CONNECTIONS BETWEEN THE COMPLETION OF NORMED SPACES OVER NON-ARCHIMEDEAN FIELDS AND THE STABILITY OF THE CAUCHY EQUATION

Jens Schwaiger (1)

Dedicated to Zygfryd Kominek with best wishes on occasion of his 75th birthday

Abstract

In 12 a close connection between stability results for the Cauchy equation and the completion of a normed space over the rationals endowed with the usual absolute value has been investigated. Here similar results are presented when the valuation of the rationals is a p-adic valuation. Moreover a result by Zygfryd Kominek (5) on the stability of the Pexider equation is formulated and proved in the context of Banach spaces over the field of p-adic numbers.

1. Introduction and preliminaries

Let G be an abelian semigroup and X a normed space over \mathbb{Q}. For $f \in X^{G}$ let $\gamma_{f}: G \times G \rightarrow X$ be defined by $\gamma_{f}(x, y):=f(x+y)-f(x)-f(y)$. Then we define

$$
\mathscr{A}(G, X):=\left\{f \in X^{G} \mid\left\|\gamma_{f}\right\|_{\infty}<\infty\right\}
$$

Key words and phrases: Cauchy equation, Hyers-Ulam stability, p-adic functional analysis.
where $\left\|\gamma_{f}\right\|_{\infty}:=\sup \left\{\left\|\gamma_{f}(x, y)\right\| \mid x, y \in G\right\}$. Moreover

$$
\mathscr{B}(G, X):=\left\{f \in X^{G} \mid\|f\|_{\infty}<\infty\right\}
$$

$\mathscr{A}(G, X)$ is a subspace of the rational vector space X^{G} containing $\mathscr{B}(G, X)$ as a subspace. [12, Sec. 12.3] contains the following result.

Theorem 1.1. Let G be an abelian semigroup, suppose X to be a normed vector space (over \mathbb{Q}) with completion X^{c}. Then

$$
\mathscr{A}(G, X) / \mathscr{B}(G, X) \cong \operatorname{Hom}\left(G, X^{c}\right),
$$

the group of homomorphisms defined on G with values in X^{c}.
In 11 the author investigated certain stability questions in such a way that besides the ordinary absolute value on \mathbb{Q} also others, and by Ostrowski's Theorem ([9]) essentially all non-trivial valuations, have been taken into account. Each of those other valuations depend on one prime number p and are defined by

$$
|0|_{p}:=0, \quad\left|p^{\alpha} \frac{a}{b}\right|_{p}:=p^{-\alpha}
$$

where a, b are integers $\neq 0$ and not divisible by p. These valuations satisfy

$$
\begin{aligned}
& |x|_{p} \geq 0, \quad|x|_{p}=0 \Longleftrightarrow x=0 \\
& |x y|_{p}=|x|_{p}|y|_{p}, \quad|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\} .
\end{aligned}
$$

The latter property is the ultrametric property or strong triangle inequality. It is worthwhile to note that $|n|_{p} \leq 1$ for all integers n and $0<|n|_{p}<1 \Longleftrightarrow$ $p \mid n, n \neq 0$. The completion \mathbb{Q}_{p} of \mathbb{Q} with respect to $\left|\left.\right|_{p}\right.$ is again a field, the field of p-adic numbers.

Normed spaces and Banach spaces over $\left(\mathbb{Q},| |_{p}\right)$ and $\left(\mathbb{Q}_{p},| |_{p}\right)$ may be defined as usual. If the norm also satisfies the strong triangle inequality these spaces are called non-archimedean normed and non-archimedean Banach spaces respectively. In the literature on non-archimedean functional analysis usually only this type of norm is considered (see [8], for example).

Remark 1.2. Let $X:=\mathbb{Q}_{p}^{(\mathbb{N})}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}_{p}^{\mathbb{N}} \mid x_{n}=0\right.$ for all but finitely many $n\}$. Then $\left\|\left\|_{1},\right\|\right\|_{2}$ with $\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{1}:=\max _{n \in \mathbb{N}}\left\{\left|x_{n}\right|_{p}\right\}$ and $\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{2}:=\sum_{n \in \mathbb{N}}\left|x_{n}\right|_{p}$ are two norms. The first one is non-archimedean, the second not, and the induced topologies are different.

