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CONNECTIONS BETWEEN THE COMPLETION OF
NORMED SPACES OVER NON-ARCHIMEDEAN FIELDS
AND THE STABILITY OF THE CAUCHY EQUATION

Jens Schwaiger

Dedicated to Zygfryd Kominek with best wishes on occasion of his 75th birthday

Abstract. In [12] a close connection between stability results for the Cauchy
equation and the completion of a normed space over the rationals endowed
with the usual absolute value has been investigated. Here similar results are
presented when the valuation of the rationals is a p-adic valuation. Moreover
a result by Zygfryd Kominek ([5]) on the stability of the Pexider equation is
formulated and proved in the context of Banach spaces over the field of p-adic
numbers.

1. Introduction and preliminaries

Let G be an abelian semigroup and X a normed space over Q. For f ∈ XG

let γf : G×G→ X be defined by γf (x, y) := f(x+ y)− f(x)− f(y). Then we
define

A (G,X) := {f ∈ XG | ‖γf‖∞ <∞},
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where ‖γf‖∞ := sup{‖γf (x, y)‖ | x, y ∈ G}. Moreover

B(G,X) := {f ∈ XG | ‖f‖∞ <∞}.

A (G,X) is a subspace of the rational vector space XG containing B(G,X)
as a subspace. [12, Sec. 12.3] contains the following result.

Theorem 1.1. Let G be an abelian semigroup, suppose X to be a normed
vector space (over Q) with completion Xc. Then

A (G,X)/B(G,X) ∼= Hom(G,Xc),

the group of homomorphisms defined on G with values in Xc.

In [11] the author investigated certain stability questions in such a way
that besides the ordinary absolute value on Q also others, and by Ostrowski’s
Theorem ([9]) essentially all non-trivial valuations, have been taken into ac-
count. Each of those other valuations depend on one prime number p and are
defined by

|0|p := 0,
∣∣∣pα a

b

∣∣∣
p

:= p−α,

where a, b are integers 6= 0 and not divisible by p. These valuations satisfy

|x|p ≥ 0, |x|p = 0⇐⇒ x = 0,

|xy|p = |x|p |y|p , |x+ y|p ≤ max{|x|p , |y|p}.

The latter property is the ultrametric property or strong triangle inequality.
It is worthwhile to note that |n|p ≤ 1 for all integers n and 0 < |n|p < 1⇐⇒
p | n, n 6= 0. The completion Qp of Q with respect to | |p is again a field, the
field of p-adic numbers.

Normed spaces and Banach spaces over (Q, | |p) and (Qp, | |p) may be
defined as usual. If the norm also satisfies the strong triangle inequality
these spaces are called non-archimedean normed and non-archimedean Banach
spaces respectively. In the literature on non-archimedean functional analysis
usually only this type of norm is considered (see [8], for example).

Remark 1.2. Let X := Q(N)
p := {(xn)n∈N ∈ QN

p | xn = 0 for all but
finitely many n}. Then ‖ ‖1 , ‖ ‖2 with ‖(xn)n∈N‖1 := maxn∈N{|xn|p} and
‖(xn)n∈N‖2 :=

∑
n∈N |xn|p are two norms. The first one is non-archimedean,

the second not, and the induced topologies are different.
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The first assertions may be seen immediately. The last one follows from
the fact, that the sequence of the x(n) := (pn, pn, . . . , pn︸ ︷︷ ︸

pn−times

, 0, . . .) converges to 0

with respect to ‖ ‖1 and that
∥∥x(n)∥∥

2
= 1 for all n.

Therefore it may happen that a norm is not equivalent to a non-archi-
medean one. But as in the archimedean case in every finite dimensional
normed space X over Qp any two norms are equivalent. This implies that
every norm is equivalent to a non-archimedean one. One of these may be de-
fined by ‖

∑n
i=1 ξiei‖ := max1≤i≤n |ξi|p for a given basis {e1, e2, . . . , en} of X.

[1, TVS I.6] contains the fact, that the completion of a normed space over
(Q, | |p) is also a Banach space over (Qp, | |p). Moreover the completion of
a non-archimedean normed space is a non-archimedean Banach space.

