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OHLIN AND LEVIN–STEČKIN-TYPE RESULTS
FOR STRONGLY CONVEX FUNCTIONS

Kazimierz Nikodem , Teresa Rajba

Dedicated to Professor Zygfryd Kominek on his 75th birthday

Abstract. Counterparts of the Ohlin and Levin–Stečkin theorems for strongly
convex functions are proved. An application of these results to obtain some
known inequalities related with strongly convex functions in an alternative and
unified way is presented.

1. Introduction

In 1969, J. Ohlin [9] proved the following interesting and very useful result
on convex functions in a probabilistic context (as usual, E[X] denotes the
expectation of the random variable X):
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Lemma 1 ([9]). Let X, Y be two real valued random variables such that
E[X] = E[Y ]. If the distribution functions FX , FY crosses one time, i.e. there
exists t0 ∈ R such that

FX(t) ≤ FY (t) if t < t0 and FX(t) ≥ FY (t) if t > t0,

then

(1) E[f(X)] ≤ E[f(Y )]

for every convex function f : R→ R.

For two real valued random variables X,Y with finite expectations, we
say that X is dominated by Y in convex stochastic ordering sense, if condi-
tion (1) holds for all convex functions f : R→ R (see [1]). Thus Ohlin’s lemma
gives sufficient conditions for X to be dominated by Y in such ordering. It is
interesting that earlier, in 1960, V.I. Levin and S.B. Stečkin [4] (see also [6,
Theorem 4.2.7 and Lemma 4.2.9]) proved a more general result giving a nec-
essary and sufficient condition for convex stochastic ordering. However, their
result was clearly unknown for Ohlin. For years the Ohlin lemma also was
not well-known in the mathematical community. It has been rediscovered by
T. Rajba [12], who found its various applications to the theory of functional
inequalities (cf. also [10, 13, 16, 17, 18]). In [12], the authoress used the Ohlin
lemma to get a very simple proof of known Hermite–Hadamard type inequal-
ities, as well as to obtain new Hermite–Hadamard type inequalities. In the
papers [10, 13, 17, 18], furthermore, the Levin–Stečkin theorem [4] is used to
examine the Hermite–Hadamard type inequalities. Let us mention also the
recent paper by M. Niezgoda [7], in which an extension of the Levin–Stečkin
theorem to uniformly convex and superquadratic functions is presented.

In this note we prove counterparts of the Ohlin and Levin–Stečkin the-
orems for strongly convex functions. We present also applications of these
results to obtain some inequalities connected with strongly convex functions.

Let us recall that a function f : I → R defined on an interval I ⊂ R is
called strongly convex with modulus c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2

for all x, y ∈ I and t ∈ (0, 1). Strongly convex functions have been intro-
duced by Polyak [11] and they play an important role in optimization theory
and mathematical economics. Many properties of them can be found, among
others, in [2, 3, 5, 8, 15].



Ohlin and Levin–Stečkin-type results for strongly convex functions 125

2. Main results

Let (Ω,A, P ) be a probability space. Assume that I ⊂ R is an interval and
c > 0. Given a random variable X : Ω → R we denote by D2[X] the variance
of X. The following result is a counterpart of Ohlin’s lemma for strongly
convex functions.

Theorem 2. Let X,Y : Ω→ I be square integrable random variables such
that E[X] = E[Y ]. If there exists t0 ∈ R such that

FX(t) ≤ FY (t) if t < t0 and FX(t) ≥ FY (t) if t > t0,

then

(2) E[f(X)]− cD2[X] ≤ E[f(Y )]− cD2[Y ]

for every continuous function f : I → R strongly convex with modulus c.

Proof. Let f : I → R be continuous and strongly convex with modulus c.
By the characterization of strongly convex functions (see [2, 5, 15]), the func-
tion g : I → R defined by g(x) = f(x) − cx2, x ∈ I, is convex. Therefore, by
the Ohlin lemma applied for g, we have

E[g(X)] ≤ E[g(Y )],

and hence

E[f(X)]− cE[X2] ≤ E[f(Y )]− cE[Y 2].

Since E[X] = E[Y ], we have also

E[f(X)]− cE[X2] + c(E[X])2 ≤ E[f(Y )]− cE[Y 2] + c(E[Y ])2,

which gives

E[f(X)]− cD2[X] ≤ E[f(Y )]− cD2[Y ]

and finishes the proof. �

Remark 3. Note that condition (2) is stronger than (1). Indeed, by the
Ohlin lemma applied for the function f(x) = x2, we have E[X2] ≤ E[Y 2], and
hence D2[X] ≤ D2[Y ], because E[X] = E[Y ].
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Let us recall now the theorem proved by V.I. Levin and S.B. Stečkin [4].