The first assertions may be seen immediately. The last one follows from the fact, that the sequence of the $x^{(n)}:=(\underbrace{p^{n}, p^{n}, \ldots, p^{n}}_{p^{n} \text {-times }}, 0, \ldots)$ converges to 0 with respect to $\left\|\|_{1}\right.$ and that $\| x^{(n)} \|_{2}=1$ for all n.

Therefore it may happen that a norm is not equivalent to a non-archimedean one. But as in the archimedean case in every finite dimensional normed space X over \mathbb{Q}_{p} any two norms are equivalent. This implies that every norm is equivalent to a non-archimedean one. One of these may be defined by $\left\|\sum_{i=1}^{n} \xi_{i} e_{i}\right\|:=\max _{1 \leq i \leq n}\left|\xi_{i}\right|_{p}$ for a given basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of X.
[1. TVS I.6] contains the fact, that the completion of a normed space over $\left(\mathbb{Q},| |_{p}\right)$ is also a Banach space over $\left(\mathbb{Q}_{p},| |_{p}\right)$. Moreover the completion of a non-archimedean normed space is a non-archimedean Banach space.

2. A general stability result for the Cauchy equation

Quite some years ago it became fashionable to consider stability of functional equations with a fixed bound replaced by one depending on the variables involved (and satisfying certain conditions). A very general (and therefore not widely noticed) result is to be found in [2]. A later paper (4]) has been the base for many papers of similar results. Here is one of those.

Theorem 2.1. Let S be a commutative semigroup which is uniquely divisible by the prime p, i.e., the mapping $S \ni x \mapsto p x=: \alpha(x) \in S$ is bijective, let X be a normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c}. Assume moreover that $\varphi: S \times S \rightarrow[0, \infty)$ satisfies
(i) $\lim _{n \rightarrow \infty} \frac{\varphi\left(\frac{x}{p^{n}}, \frac{y}{p^{n}}\right)}{p^{n}}=0, x, y \in S$,
(ii) $\Phi(x):=\sum_{n=0}^{\infty} \frac{1}{p^{n}} \varphi_{p}\left(\frac{x}{p^{n}}\right)<\infty, x \in S$,
where $\varphi_{p}(x):=\sum_{j=1}^{p-1} \varphi(j x, x)$ and $\frac{x}{p^{n}}:=\alpha^{-n}(x)$. Then, given $f: S \rightarrow X$ such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y), \quad x, y \in S \tag{2.1}
\end{equation*}
$$

there is an additive function $a: S \rightarrow X^{c}$ satisfying

$$
\begin{equation*}
\|f(x)-a(x)\| \leq \Phi(x), \quad x \in S \tag{2.2}
\end{equation*}
$$

If moreover an additive function $b: S \rightarrow X^{c}$ fulfils the inequality

$$
\|f(x)-b(x)\| \leq k \Phi(x)
$$

for all x with $k>0$, then $b=a$.
Proof. Putting $y=x$ in (2.1), we obtain $\|f(2 x)-2 f(x)\| \leq \varphi(x, x)$. Given $n \in \mathbb{N}$ we get by using 2.1) again that

$$
\begin{aligned}
\|f((n+1) x)-(n+1) f(x)\| \leq & \|f(n x+x)-f(n x)-f(x)\| \\
& +\|f(n x)-n f(x)\|
\end{aligned}
$$

implying that

$$
\begin{equation*}
\|f(n x)-n f(x)\| \leq \sum_{j=1}^{n-1} \varphi(j x, x)=: \varphi_{n}(x), \quad n \in \mathbb{N}, x \in S \tag{2.3}
\end{equation*}
$$

Now, let $f_{n}(x):=p^{n} f\left(\frac{x}{p^{n}}\right)$. Then 2.3 implies

$$
\begin{aligned}
\left\|f_{n}(x)-f_{n+1}(x)\right\|= & \left\|p^{n} f\left(\frac{x}{p^{n}}\right)-p^{n+1} f\left(\frac{x}{p^{n+1}}\right)\right\| \\
& =\left|p^{n}\right|_{p}\left\|f\left(\frac{x}{p^{n}}\right)-p f\left(\frac{\frac{x}{p^{n}}}{p}\right)\right\| \\
& \leq p^{-n} \varphi_{p}\left(\frac{x}{p^{n}}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|f_{n}(x)-f_{n+m}(x)\right\| \leq \sum_{j=0}^{m-1} p^{-(n+j)} \varphi_{p}\left(\frac{x}{p^{n+j}}\right), \quad x \in S \tag{2.4}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}, m \in \mathbb{N}$, which by (iii) shows that the sequence $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence.