2. A general stability result for the Cauchy equation

Quite some years ago it became fashionable to consider stability of func-
tional equations with a fixed bound replaced by one depending on the variables
involved (and satisfying certain conditions). A very general (and therefore not
widely noticed) result is to be found in [2]. A later paper ([4]) has been the
base for many papers of similar results. Here is one of those.

Theorem 2.1. Let S be a commutative semigroup which is uniquely di-
visible by the prime p, i.e., the mapping S 3 x 7→ px =: α(x) ∈ S is bijective,
let X be a normed space over (Q, | |p) with completion Xc. Assume moreover
that ϕ : S × S → [0,∞) satisfies

(i) limn→∞
ϕ( xpn ,

y
pn )

pn
= 0, x, y ∈ S,

(ii) Φ(x) :=
∑∞
n=0

1
pnϕp(

x
pn ) <∞, x ∈ S,

where ϕp(x) :=
∑p−1
j=1 ϕ(jx, x) and x

pn := α−n(x). Then, given f : S → X

such that

(2.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y), x, y ∈ S,

there is an additive function a : S → Xc satisfying

(2.2) ‖f(x)− a(x)‖ ≤ Φ(x), x ∈ S.



154 Jens Schwaiger

If moreover an additive function b : S → Xc fulfils the inequality

‖f(x)− b(x)‖ ≤ kΦ(x)

for all x with k > 0, then b = a.

Proof. Putting y = x in (2.1), we obtain ‖f(2x)− 2f(x)‖ ≤ ϕ(x, x).
Given n ∈ N we get by using (2.1) again that

‖f((n+ 1)x)− (n+ 1)f(x)‖ ≤ ‖f(nx+ x)− f(nx)− f(x)‖

+ ‖f(nx)− nf(x)‖ ,

implying that

(2.3) ‖f(nx)− nf(x)‖ ≤
n−1∑
j=1

ϕ(jx, x) =: ϕn(x), n ∈ N, x ∈ S.

Now, let fn(x) := pnf
(
x
pn

)
. Then (2.3) implies

‖fn(x)− fn+1(x)‖ =

∥∥∥∥pnf ( x

pn

)
− pn+1f

(
x

pn+1

)∥∥∥∥
= |pn|p

∥∥∥∥f ( x

pn

)
− pf

( x
pn

p

)∥∥∥∥
≤ p−nϕp

(
x

pn

)
.

Thus

(2.4) ‖fn(x)− fn+m(x)‖ ≤
m−1∑
j=0

p−(n+j)ϕp

(
x

pn+j

)
, x ∈ S,

for all n ∈ N0, m ∈ N, which by (ii) shows that the sequence (fn(x))n∈N is
a Cauchy sequence.

Let a : S → Xc be defined by a(x) := limn→∞ fn(x). (2.1) implies

‖fn(x+ y)− fn(x)− fn(y)‖ ≤
ϕ( xpn ,

y
pn )

pn
.

Taking the limit for n→∞ condition (i) implies that a is additive.
(2.2) results from (2.4) with n = 0 and taking the limit for m to ∞.
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If finally an additive function b satisfies ‖f(x)− b(x)‖ ≤ kΦ(x) for all x
we get ‖a(x)− b(x)‖ ≤ (k + 1)Φ(x) and with x

pn also

‖a(x)− b(x)‖ =

∥∥∥∥pn(a( x

pn

)
− b

(
x

pn

))∥∥∥∥ ≤ p−n(k + 1)Φ

(
x

pn

)
.

Now

p−nΦ

(
x

pn

)
=

∞∑
j=0

1

pn+j
ϕp

(
x

pn+j

)
=

∞∑
j=n

1

pj
ϕp

(
x

pj

)

showing that limn→∞ p
−nΦ( xpn ) = 0 and finally that a = b. �

Corollary 2.2. Let S be a commutative semigroup which is uniquely
divisible by the prime p, let X be a normed space over (Q, | |p) with completion
Xc. Let ε > 0 and assume that f : S → X satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ε, x, y ∈ S.

Then there is an additive function a : S → Xc such that

(2.5) ‖f(x)− a(x)‖ ≤ pε, x ∈ S.

If moreover an additive function b : S → Xc, satisfies ‖f(x)− b(x)‖ ≤ kε for
all x, then b = a.

