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CONVERGENCE IN MEASURE AND IN CATEGORY

Władysław Wilczyński

Dedicated to my friend Professor Zygfryd Kominek

Abstract. W. Orlicz in 1951 has observed that if {fn(·, y)}n∈N converges in
measure to f(·, y) for each y ∈ [0, 1], then {fn}n∈N converges in measure to f
on [0, 1]× [0, 1]. The situation is different for the convergence in category even
if we assume the convergence in category of sequences {fn(·, y)}n∈N for each
y ∈ [0, 1] and {fn(x, ·)}n∈N for each x ∈ [0, 1].

Recall that a sequence {fn}n∈N of measurable real-valued functions de-
fined on [0, 1] ([0, 1]×[0, 1], respectively) converges in measure to f : [0, 1]→ R
(f : [0, 1]× [0, 1]→ R, respectively) if and only if for each increasing sequence
{nm}m∈N of positive integers there exists a subsequence {nmp}p∈N such that
fnmp

−−−→
p→∞

f almost everywhere in [0, 1] ([0, 1] × [0, 1], respectively). This

characterization is due to F. Riesz (see, for example [1, Th.9.2.1, p.226]). Fol-
lowing Wagner [5] we say that a sequence {fn}n∈N of real-valued functions
defined on [0, 1] ([0, 1] × [0, 1], resp.) having the Baire property converges in
category to f : [0, 1] → R (f : [0, 1] × [0, 1] → R, resp.) if and only if for each
increasing sequence {nm}m∈N of positive integers there exists a subsequence
{nmp}m∈N such that fnmp

−−−→
p→∞

f except on a set of the first category on

the real line (on the plane, resp.).
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It is well known that if {fn}n∈N is a sequence of real-valued measurable
functions defined on the unit square, then the set of convergence of {fn}n∈N ,
i.e. the set A = {(x, y) : lim

n→∞
fn(x, y) exists} is Lebesgue measurable. Hence

if for each y ∈ [0, 1] a sequence {fn(·, y)}n∈N converges almost everywhere on
[0, 1], then from Fubini theorem it follows immediately that {fn}n∈N converges
almost everywhere on [0, 1]× [0, 1].

Similarly, if {fn}n∈N is a sequence of real-valued functions defined on
the unit square and having the Baire property, then the set of convergence
of {fn}n∈N has the Baire property. So if for each y ∈ [0, 1] a sequence
{fn(·, y)}n∈N converges I-almost everywhere on [0, 1] (which means except
on a set of the first category), then from Kuratowski-Ulam theorem ([4, p.56])
it follows that {fn}n∈N converges I-almost everywhere on [0, 1]× [0, 1].

When we are dealing with the convergence everywhere except on a set
belonging to the σ-ideal of small sets (sets of measure zero, sets of the first
category) the behaviour of measurable functions and functions having the
Baire property is similar. Below we show that the situation is quite different
for convergence in measure and in category.

W. Orlicz in [3] has proved the following theorem showing the relation
between convergence in measure of a sequence of functions of two variables
and convergence in measure of its sections.

Theorem (in original from). Let Q be the Cartesian product of two bounded
sets A and B of positive measure, and let the functions fi(x, y) be measur-
able in Q. If for every x ∈ A fi(x, y)

as−→
B

f(x, y), then the sequence fi(x, y)

converges asymptotically in the set Q to a function f̄(x, y) which, for almost
every x ∈ A, is equal to f(x, y) almost everywhere in B.

If fi(x, y)
as−→
Q

f(x, y), then there exists a sequence {ik} of indices such that

fik(x, y)
as−→
B

f(x, y) almost everywhere in A.

In the above theorem asymptotic convergence means the convergence in
measure.

The proof makes an essential use of the fact that (all functions defined on
B) if %(f, g) =

∫
B

|f−g|
1+|f−g|dx, then %(fn, f) −−−−→

n→∞
0 if and only if fn −−−−→

n→∞
f

in measure (see, for example [2, p.183]). Observe also that if {fn}n∈N fulfills
the assumption of the theorem, then also for almost each y ∈ [0, 1] the se-
quence {fi(·, y)}i∈N converges in measure to the function equivalent to f̄ . It
follows immediately from the theorem of Vitali concerning double and iterated
integrals.