Let $a: S \rightarrow X^{c}$ be defined by $a(x):=\lim _{n \rightarrow \infty} f_{n}(x)$. (2.1) implies

$$
\left\|f_{n}(x+y)-f_{n}(x)-f_{n}(y)\right\| \leq \frac{\varphi\left(\frac{x}{p^{n}}, \frac{y}{p^{n}}\right)}{p^{n}}
$$

Taking the limit for $n \rightarrow \infty$ condition (ii) implies that a is additive.
(2.2) results from (2.4) with $n=0$ and taking the limit for m to ∞.

If finally an additive function b satisfies $\|f(x)-b(x)\| \leq k \Phi(x)$ for all x we get $\|a(x)-b(x)\| \leq(k+1) \Phi(x)$ and with $\frac{x}{p^{n}}$ also

$$
\|a(x)-b(x)\|=\left\|p^{n}\left(a\left(\frac{x}{p^{n}}\right)-b\left(\frac{x}{p^{n}}\right)\right)\right\| \leq p^{-n}(k+1) \Phi\left(\frac{x}{p^{n}}\right)
$$

Now

$$
p^{-n} \Phi\left(\frac{x}{p^{n}}\right)=\sum_{j=0}^{\infty} \frac{1}{p^{n+j}} \varphi_{p}\left(\frac{x}{p^{n+j}}\right)=\sum_{j=n}^{\infty} \frac{1}{p^{j}} \varphi_{p}\left(\frac{x}{p^{j}}\right)
$$

showing that $\lim _{n \rightarrow \infty} p^{-n} \Phi\left(\frac{x}{p^{n}}\right)=0$ and finally that $a=b$.
Corollary 2.2. Let S be a commutative semigroup which is uniquely divisible by the prime p, let X be a normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c}. Let $\varepsilon>0$ and assume that $f: S \rightarrow X$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon, \quad x, y \in S
$$

Then there is an additive function $a: S \rightarrow X^{c}$ such that

$$
\begin{equation*}
\|f(x)-a(x)\| \leq p \varepsilon, \quad x \in S \tag{2.5}
\end{equation*}
$$

If moreover an additive function $b: S \rightarrow X^{c}$, satisfies $\|f(x)-b(x)\| \leq k \varepsilon$ for all x, then $b=a$.

Proof. Let $\varphi(x, y):=\varepsilon$. Then (i) of Theorem 2.1 is satisfied. Moreover $\phi_{p}(x)=(p-1) \varepsilon$ and thus

$$
\Phi(x)=(p-1) \frac{1}{1-\frac{1}{p}} \varepsilon=p \varepsilon
$$

Therefore the result follows from Theorem 2.1.
In the non-archimedean case a stronger version of Theorem 2.1 my be proved.

Theorem 2.3. Let S be a commutative semigroup which is uniquely divisible by the prime p, let X be a non-archimedean normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c}. Assume moreover that $\varphi: S \times S \rightarrow[0, \infty)$ satisfies
(i') $\lim _{n \rightarrow \infty} \frac{\varphi\left(\frac{x}{p^{n}}, \frac{y}{p^{n}}\right)}{p^{n}}=0, x, y \in S$
(ii') $\lim _{n \rightarrow \infty} p^{-n} \varphi_{p}^{\prime}\left(\frac{x}{p^{n}}\right)=0, x \in S$,
where $\varphi_{p}^{\prime}(x):=\max _{1 \leq j \leq p-1} \varphi(j x, x)$. Then, given $f: S \rightarrow X$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y), \quad x, y \in S
$$

there is an additive function $a: S \rightarrow X^{c}$ fulfilling

$$
\begin{equation*}
\|f(x)-a(x)\| \leq \Phi^{\prime}(x):=\sup _{n \in \mathbb{N}_{0}} p^{-n} \varphi_{p}^{\prime}\left(\frac{x}{p^{n}}\right), \quad x \in S \tag{2.6}
\end{equation*}
$$

If moreover an additive function $b: S \rightarrow X^{c}$ satisfies $\|f(x)-b(x)\| \leq k \Phi^{\prime}(x)$ for all x with $k>0$, then $b=a$.

