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AN ELEMENTARY PROOF FOR THE DECOMPOSITION
THEOREM OF WRIGHT CONVEX FUNCTIONS

Zsolt Páles

Dedicated to the 75th birthday of Professor Zygfryd Kominek

Abstract. The main goal of this paper is to give a completely elementary
proof for the decomposition theorem of Wright convex functions which was
discovered by C. T. Ng in 1987. In the proof, we do not use transfinite tools,
i.e., variants of Rodé’s theorem, or de Bruijn’s theorem related to functions
with continuous differences.

1. Introduction

In 1954, E.M. Wright [35] (see also [33]) introduced a new convexity prop-
erty for real functions: A real valued function f defined on an interval I is
called Wright convex if, for all x, y ∈ I and t ∈ [0, 1],

(1) f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y).

Here and in the sequel, I ⊆ R denotes a nonvoid open interval.
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One can easily see that convex functions are Wright convex. Indeed, if
f : I → R is convex, then, for all x, y ∈ I and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

and

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Adding up these two inequalities side by side, we can arrive at the conclusion
that f is Wright convex, too.

On the other hand, if f : R→ R is additive, then its restriction f |I is also
Wright convex on I. Indeed, for all x, y ∈ I and t ∈ [0, 1], the additivity of f
implies

f(tx+ (1− t)y) + f((1− t)x+ ty) = f(tx+ (1− t)y + (1− t)x+ ty)

= f(x+ y) = f(x) + f(y).

Thus, in this case, (1) holds with equality.
By the linearity of the functional inequality (1), a function which is the

sum of a convex and of an additive function must be Wright convex, too. The
following surprising characterization of Wright convexity, which is basically
stating the converse of the above observations, was discovered by Ng [18]
in 1987.

Theorem (Ng’s Decomposition Theorem [18, Corollary 5]). A function
f : I→R is Wright-convex if and only if there exist a convex function g : I→R
and an additive function A : R→ R such that

(2) f(x) = g(x) +A(x) (x ∈ I).

Furthermore, the additive summand A in the above decomposition can be cho-
sen so that it vanishes on Q and, together with this condition, the decomposi-
tion (2) is unique.

The known proofs of this important theorem are usually based on results
that depend on the axiom of choice, i.e., they use transfinite induction. The
original proof by Ng [18] used de Bruijn’s theorem [3] which is related to
functions which have continuous differences. Another approach, which was
based on Rode’s theorem [34], was found by Nikodem [19] and a generalization
was given by Kominek [6].

For an overview about the generalizations, stability and regularity prop-
erties of Wright convex functions, we refer to the list of references, which is
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possibly far from being complete but may give the impression that this field
of functional equations and inequalities is still actively dealt with by many
researchers.

2. Auxiliary results

For the new proof of Ng’s decomposition theorem, we will need some aux-
iliary results that are contained in the following three lemmas.

Lemma 1. Let D be a dense subset of I and assume that f : D → R is
a locally Lipschitz function on D, i.e., for every compact subinterval [a, b] ⊆ I,
there exists L ≥ 0 such that

(3) |f(x)− f(y)| ≤ L|x− y| (x, y ∈ [a, b] ∩D).

Then f admits a unique locally Lipschitz extension g : I → R.

Proof. For a fixed element x ∈ I, let xn ∈ D be an arbitrary sequence
converging to x. Then there exists a compact subinterval [a, b] ⊆ I which
contains each member of this sequence. Using inequality (3), it follows that

|f(xn)− f(xm)| ≤ L|xn − xm| (n,m ∈ N).

The sequence (xn) being a Cauchy sequence, the above inequality implies that
(f(xn)) is also a Cauchy sequence, whence we get that (f(xn)) is convergent.
Define g(x) to be the limit of this sequence. It is easy to see that this limit
does not depend on the choice of the sequence (xn), furthermore, it is also
clear that f(x) = g(x) if x belongs to D (because, then the sequence xn := x
could be taken).