Theorem 4 ([4]). Let a, b ∈ R, a < b and let F1, F2 : [a, b] → R be func-
tions with bounded variation such that F1(a) = F2(a). Then, in order that∫ b

a

f(x)dF1(x) ≤
∫ b

a

f(x)dF2(x)

for all continuous convex functions f : [a, b]→ R, it is necessary and sufficient
that F1 and F2 verify the following three conditions:

F1(b) = F2(b),∫ x

a

F1(t)dt ≤
∫ x

a

F2(t)dt for every x ∈ (a, b),

∫ b

a

F1(t)dt =

∫ b

a

F2(t)dt.

The next result is a version of the above Levin–Stečkin theorem for strongly
convex functions (cf. [7] where a similar result for uniformly convex functions
is obtained).

Theorem 5. Let a, b ∈ R, a < b and let F1, F2 : [a, b] → R be functions
with bounded variation such that F1(a) = F2(a). Then, in order that

(3)
∫ b

a

f(t)dF1(t)− c
∫ b

a

t2dF1(t) ≤
∫ b

a

f(t)dF2(t)− c
∫ b

a

t2dF2(t)

for every continuous function f : [a, b]→ R strongly convex with modulus c, it
is necessary and sufficient that F1 and F2 satisfy the following three conditions:

F1(b) = F2(b),(4) ∫ x

a

F1(t)dt ≤
∫ x

a

F2(t)dt for every x ∈ (a, b),(5)

∫ b

a

F1(t)dt =

∫ b

a

F2(t)dt.(6)

Proof. By the characterization of strongly convex functions, a function
f : [a, b] → R is strongly convex with modulus c if and only if the function
g(x) = f(x) − cx2, x ∈ [a, b], is convex. Therefore condition (3) holds for all
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continuous functions f : [a, b] → R strongly convex with modulus c, if and
only if

(7)
∫ b

a

g(t)dF1(t) ≤
∫ b

a

g(t)dF2(t)

holds for all continuous convex functions g : [a, b] → R. Since, by the Levin–
Stečkin theorem, condition (7) is equivalent to conditions (4)–(6), the proof
is finished. �

As a consequence of the above theorem, we get the following necessary
and sufficient condition for random variables X,Y to satisfy (2).

Theorem 6. Let X,Y : Ω → [a, b] be square integrable random variables
such that E[X] = E[Y ] and let FX , FY be the distribution functions of X,Y ,
respectively. Then

(8) E[f(X)]− cD2[X] ≤ E[f(Y )]− cD2[Y ]

for every continuous function f : [a, b]→ R strongly convex with modulus c, if
and only if FX and FY satisfy the following condition:∫ x

a

FX(t)dt ≤
∫ x

a

FY (t)dt for every x ∈ [a,∞).

Proof. Since X,Y : Ω→ [a, b], we have

(9) FX(a) = FY (a) = 0 and FX(b1) = FY (b1) = 1 for any b1 > b.

We have also

(10) E[X] =

∫ ∞
−∞

tdFX(t) =

∫ b1

a

tdFX(t) and E[Y ] =

∫ b1

a

tdFY (t).

By the integration by parts formula and (9), (10), we obtain

E[X]− E[Y ] =

∫ b1

a

td(FX(t)− FY (t))

= t(FX(t)− FY (t))
∣∣∣b1
a
−
∫ b1

a

(FX(t)− FY (t))dt

= −
∫ b1

a

(FX(t)− FY (t))dt.
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Since E[X] = E[Y ], this implies

(11)
∫ b1

a

FX(t)dt =

∫ b1

a

FY (t)dt.

Now, using the equalities

E[f(X)] =

∫ b1

a

f(t)dFX(t) and E[f(Y )] =

∫ b1

a

f(t)dFY (t),

and

E[X2] =

∫ b1

a

t2dFX(t) and E[Y 2] =

∫ b1

a

t2dFY (t),

and once more the assumption E[X] = E[Y ], we can rewrite condition (8) in
the form∫ b1

a

f(t)dFX(t)− c
∫ b1

a

t2dFX(t) ≤
∫ b1

a

f(t)dFY (t)− c
∫ b1

a

t2dFY (t).

Therefore, by Theorem 4, condition (8) is equivalent to∫ x

a

FX(t)dt ≤
∫ x

a

FY (t)dt for every x ∈ [a,∞),

because the remaining conditions (4), (6) in Theorem 5 are already fulfilled
as (9) and (11). This finishes the proof. �

3. Applications

In this section we present an application of the Ohlin-type lemma to obtain
some known inequalities related with strongly convex functions in an alterna-
tive and unified way. The first result is a counterpart of the classical Jensen
inequality.
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Corollary 7 ([5]). If f : I → R is strongly convex with modulus c then

(12) f

( n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi)− c
n∑

i=1

ti(xi − x̄)2

for all x1, . . . , xn ∈ I, t1, . . . , tn > 0 with t1 + · · · + tn = 1 and x̄ = t1x1 +
· · ·+ tnxn.