Proof. Since we are in the non-archimedean case the estimate for $f(p x)-p f(x)$ now reads as

$$
\|f(p x)-p f(x)\| \leq \max _{1 \leq j \leq p-1} \varphi(j x, x)=\varphi^{\prime}(x)
$$

This with $f_{n}(x):=p^{n} f\left(\frac{x}{p^{n}}\right)$ for $n \in \mathbb{N}_{0}$ implies

$$
\begin{align*}
\left\|f_{n}(x)-f_{n+1}(x)\right\|= & \left\|p^{n} f\left(\frac{x}{p^{n}}\right)-p^{n+1} f\left(\frac{x}{p^{n+1}}\right)\right\| \\
& =\left|p^{n}\right|_{p}\left\|f\left(\frac{x}{p^{n}}\right)-p f\left(\frac{\frac{x}{p^{n}}}{p}\right)\right\| \tag{2.7}\\
& \leq p^{-n} \varphi_{p}^{\prime}\left(\frac{x}{p^{n}}\right)
\end{align*}
$$

Thus by (iii) the sequence $\left(f_{n+1}(x)-f_{n}(x)\right)_{n \in \mathbb{N}}$ is a null sequence and therefore, since we are in the non archimedean case, a Cauchy sequence. Let $a: S \rightarrow X^{c}, a(x):=\lim _{n \rightarrow \infty} f_{n}(x)$, be the limit function. Then, as in the proof of Theorem 2.1, (i]) implies that a is additive. (2.7) implies

$$
\begin{aligned}
\left\|f_{n}(x)-f_{n+m}(x)\right\| \leq & \max _{0 \leq j \leq m-1}\left\|f_{n+j}(x)-f_{n+j+1}(x)\right\| \\
& \leq \max _{0 \leq j \leq m-1} p^{-(n+j)} \varphi_{p}^{\prime}\left(\frac{x}{p^{n+j}}\right) \\
& \leq \sup _{j \geq n} p^{-j} \varphi_{p}^{\prime}\left(\frac{x}{p^{j}}\right), \quad n \in \mathbb{N}_{0}, m \in \mathbb{N} .
\end{aligned}
$$

For $n=0$ and with $m \rightarrow \infty$ we get (2.6). As for the last part we have to show that an additive function $c: S \rightarrow X^{c}$ is identically 0 provided that $\|c(x)\| \leq l \Phi^{\prime}(x)$ for all x. Using this inequality for $\frac{x}{p^{m}}$ together with the additivity of c implies $\|c(x)\| \leq \frac{1}{p^{m}} l \Phi^{\prime}\left(\frac{x}{p^{m}}\right)=l \sup _{j \geq m} \frac{1}{p^{j}} \varphi_{p}^{\prime}\left(\frac{x}{p^{j}}\right)$. And this expression tends to zero for $m \rightarrow \infty$ by (iii).

Corollary 2.4. Let S be a commutative semigroup which is uniquely divisible by the prime p, let X be a non-archimedean normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c}. Let $\varepsilon>0$ and assume that $f: S \rightarrow X$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon, \quad x, y \in S
$$

Then there is an additive function $a: S \rightarrow X^{c}$ such that

$$
\|f(x)-a(x)\| \leq \varepsilon, \quad x \in S
$$

If moreover an additive function $b: S \rightarrow X^{c}$ satisfies $\|f(x)-b(x)\| \leq k \varepsilon$ for all x with $k>0$, then $b=a$.

Proof. For $\varphi(x, y):=\varepsilon$ condition (i) is fulfilled. For this φ the function φ_{p}^{\prime} is given by the constant ε. Accordingly $\Phi^{\prime}(x)=\epsilon$ for all x.

REMARK 2.5. [6] contains a stability result with certain conditions on the bounding function φ. But they are such that $\varphi=$ const. does not satisfy these conditions. In [7, Theorem 3.1] a stability result for the Pexider equation is given which only for $p=2$ covers the case of a constant bound.

3. Stability of the Pexider equation

Zygfryd Kominek ([5]) gave a very general stability result in the setting of locally convex real sequentially complete vector spaces, which reads as follows.