To see that g is locally Lipschitz on I, let a, b ∈ I with a < b. Then there
exists L ≥ 0 such that (3) holds. Let x, y ∈ [a, b] be arbitrary and choose
xn, yn ∈ [a, b] ∩D such that (xn) and (yn) converge to x and y, respectively.
Then, (3) implies that

|f(xn)− f(yn)| ≤ L|xn − yn| (n ∈ N).

Now, upon taking the limit as n→∞, we get

|g(x)− g(y)| ≤ L|x− y| (x, y ∈ [a, b]).
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This proves that g is locally Lipschitz on I, indeed. The uniqueness of the
function g follows from the well-known fact that if two continuous real valued
functions defined on I coincide on a dense subset of I, then they coincide
everywhere in I. �

Lemma 2. Let f : I ∩ Q → R be a Jensen convex function, i.e., assume
that f satisfies the Jensen inequality on I ∩Q:

f
(x+ y

2

)
≤ f(x) + f(y)

2
(x, y ∈ I ∩Q).

Then there exists a convex function g : I → R such that g|I∩Q = f .

Proof. Via a standard argument (see, for instance, the proofs of
Lemma 5.3.1 and Theorem 5.3.5 in [8]), the Jensen convexity of f on I ∩ Q
implies that

(4) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (x, y ∈ I ∩Q, t ∈ [0, 1] ∩Q).

With the notation u := tx+ (1− t)y, this yields that

(5)
f(x)− f(u)

x− u
≤ f(u)− f(y)

u− y
(x, u, y ∈ I ∩Q, x < u < y).

Let [a, b] ⊆ I be an arbitrary compact subinterval and fix a′, a′′, b′, b′′ ∈ I ∩Q
such that a′ < a′′ ≤ a < b ≤ b′ < b′′. Then, by the repeated application of
inequality (5), for any x, y ∈ [a, b] ∩Q with x < y, we obtain

α : =
f(a′)− f(a′′)

a′ − a′′
≤ f(a′′)− f(x)

a′′ − x
≤ f(x)− f(y)

x− y

≤ f(y)− f(b′)

y − b′
≤ f(b′)− f(b′′)

b′ − b′′
=: β.

Hence,

|f(x)− f(y)| ≤ max(|α|, |β|) · |x− y| (x, y ∈ [a, b] ∩Q),

which shows that f is Lipschitz with modulus L := max(|α|, |β|) on the set
[a, b] ∩Q. Therefore f is locally Lipschitz on the dense set D := I ∩Q.

By applying Lemma 1, we can now conclude that f admits a unique con-
tinuous extension g : I → R. Using the density of I ∩ Q in I, the density of
[0, 1]∩Q in [0, 1] and the continuity of g, the inequality (4) easily implies that
the function g is also convex. �
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Lemma 3. Let J ⊆ I be an open subinterval, let ϕ : J → R be nondecreas-
ing and ψ : J → R be continuous such that ϕ(x) = ψ(x) holds for all element
x of a dense subset D ⊆ J . Then ϕ = ψ holds on J .

Proof. Let x ∈ J be fixed. First choose a sequence (xn) in D such that
(xn) converges to x and x ≤ xn holds for all n ∈ N. Then, by the nondecreas-
ingness of ϕ and the continuity of ψ, we obtain

ϕ(x) ≤ lim
n→∞

ϕ(xn) = lim
n→∞

ψ(xn) = ψ(x).

By taking another sequence xn ∈ D such that (xn) converges to x and x ≥ xn
holds for all n ∈ N, we similarly get that

ϕ(x) ≥ lim
n→∞

ϕ(xn) = lim
n→∞

ψ(xn) = ψ(x).

The above two inequalities finally yield that ϕ(x) = ψ(x), which was to be
proved. �

3. The proof of Ng’s decomposition theorem

Let f : I → R be Wright convex. Then, with t = 1
2 , the Wright convexity

of f implies that it is Jensen convex, i.e.,

f
(x+ y

2

)
≤ f(x) + f(y)

2
(x, y ∈ I).

Therefore, the restriction f |I∩Q is Jensen convex on I∩Q. Thus, by Lemma 2,
there exists a convex function g : I → R such that g|I∩Q = f |I∩Q. The con-
vexity of g implies that it is also continuous on I.