Proof. Let ϕ(x, y) := ε. Then (i) of Theorem 2.1 is satisfied. Moreover
φp(x) = (p− 1)ε and thus

Φ(x) = (p− 1)
1

1− 1
p

ε = pε.

Therefore the result follows from Theorem 2.1. �

In the non-archimedean case a stronger version of Theorem 2.1 my be
proved.

Theorem 2.3. Let S be a commutative semigroup which is uniquely divis-
ible by the prime p, let X be a non-archimedean normed space over (Q, | |p)
with completion Xc. Assume moreover that ϕ : S × S → [0,∞) satisfies

(i’) limn→∞
ϕ( xpn ,

y
pn )

pn
= 0, x, y ∈ S
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(ii’) limn→∞ p
−nϕ′p(

x
pn ) = 0, x ∈ S,

where ϕ′p(x) := max1≤j≤p−1 ϕ(jx, x). Then, given f : S → X such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y), x, y ∈ S,

there is an additive function a : S → Xc fulfilling

(2.6) ‖f(x)− a(x)‖ ≤ Φ′(x) := sup
n∈N0

p−nϕ′p

(
x

pn

)
, x ∈ S.

If moreover an additive function b : S → Xc satisfies ‖f(x)− b(x)‖ ≤ kΦ′(x)
for all x with k > 0, then b = a.

Proof. Since we are in the non-archimedean case the estimate for
f(px)− pf(x) now reads as

‖f(px)− pf(x)‖ ≤ max
1≤j≤p−1

ϕ(jx, x) = ϕ′(x).

This with fn(x) := pnf
(
x
pn

)
for n ∈ N0 implies

‖fn(x)− fn+1(x)‖ =

∥∥∥∥pnf ( x

pn

)
− pn+1f

(
x

pn+1

)∥∥∥∥
= |pn|p

∥∥∥∥f ( x

pn

)
− pf

( x
pn

p

)∥∥∥∥
≤ p−nϕ′p

(
x

pn

)
.

(2.7)

Thus by (ii’) the sequence (fn+1(x)− fn(x))n∈N is a null sequence and there-
fore, since we are in the non archimedean case, a Cauchy sequence. Let
a : S → Xc, a(x) := limn→∞ fn(x), be the limit function. Then, as in the
proof of Theorem 2.1, (i’) implies that a is additive. (2.7) implies

‖fn(x)− fn+m(x)‖ ≤ max
0≤j≤m−1

‖fn+j(x)− fn+j+1(x)‖

≤ max
0≤j≤m−1

p−(n+j)ϕ′p

(
x

pn+j

)

≤ sup
j≥n

p−jϕ′p

(
x

pj

)
, n ∈ N0,m ∈ N.
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For n = 0 and with m → ∞ we get (2.6). As for the last part we have
to show that an additive function c : S → Xc is identically 0 provided that
‖c(x)‖ ≤ lΦ′(x) for all x. Using this inequality for x

pm together with the
additivity of c implies ‖c(x)‖ ≤ 1

pm lΦ
′( x
pm ) = l supj≥m

1
pjϕ
′
p(

x
pj ). And this

expression tends to zero for m→∞ by (ii’). �

Corollary 2.4. Let S be a commutative semigroup which is uniquely di-
visible by the prime p, let X be a non-archimedean normed space over (Q, | |p)
with completion Xc. Let ε > 0 and assume that f : S → X satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ε, x, y ∈ S.

Then there is an additive function a : S → Xc such that

‖f(x)− a(x)‖ ≤ ε, x ∈ S.

If moreover an additive function b : S → Xc satisfies ‖f(x)− b(x)‖ ≤ kε for
all x with k > 0, then b = a.

Proof. For ϕ(x, y) := ε condition (i’) is fulfilled. For this ϕ the function
ϕ′p is given by the constant ε. Accordingly Φ′(x) = ε for all x. �

Remark 2.5. [6] contains a stability result with certain conditions on the
bounding function ϕ. But they are such that ϕ = const. does not satisfy these
conditions. In [7, Theorem 3.1] a stability result for the Pexider equation is
given which only for p = 2 covers the case of a constant bound.