TheOrem 3.1. Let $(S,+)$ be a commutative semigroup and let X be a sequentially complete, linear topological Hausdorff space. Assume that V is a sequentially closed, bounded, convex and symmetric with respect to zero subset of X. For arbitrary functions $f, g, h: S \rightarrow X$ satisfying the condition

$$
f(x+y)-g(x)-h(y) \in V, \quad x, y \in S
$$

there exist functions $f_{1}, g_{1}, h_{1}: S \rightarrow X$ such that

$$
\begin{gathered}
f_{1}(x+y)-g_{1}(x)-h_{1}(y)=0, \quad x, y \in S, \\
f_{1}(x+y)-f(x+y) \in 15 V, \quad g_{1}(x)-g(x) \in 7 V, \\
\text { and } \quad h_{1}(x)-h(x) \in 7 V, \quad x, y \in S .
\end{gathered}
$$

For a particular case, namely the case of normed spaces over $\left(\mathbb{Q},| |_{p}\right)$ a similar result holds true. The more general case of topological vector spaces over $\left(\mathbb{Q},| |_{p}\right)$ will be left to others. The following corresponds to [5, Lemma, pp. 373-374].

Lemma. Let S be a commutative semigroup, X a normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c} and $\varepsilon>0$. Assume that $f: S \rightarrow X$ satisfies

$$
\left\|f(x+y)-\frac{f(2 x)+f(2 y)}{2}\right\| \leq 2 \varepsilon, \quad x, y \in S
$$

Then for $x_{0} \in S$ there exist an additive function $A: S \rightarrow X^{c}$ and a constant $X \ni c:=2 f\left(2 x_{0}\right)-f\left(4 x_{0}\right)$ such that

$$
\begin{align*}
& \|f(2 x)-A(2 x)-c\| \leq(6 p+2) \varepsilon \quad \text { and } \\
& \|f(x+y)-A(x+y)-c\| \leq(12 p+6) \varepsilon, \quad x, y \in S \tag{3.1}
\end{align*}
$$

Proof. For $x_{0} \in S$ let $a(x):=f\left(x+2 x_{0}\right)-f\left(2 x_{0}\right)$. Then

$$
\begin{aligned}
a(x+y)- & a(x)-a(y) \\
= & f\left(x+x_{0}+y+x_{0}\right)-f\left(x+2 x_{0}\right)-f\left(y+2 x_{0}\right)+f\left(2 x_{0}\right) \\
= & f\left(x+x_{0}+y+x_{0}\right)-\frac{f\left(2\left(x+x_{0}\right)\right)+f\left(2\left(y+x_{0}\right)\right)}{2} \\
& +\frac{f\left(2\left(x+x_{0}\right)\right)+f\left(2 x_{0}\right)}{2}-f\left(x+x_{0}+x_{0}\right) \\
& +\frac{f\left(2\left(y+x_{0}\right)\right)+f\left(2 x_{0}\right)}{2}-f\left(x+x_{0}+x_{0}\right) .
\end{aligned}
$$

Since the norm of the expressions in the last three lines is $\leq 2 \varepsilon$ we get

$$
\|a(x+y)-a(x)-a(y)\| \leq 6 \varepsilon, x, y \in S
$$

By (2.5) there is some additive function $A: S \rightarrow X^{c}$ such that

$$
\begin{equation*}
\|a(x)-A(x)\| \leq 6 p \varepsilon, x, y \in S \tag{3.2}
\end{equation*}
$$

Now

$$
\begin{aligned}
A(2 x)+c-f(2 x)= & A(2 x)-2 a(x)+2 a(x)+2 f\left(2 x_{0}\right)-f\left(4 x_{0}\right)-f(2 x) \\
= & 2(A(x)-a(x))+2\left(a(x)+f\left(2 x_{0}\right)-\frac{f(2 x)+f\left(4 x_{0}\right)}{2}\right) \\
& +2(A(x)-a(x)) \\
& +2\left(f\left(x+2 x_{0}\right)-\frac{f(2 x)+f\left(4 x_{0}\right)}{2}\right), \quad x \in S .
\end{aligned}
$$

Since $\|2(A(x)-a(x))\| \leq|2|_{p} 6 p \varepsilon \leq 6 p \varepsilon$ and

$$
\left\|2\left(f\left(x+2 x_{0}\right)-\frac{f(2 x)+f\left(4 x_{0}\right)}{2}\right)\right\| \leq|2|_{p} 2 \varepsilon \leq 2 \varepsilon
$$

we get the first part of (3.1). The second part can be derived from the following calculations.