In the rest of the proof, we show that Φ := f − g is a restriction of an
additive function to I which vanishes onQ. First, for all u, v > 0, we prove that

(6) (∆u∆vf)(x) = (∆u∆vg)(x) (x ∈ I ∩ (I − v − u)).

Here, for w ∈ R, the difference operator ∆w acts on functions f : I ∩ (I − w)
→ R and is defined by (∆wf)(x) := f(x+ w)− f(x).

Observe that, with the notations u := t(y − x), v := (1 − t)(y − x), the
Wright convexity property can be reformulated as the inequality

(7) (∆u∆vf)(x) ≥ 0
(
u, v > 0, x ∈ I ∩ (I − u− v)

)
.
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This implies that, for each fixed v > 0, the function ∆vf : I ∩ (I − v) → R
is nondecreasing. In particular, for a fixed v ∈ Q+, the function ∆vf : I∩(I−v)
→ R is nondecreasing, ∆vg : I ∩ (I − v) → R is continuous and, for
x ∈ I ∩ (I − v) ∩Q, the equality of f and g on I ∩Q implies

(∆vf)(x) = f(x+ v)− f(x) = g(x+ v)− g(x) = (∆vg)(x).

Therefore, by applying Lemma 3 to the subinterval J := I ∩ (I − v), to the
functions ϕ := ∆vf , ψ := ∆vg and to the dense set D := I ∩ (I − v) ∩Q, we
obtain that the equality

(∆vf)(x) = (∆vg)(x) (x ∈ I ∩ (I − v))

holds for all v ∈ Q+. Consequently, the equality (6) holds for all v ∈ Q+ and
u > 0. In what follows, we prove that this equality is also valid if v is not
necessarily rational.

Let u, v ∈ R+ be fixed and let x ∈ I ∩ (I − v − u) be arbitrary. Then, for
v′ ∈ Q+ with v′ < v, the equality (6) for the rational value v′ instead of v and
the inequality (7) imply

(∆v∆uf)(x) = (∆uf)(x+ v)− (∆uf)(x)

= (∆uf)(x+ v)− (∆uf)(x+ v′) + (∆uf)(x+ v′)− (∆uf)(x)

= (∆v−v′∆uf)(x+ v′) + (∆v′∆uf)(x)

≥ (∆v′∆uf)(x) = (∆v′∆ug)(x).

Taking the limit v′ → v and using the continuity of g, it follows that

(∆v∆uf)(x) ≥ (∆v∆ug)(x) (x ∈ I ∩ (I − v − u)).

Similarly, for v′′ ∈ Q+ with v < v′′ and x + u + v′′ ∈ I, the equality (6) for
the rational value v′′ instead of v and the inequality (7) imply

(∆v∆uf)(x) = (∆uf)(x+ v)− (∆uf)(x)

= (∆uf)(x+ v)− (∆uf)(x+ v′′) + (∆uf)(x+ v′′)− (∆uf)(x)

= −(∆v′′−v∆uf)(x+ v) + (∆v′′∆uf)(x)

≤ (∆v′′∆uf)(x) = (∆v′′∆ug)(x).
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Upon taking the limit v′′ → v and using the continuity of g, we get

(∆v∆uf)(x) ≤ (∆v∆ug)(x) (x ∈ I ∩ (I − v − u)).

Therefore, we have established the equality (6) for all u, v > 0. In other words,
we have that

(∆v∆u(f − g))(x) = 0 (x ∈ I ∩ (I − v − u)).

Thus, for x, y ∈ I with x < y, the above equality with u := v := y−x
2 implies

that Φ := f − g satisfies the Jensen equation, i.e.,

Φ
(x+ y

2

)
=

Φ(x) + Φ(y)

2
.

By classical results on this functional equation (cf. [8]), Φ is of the form
Φ(x) = A(x) + c (x ∈ I), where A : R → R is an additive function and
c ∈ R is a constant. Since Φ|I∩Q = (f − g)|I∩Q = 0, we get that A(1)x+ c =
A(x) + c = Φ(x) = 0 for all x ∈ I ∩ Q. This implies that A(1) = c = 0 and
hence Φ equals to the restriction of an additive function which vanishes on Q.
Thus the proof is completed.
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