3. Stability of the Pexider equation

Zygfryd Kominek ([5]) gave a very general stability result in the setting
of locally convex real sequentially complete vector spaces, which reads as
follows.

Theorem 3.1. Let (S,+) be a commutative semigroup and let X be a
sequentially complete, linear topological Hausdorff space. Assume that V is a
sequentially closed, bounded, convex and symmetric with respect to zero subset
of X. For arbitrary functions f, g, h : S → X satisfying the condition

f(x+ y)− g(x)− h(y) ∈ V, x, y ∈ S,
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there exist functions f1, g1, h1 : S → X such that

f1(x+ y)− g1(x)− h1(y) = 0, x, y ∈ S,

f1(x+ y)− f(x+ y) ∈ 15V, g1(x)− g(x) ∈ 7V,

and h1(x)− h(x) ∈ 7V, x, y ∈ S.

For a particular case, namely the case of normed spaces over (Q, | |p) a
similar result holds true. The more general case of topological vector spaces
over (Q, | |p) will be left to others. The following corresponds to [5, Lemma,
pp. 373–374].

Lemma. Let S be a commutative semigroup, X a normed space over
(Q, | |p) with completion Xc and ε > 0. Assume that f : S → X satisfies∥∥∥∥f(x+ y)− f(2x) + f(2y)

2

∥∥∥∥ ≤ 2ε, x, y ∈ S.

Then for x0 ∈ S there exist an additive function A : S → Xc and a constant
X 3 c := 2f(2x0)− f(4x0) such that

‖f(2x)−A(2x)− c‖ ≤ (6p+ 2)ε and

‖f(x+ y)−A(x+ y)− c‖ ≤ (12p+ 6)ε, x, y ∈ S.
(3.1)

Proof. For x0 ∈ S let a(x) := f(x+ 2x0)− f(2x0). Then

a(x+ y)− a(x)− a(y)

= f(x+ x0 + y + x0)− f(x+ 2x0)− f(y + 2x0) + f(2x0)

= f(x+ x0 + y + x0)− f(2(x+ x0)) + f(2(y + x0))

2

+
f(2(x+ x0)) + f(2x0)

2
− f(x+ x0 + x0)

+
f(2(y + x0)) + f(2x0)

2
− f(x+ x0 + x0).

Since the norm of the expressions in the last three lines is ≤ 2ε we get

‖a(x+ y)− a(x)− a(y)‖ ≤ 6ε, x, y ∈ S.
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By (2.5) there is some additive function A : S → Xc such that

(3.2) ‖a(x)−A(x)‖ ≤ 6pε, x, y ∈ S.

Now

A(2x) + c− f(2x) = A(2x)− 2a(x) + 2a(x) + 2f(2x0)− f(4x0)− f(2x)

= 2(A(x)− a(x)) + 2

(
a(x) + f(2x0)− f(2x) + f(4x0)

2

)
+ 2(A(x)− a(x))

+ 2

(
f(x+ 2x0)− f(2x) + f(4x0)

2

)
, x ∈ S.

Since ‖2(A(x)− a(x))‖ ≤ |2|p 6pε ≤ 6pε and∥∥∥∥2

(
f(x+ 2x0)− f(2x) + f(4x0)

2

)∥∥∥∥ ≤ |2|p 2ε ≤ 2ε

we get the first part of (3.1). The second part can be derived from the following
calculations.

A(x+ y) + c− f(x+ y)

= A(x) +A(y) + 2f(2x0)− f(4x0)− f(x+ y)

+
f(2x) + f(2y)

2
− f(2x) + f(2y)

2
+ a(x) + a(y)− a(x)− a(y)

= (A(x)− a(x)) + (A(y)− a(y))−
(
f(x+ y)− f(2x) + f(2y)

2

)

+

(
f(x+ 2x0)− f(2x) + f(4x0)

2

)
+

(
f(y + 2x0)− f(2y) + f(4x0)

2

)
by considering the estimates for the term in the last two lines. �

Theorem 3.2. Let (S,+) be a commutative semigroup and let X be a
normed space over (Q, | |p) with completion Xc. Let ε > 0. Then, for arbitrary
functions f, g, h : S → X satisfying the condition