$$
\begin{aligned}
A(x+ & y)+c-f(x+y) \\
= & A(x)+A(y)+2 f\left(2 x_{0}\right)-f\left(4 x_{0}\right)-f(x+y) \\
& +\frac{f(2 x)+f(2 y)}{2}-\frac{f(2 x)+f(2 y)}{2}+a(x)+a(y)-a(x)-a(y) \\
= & (A(x)-a(x))+(A(y)-a(y))-\left(f(x+y)-\frac{f(2 x)+f(2 y)}{2}\right) \\
& +\left(f\left(x+2 x_{0}\right)-\frac{f(2 x)+f\left(4 x_{0}\right)}{2}\right)+\left(f\left(y+2 x_{0}\right)-\frac{f(2 y)+f\left(4 x_{0}\right)}{2}\right)
\end{aligned}
$$

by considering the estimates for the term in the last two lines.
Theorem 3.2. Let $(S,+)$ be a commutative semigroup and let X be a normed space over $\left(\mathbb{Q},| |_{p}\right)$ with completion X^{c}. Let $\varepsilon>0$. Then, for arbitrary functions $f, g, h: S \rightarrow X$ satisfying the condition

$$
\begin{equation*}
\|f(x+y)-g(x)-h(y)\| \leq \varepsilon, \quad x, y \in S \tag{3.3}
\end{equation*}
$$

there exist functions $f_{1}, g_{1}, h_{1}: S \rightarrow X^{c}$ such that

$$
\begin{align*}
& \quad f_{1}(x+y)-g_{1}(x)-h_{1}(y)=0, \quad x, y \in S \tag{3.4}\\
& \left\|f_{1}(x+y)-f(x+y)\right\| \leq(48 p+3) \varepsilon \quad \text { and } \tag{3.5}\\
& \left\|g_{1}(x)-g(x)\right\|,\left\|h_{1}(x)-h(x)\right\| \leq(24 p+1) \varepsilon, \quad x, y \in S .
\end{align*}
$$

Proof. Observe

$$
\begin{align*}
f(x+y)- & \frac{f(2 x)+f(2 y)}{2} \\
= & \frac{1}{2}(f(x+y)-g(x)-h(y))+\frac{1}{2}(f(x+y)-g(y)-h(x)) \tag{3.6}\\
& -\frac{1}{2}(f(2 x)-g(x)-h(x))-\frac{1}{2}(f(2 y)-g(y)-h(y)) .
\end{align*}
$$

By (3.3)

$$
\|f(2 x)-g(x)-h(x)\| \leq \varepsilon, \quad x \in S
$$

Applying (3.6), we get

$$
\left\|f(x+y)-\frac{f(2 x)+f(2 y)}{2}\right\| \leq 4\left|\frac{1}{2}\right|_{p} \varepsilon \leq 8 \varepsilon
$$

Applying the lemma and (3.2) we get an additive function $A: S \rightarrow X^{c}$ such that

$$
\|a(x)-A(x)\| \leq 24 p \varepsilon \quad \text { for all } x \in S
$$

where a is defined in the proof of the above lemma. Let f_{1}, g_{1} and h_{1} be functions defined by the following formulas:

$$
\begin{aligned}
& f_{1}(x):=A(x)+2 f\left(2 x_{0}\right)-g\left(2 x_{0}\right)-h\left(2 x_{0}\right), \quad x \in S, \\
& g_{1}(x):=A(x)+f\left(2 x_{0}\right)-h\left(2 x_{0}\right), \quad x \in S, \\
& h_{1}(x):=A(x)+f\left(2 x_{0}\right)-g\left(2 x_{0}\right), \quad x \in S .
\end{aligned}
$$

