14428
Melbourne City, MC 8001
Australia
AND
DST-NRF Centre of Excellence
in the Mathematical and Statistical Sciences
School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Private Bag 3
Johannesburg 2050
South Africa
e-mail: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