(3.3) ‖f(x+ y)− g(x)− h(y)‖ ≤ ε, x, y ∈ S,
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there exist functions f1, g1, h1 : S → Xc such that

(3.4) f1(x+ y)− g1(x)− h1(y) = 0, x, y ∈ S,

‖f1(x+ y)− f(x+ y)‖ ≤ (48p+ 3)ε and

‖g1(x)− g(x)‖ , ‖h1(x)− h(x)‖ ≤ (24p+ 1)ε, x, y ∈ S.
(3.5)

Proof. Observe

f(x+ y)− f(2x) + f(2y)

2

=
1

2
(f(x+ y)− g(x)− h(y)) +

1

2
(f(x+ y)− g(y)− h(x))

− 1

2
(f(2x)− g(x)− h(x))− 1

2
(f(2y)− g(y)− h(y)) .

(3.6)

By (3.3)

‖f(2x)− g(x)− h(x)‖ ≤ ε, x ∈ S.

Applying (3.6), we get∥∥∥∥f(x+ y)− f(2x) + f(2y)

2

∥∥∥∥ ≤ 4

∣∣∣∣12
∣∣∣∣
p

ε ≤ 8ε.

Applying the lemma and (3.2) we get an additive function A : S → Xc such
that

‖a(x)−A(x)‖ ≤ 24pε for all x ∈ S,

where a is defined in the proof of the above lemma. Let f1, g1 and h1 be
functions defined by the following formulas:

f1(x) := A(x) + 2f(2x0)− g(2x0)− h(2x0), x ∈ S,

g1(x) := A(x) + f(2x0)− h(2x0), x ∈ S,

h1(x) := A(x) + f(2x0)− g(2x0), x ∈ S.
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Then (3.4) holds true because A is additive. Moreover

g1(x)− g(x) = A(x) + f(2x0)− h(2x0)− g(x)

= A(x)− a(x) + a(x) + f(2x0)− h(2x0)− g(x)

= (A(x)− a(x)) + (f(x+ 2x0)− g(x)− h(2x0))

implies

‖g1(x)− g(x)‖ ≤ 24pε+ ε = (24p+ 1)ε,

being part of (3.5). Similarly one may find the corresponding estimate for
h1(x)− h(x). Finally we observe

f1(x+ y)− f(x+ y) = g1(x) + h1(y)− f(x+ y)

= (g1(x)− g(x)) + (h1(y)− h(y))

− (f(x+ y)− g(x)− h(y)) ,

from which we deduce that

‖f1(x+ y)− f(x+ y)‖ ≤ (24p+ 1)ε+ (24p+ 1)ε+ ε = (48p+ 3)ε,

thus finishing (3.5). �

Remark 3.3. In case that X is a non-archimedean normed space a similar
result with tighter bounds holds true.

4. Stability and completeness

Let as before S be an abelian semigroup and X a normed space over
(Q, | |p). For f ∈ XS let γf : S × S → X be defined by γf (x, y) := f(x+ y)−
f(x)− f(y). Then we define

A (S,X) := {f ∈ XS | ‖γf‖∞ <∞},

where ‖γf‖∞ := sup{‖γf (x, y)‖ | x, y ∈ S}. Moreover

B(S,X) := {f ∈ XS | ‖f‖∞ <∞}.
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Now we formulate a result similar to that in [12, Sec. 12.3] for normed spaces
as above.

Theorem 4.1. Let S be an abelian semigroup, suppose X to be a normed
vector space (over (Q, | |p)) with completion Xc. Then B(S,X) is a sub-
space of the rational vector space A (S,X). Moreover A (S,X)/B(S,X) ∼=
Hom(S,Xc), the group of homomorphisms defined on S with values in Xc,
the completion of X.

Proof. It is trivial to see that A (S,X) is a subspace of XS and that
B(S,X) is a subspace of A (S,X).