Then (3.4) holds true because A is additive. Moreover

$$
\begin{aligned}
g_{1}(x)-g(x) & =A(x)+f\left(2 x_{0}\right)-h\left(2 x_{0}\right)-g(x) \\
& =A(x)-a(x)+a(x)+f\left(2 x_{0}\right)-h\left(2 x_{0}\right)-g(x) \\
& =(A(x)-a(x))+\left(f\left(x+2 x_{0}\right)-g(x)-h\left(2 x_{0}\right)\right)
\end{aligned}
$$

implies

$$
\left\|g_{1}(x)-g(x)\right\| \leq 24 p \varepsilon+\varepsilon=(24 p+1) \varepsilon
$$

being part of (3.5). Similarly one may find the corresponding estimate for $h_{1}(x)-h(x)$. Finally we observe

$$
\begin{aligned}
f_{1}(x+y)-f(x+y)= & g_{1}(x)+h_{1}(y)-f(x+y) \\
= & \left(g_{1}(x)-g(x)\right)+\left(h_{1}(y)-h(y)\right) \\
& -(f(x+y)-g(x)-h(y))
\end{aligned}
$$

from which we deduce that

$$
\left\|f_{1}(x+y)-f(x+y)\right\| \leq(24 p+1) \varepsilon+(24 p+1) \varepsilon+\varepsilon=(48 p+3) \varepsilon
$$

thus finishing (3.5).
Remark 3.3. In case that X is a non-archimedean normed space a similar result with tighter bounds holds true.

4. Stability and completeness

Let as before S be an abelian semigroup and X a normed space over $\left(\mathbb{Q},| |_{p}\right)$. For $f \in X^{S}$ let $\gamma_{f}: S \times S \rightarrow X$ be defined by $\gamma_{f}(x, y):=f(x+y)-$ $f(x)-f(y)$. Then we define

$$
\mathscr{A}(S, X):=\left\{f \in X^{S} \mid\left\|\gamma_{f}\right\|_{\infty}<\infty\right\}
$$

where $\left\|\gamma_{f}\right\|_{\infty}:=\sup \left\{\left\|\gamma_{f}(x, y)\right\| \mid x, y \in S\right\}$. Moreover

$$
\mathscr{B}(S, X):=\left\{f \in X^{S} \mid\|f\|_{\infty}<\infty\right\} .
$$

Now we formulate a result similar to that in [12, Sec. 12.3] for normed spaces as above.

Theorem 4.1. Let S be an abelian semigroup, suppose X to be a normed vector space (over $\left(\mathbb{Q},| |_{p}\right)$) with completion X^{c}. Then $\mathscr{B}(S, X)$ is a subspace of the rational vector space $\mathscr{A}(S, X)$. Moreover $\mathscr{A}(S, X) / \mathscr{B}(S, X) \cong$ $\operatorname{Hom}\left(S, X^{c}\right)$, the group of homomorphisms defined on S with values in X^{c}, the completion of X.

Proof. It is trivial to see that $\mathscr{A}(S, X)$ is a subspace of X^{S} and that $\mathscr{B}(S, X)$ is a subspace of $\mathscr{A}(S, X)$.

By Corollary 2.2 and the proof of Theorem 2.1 we may find for every $f \in \mathscr{A}(S, X)$ some, more exactly, a unique $a=a_{f} \in \operatorname{Hom}\left(S, X^{c}\right)$ such that $\|f-a\|_{\infty}<\infty$ and a_{f} is given by $a_{f}(x):=\lim _{n \rightarrow \infty} p^{n} f\left(\frac{x}{p^{n}}\right)$. Let $\psi: \mathscr{A}(S, X) \rightarrow \operatorname{Hom}\left(S, X^{c}\right)$ be defined by $\psi(f):=a_{f}$. Obviously ψ is linear. Moreover $\psi(f)=0$ for $f \in \mathscr{B}(S, X)$ by the definition of a_{f}. On the other hand $\psi(f)=0$ implies $\|f\|_{\infty}=\|f-\psi(f)\|_{\infty}<\infty$. Thus $\operatorname{ker}(\psi)=\mathscr{B}(S, X)$. Finally given $a \in \operatorname{Hom}\left(S, X^{c}\right)$ by the density of X in X^{c} we may find for any $x \in S$ some $y=: f(x) \in X$ such that $\|a(x)-f(x)\| \leq 1$. This implies that $f(x+y)-f(x)-f(y)=(f(x+y)-a(x+y))-(f(x)-a(x))-(f(y)-a(y))$ is bounded, i.e., $f \in \mathscr{A}(S, X)$ (and $\left.a_{f}=a\right)$. Thus ψ is surjective. And the isomorphism theorem implies that $\mathscr{A}(S, X) / \mathscr{B}(S, X) \cong \operatorname{Hom}\left(S, X^{c}\right)$.