In the case of functions having the Baire property the situation is quite
different.
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Theorem 1. There exists a sequence of real functions having the Baire
property {fn}n∈N defined on the unit square such that for each y ∈ [0, 1]
the sequence {fn(·, y)}n∈N converges in category to 0 but {fn}n∈N does not
converge in category.

Proof. For n ∈ N let

Ini =

(
i

n
,
i+ 1

n

)
for i ∈ {0, 1, . . . , n− 1} and

Jn
i =

(
i

n2
,
i+ 1

n2

)
for i ∈ {0, 1, . . . , n2 − 1}.

Put An =
n−1⋃
i=0

(Ini ×
n−1⋃
j=0

Jn
j·n+i) and fn = XAn

for n ∈ N .

If y ∈ [0, 1], then fn(·, y) is either equal to 0 or is a characteristic function
of the interval of length 1

n , so for each y ∈ [0, 1] the sequence {fn(·, y)}n∈N
converges to 0 in category, because from each subsequence one can choose the
subsequence convergent to 0 everywhere or except on one-point set.

Observe now that for each increasing sequence {nm}m∈N of positive inte-

gers and for each p ∈ N both sets
∞⋃

m=p
Anm and

∞⋃
m=p

(([0, 1] × [0, 1]) r Anm)

include open dense sets, from which it easily follows that {fn}n∈N does not
converge in category to any function. �

Observe also that if x ∈ [0, 1] is irrational, then for n ∈ N the function
fn(x, ·) is a characteristic function of the union of n open internals equidis-
tributed on [0, 1]. If we denote for such x Bx

n = {y : fn(x, y) = 1}, then for

each increasing sequence {nm}m∈N and for each p ∈ N we see that
∞⋃

m=p
Bx

nm

and
∞⋃

m=p
[0, 1] r Bx

nm
include open dense sets, so {fn(x, ·)}n∈N does not con-

verge in category to any function for irrational x ∈ [0, 1]. The next theorem
will show that even if the sequence {fn}n∈N converges in category to 0 on
each segment connecting points of the boundary of [0, 1]× [0, 1] (with respect
to the topology of the segment), then it can happen that {fn}n∈N does not
converge in category.

Theorem 2. There exists a sequence {gn}n∈N of real functions having
the Baire property defined on the unit square such that for each segment D
connecting points of the boundary of [0, 1] × [0, 1] the sequence {gn|D}n∈N
(treated as the sequence of functions of one variable) consists of functions
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having the Baire property on D and converges in category to 0 but {gn}n∈N
does not converges in category.

In the proof of Theorem 2 we shall need the following lemma, in which
K(x, r) = {p : d(p, x) 6 r}:

Lemma. If E ⊂ [0, 1] × [0, 1] is a finite set such that no three points of
E are collinear, then there exists k ∈ N such that each segment connecting
points of the boundary of [0, 1]× [0, 1] has points in common with at most two
circles from the family Ek = {{K(x, k−1)} : x ∈ E}.

Proof. Suppose that this not the case, so for each k ∈ N there exists a
segment Dk connecting points of the boundary of [0, 1]× [0, 1] and intersecting
at least three discs belonging to Ek. Then there exist three different points
p1, p2, p3 ∈ E and an increasing sequence {km}m∈N of positive integers such
that Dkm ∩K(πi, k

−1
m ) 6= 0 for i = 1, 2, 3 and for each m ∈ N . Observe that

Dkm −−−−→m→∞
D0 in Hausdorff metric in R2, where D0 is a segment connecting

points of the boundary of [0, 1]× [0, 1], and then p1, p2, p3 ∈ D0, (are collinear)
– a contradiction. �

Let’s return to the

Proof of Theorem 2. Let En = {p0, p1, . . . , pn2−1} ⊂ [0, 1] × [0, 1] be
a set such that card En∩(( i

n ,
i+1
n )×( j

n ,
j+1
n )) = 1 for each i, j ∈ 0, 1, . . . , n−1

and no three points of En are collinear.
Let mn (for each n ∈ N) be a number described in the Lemma. Obviously

mn −−−−→
n→∞

∞. Put An =
n2−1⋃
i=0

K(pi,m
−1
n ) and gn = XAn .

If D is an arbitrary segment connecting points of the boundary of the
unit square, then gn|D is equal to 0 or is a characteristic function of the set
consisting of one or two intervals, each of the length less than 2 · m−1m , so
{gn|D}n∈N converges in category to 0.

The proof that {gn}n∈N does not converge in category is similar to that
for {fn}n∈N from Theorem 1. �
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