By Corollary 2.2 and the proof of Theorem 2.1 we may find for every
f ∈ A (S,X) some, more exactly, a unique a = af ∈ Hom(S,Xc) such
that ‖f − a‖∞ < ∞ and af is given by af (x) := limn→∞ p

nf
(
x
pn

)
. Let

ψ : A (S,X) → Hom(S,Xc) be defined by ψ(f) := af . Obviously ψ is linear.
Moreover ψ(f) = 0 for f ∈ B(S,X) by the definition of af . On the other
hand ψ(f) = 0 implies ‖f‖∞ = ‖f − ψ(f)‖∞ < ∞. Thus ker(ψ) = B(S,X).
Finally given a ∈ Hom(S,Xc) by the density of X in Xc we may find for any
x ∈ S some y =: f(x) ∈ X such that ‖a(x)− f(x)‖ ≤ 1. This implies that
f(x+ y)− f(x)− f(y) = (f(x+ y)− a(x+ y))− (f(x)− a(x))− (f(y)− a(y))
is bounded, i.e., f ∈ A (S,X) (and af = a). Thus ψ is surjective. And the
isomorphism theorem implies that A (S,X)/B(S,X) ∼= Hom(S,Xc). �

Corollary 4.2. A (Q, X)/B(Q, X) ∼= Hom(Q, Xc) ∼= Xc.

Proof. This follows from the fact that Hom(Q, Xc) consists of all map-
pings Q 3 r → rx, where x ∈ Xc. �

It was proved for G = Z in [10] and for arbitrary abelian groups G con-
taining at least one element of infinite order in [3] that the following theorem
holds true.

Theorem 4.3 (Hyers’ theorem and completeness for real normed spaces).
If G is an abelian group as above and X is a real normed space such that for
any f ∈ A (G,X) there is some a ∈ Hom(G,X) such that f − a is bounded,
then X necessarily must be complete.

A similar result holds true for normed spaces over (Qp, | |p).

Theorem 4.4 (Hyers’ theorem and completeness for normed spaces over
Qp). If X is a normed space over Qp such that for any f ∈ A (Q, X) there is
some a ∈ Hom(Q, X) such that f − a is bounded, then X necessarily must be
complete.
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Proof. Let x ∈ Xc. For every r ∈ Q there is some xr =: f(r) ∈ X such
that

‖f(r)− rx‖ < 1.

Then f ∈ A (Q, X) and therefore, by assumption, there is some x0 ∈ X and
some ε > 0 such that

‖f(r)− rx0‖ ≤ ε for all rational numbers r.

But then sup{‖r(x− x0)‖ | r ∈ Q} < ∞ which is only possible for x = x0.
Thus x ∈ X and finally Xc ⊆ X. �
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[4] P. Gǎvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately
additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.

[5] Z. Kominek, On Hyers-Ulam stability of the Pexider equation, Demonstratio Math. 37
(2004), no. 2, 373–376.

[6] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-
Archimedean spaces, Appl. Anal. Discrete Math. 1 (2007), no. 2, 325–334.

[7] A. Najati and Y.J. Cho, Generalized Hyers-Ulam stability of the Pexiderized Cauchy
functional equation in non-Archimedean spaces, Fixed Point Theory Appl. 2011, Art.
ID 309026, 11 pp.

[8] C. Perez-Garcia and W.H. Schikhof, Locally Convex Spaces over Non-Archimedean
Valued Fields, Vol. 119, Cambridge University Press, Cambridge, 2010.

[9] W.H. Schikhof, Ultrametric Calculus. An Introduction to p-adic Analysis. Paperback
reprint of the 1984 original, Vol. 4, Cambridge University Press, Cambridge, 2006.

[10] J. Schwaiger, Remark on Hyers’s stability theorem, in: R. Ger, Report of Meeting:
The Twenty-fifth International Symposium on Functional Equations, Aequationes
Math. 35 (1988), no. 1, 82–124,

[11] J. Schwaiger, Functional equations for homogeneous polynomials arising from multi-
linear mappings and their stability, Ann. Math. Sil. 8 (1994), 157–171.

[12] J. Schwaiger, On the construction of the field of reals by means of functional equations
and their stability and related topics, in: J. Brzdęk et al. (eds.), Developments in
Functional Equations and Related Topics, Springer, Cham, 2017, pp. 275–295.

Institute of Mathematics and Scientific Computing
University of Graz
Graz
Austria
e-mail: jens.schwaiger@uni-graz.at


	1. Introduction and preliminaries
	2. A general stability result for the Cauchy equation
	3. Stability of the Pexider equation
	4. Stability and completeness
	References