Corollary 4.2. $\mathscr{A}(\mathbb{Q}, X) / \mathscr{B}(\mathbb{Q}, X) \cong \operatorname{Hom}\left(\mathbb{Q}, X^{c}\right) \cong X^{c}$.
Proof. This follows from the fact that $\operatorname{Hom}\left(\mathbb{Q}, X^{c}\right)$ consists of all mappings $\mathbb{Q} \ni r \rightarrow r x$, where $x \in X^{c}$.

It was proved for $G=\mathbb{Z}$ in [10] and for arbitrary abelian groups G containing at least one element of infinite order in [3] that the following theorem holds true.

Theorem 4.3 (Hyers' theorem and completeness for real normed spaces). If G is an abelian group as above and X is a real normed space such that for any $f \in \mathscr{A}(G, X)$ there is some $a \in \operatorname{Hom}(G, X)$ such that $f-a$ is bounded, then X necessarily must be complete.

A similar result holds true for normed spaces over $\left(\mathbb{Q}_{p},| |_{p}\right)$.
TheOrem 4.4 (Hyers' theorem and completeness for normed spaces over $\left.\mathbb{Q}_{p}\right)$. If X is a normed space over \mathbb{Q}_{p} such that for any $f \in \mathscr{A}(\mathbb{Q}, X)$ there is some $a \in \operatorname{Hom}(\mathbb{Q}, X)$ such that $f-a$ is bounded, then X necessarily must be complete.

Proof. Let $x \in X^{c}$. For every $r \in \mathbb{Q}$ there is some $x_{r}=: f(r) \in X$ such that

$$
\|f(r)-r x\|<1
$$

Then $f \in \mathscr{A}(\mathbb{Q}, X)$ and therefore, by assumption, there is some $x_{0} \in X$ and some $\varepsilon>0$ such that

$$
\left\|f(r)-r x_{0}\right\| \leq \varepsilon \quad \text { for all rational numbers } r
$$

But then $\sup \left\{\left\|r\left(x-x_{0}\right)\right\| \mid r \in \mathbb{Q}\right\}<\infty$ which is only possible for $x=x_{0}$. Thus $x \in X$ and finally $X^{c} \subseteq X$.

References

[1] N. Bourbaki, Elements of Mathematics. Topological Vector Spaces, Chapters 1-5, Transl. from the French by H.G. Eggleston and S. Madan, Springer-Verlag, Berlin, 1987.
[2] G.L. Forti, An existence and stability theorem for a class of functional equations, Stochastica 4 (1980), no. 1, 23-30.
[3] G.L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C.R. Math. Rep. Acad. Sci. Canada 11 (1989), no. 6, 215-220.
[4] P. Gǎvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[5] Z. Kominek, On Hyers-Ulam stability of the Pexider equation, Demonstratio Math. 37 (2004), no. 2, 373-376.
[6] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in nonArchimedean spaces, Appl. Anal. Discrete Math. 1 (2007), no. 2, 325-334.
[7] A. Najati and Y.J. Cho, Generalized Hyers-Ulam stability of the Pexiderized Cauchy functional equation in non-Archimedean spaces, Fixed Point Theory Appl. 2011, Art. ID 309026, 11 pp .
[8] C. Perez-Garcia and W.H. Schikhof, Locally Convex Spaces over Non-Archimedean Valued Fields, Vol. 119, Cambridge University Press, Cambridge, 2010.
[9] W.H. Schikhof, Ultrametric Calculus. An Introduction to p-adic Analysis. Paperback reprint of the 1984 original, Vol. 4, Cambridge University Press, Cambridge, 2006.
[10] J. Schwaiger, Remark on Hyers's stability theorem, in: R. Ger, Report of Meeting: The Twenty-fifth International Symposium on Functional Equations, Aequationes Math. 35 (1988), no. 1, 82-124,
[11] J. Schwaiger, Functional equations for homogeneous polynomials arising from multilinear mappings and their stability, Ann. Math. Sil. 8 (1994), 157-171.
[12] J. Schwaiger, On the construction of the field of reals by means of functional equations and their stability and related topics, in: J. Brzdęk et al. (eds.), Developments in Functional Equations and Related Topics, Springer, Cham, 2017, pp. 275-295.

[^0]
[^0]: Institute of Mathematics and Scientific Computing
 University of Graz
 Graz
 Austria
 e-mail: jens.schwaiger@uni-graz.at