Proof. Fix x1, . . . , xn ∈ I and t1, . . . , tn > 0 such that t1 + · · · + tn = 1
and put x̄ = t1x1 + · · ·+ tnxn. Take random variables X,Y : Ω→ I with the
distributions µX = δx̄ and µY = t1δx1

+ · · · + tnδxn
. Then the distribution

functions FX , FY satisfy the assumption of Theorem 2,

E[X] = x̄ =

n∑
i=1

tixi = E[Y ]

and

D2[X]− D2[Y ] = E[X2]− E[Y 2] = x̄2 −
n∑

i=1

tix
2
i = −

n∑
i=1

ti(xi − x̄)2.

Moreover

E[f(X)] = f(x̄) and E[f(Y )] =

n∑
i=1

tif(xi).

Therefore, by Theorem 2 we obtain (12). �

We have also the following converse Jensen inequality for strongly convex
functions.

Corollary 8 ([3]). Let m,M ∈ I, m < M . If f : I → R is strongly
convex with modulus c, then

(13)
n∑

i=1

tif(xi)− c
n∑

i=1

ti(xi − x̄)2

≤ M − x̄
M −m

f(m) +
x̄−m
M −m

f(M)− c(M − x̄)(x̄−m)

for all x1, . . . , xn ∈ [m,M ], t1, . . . , tn > 0 with t1 + · · · + tn = 1 and x̄ =
t1x1 + · · ·+ tnxn.
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Proof. Take random variables X,Y : Ω→ I with the distributions

µX =

n∑
i=1

tiδxi and µY =
M − x̄
M −m

δm +
x̄−m
M −m

δM .

Then the distribution functions FX , FY satisfy the assumption of Theorem 2,

E[X] =

n∑
i=1

tixi = x̄ =
M − x̄
M −m

m+
x̄−m
M −m

M = E[Y ]

and

D2[X] = E[(X − EX)2] =

n∑
i=1

ti(xi − x̄)2,

D2[Y ] = E[(Y − EY )2] =
M − x̄
M −m

(m− x̄)2 +
x̄−m
M −m

(M − x̄)2

= (M − x̄)(x̄−m).

Moreover

E[f(X)] =

n∑
i=1

tif(xi) and E[f(Y )] =
M − x̄
M −m

f(m) +
x̄−m
M −m

f(M).

Therefore, by Theorem 2 we obtain (13). �

The next result gives a probabilistic characterization of strong convexity
obtained by Rajba and Wąsowicz [14].

Corollary 9 ([14]). A function f : I → R is strongly convex with modu-
lus c if and only if

(14) f(E[Y ]) ≤ E[f(Y )]− cD2[Y ]

for any square integrable random variable Y taking values in I.

Proof. Let f : I → R be strongly convex with modulus c and Y be
a random variable with values in I. Take a random variableX : Ω→ I with the
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distributions µX = δE[Y ]. Then X and Y satisfy the assumption of Theorem 2.
Moreover, E[f(X)] = f(E[Y ]) and D2[X] = 0. Therefore, by Theorem 2,

f(E[Y ]) = E[f(X)]− cD2[X] ≤ E[f(Y )]− cD2[Y ].

Conversely, assume that f : I → R satisfy (14) for any random variable Y tak-
ing values in I. Fix arbitrary x1, x2 ∈ I, t ∈ (0, 1) and take a random variable
Y with the distribution µY = tδx1

+(1−t)δx2
. Then f(E[Y ])= f(tx1+(1−t)x2),

E[f(X)] = tf(x1) + (1− t)f(x2) and D2[Y ] = t(1− t)(x1 − x2)2. Thus condi-
tion (14) shows that f : I → R is strongly convex with modulus c. �

The next corollary is a version of the Hermite–Hadamard inequalities for
strongly convex functions.

Corollary 10 ([5]). If a function f : I → R is strongly convex with
modulus c then

(15) f
(
a+ b

2

)
+

c

12
(b− a)2 ≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
− c

6
(b− a)2

for all a, b ∈ I, a < b.

Proof. Let X1, X2 : Ω → I be random variables with the distributions
µX1 = δ(a+b)/2, µX2 = 1

2(δa + δb) and let Y : Ω → I has the uniform distri-
bution on [a, b]. Then the pairs X1, Y and Y,X2 satisfy the assumptions of
Theorem 2 and for every f : I → R

E[f(X1)] = f
(a+ b

2

)
, E[f(X2)] =

f(a) + f(b)

2

and

E[f(Y )] =
1

b− a

∫ b

a

f(x) dx.

Moreover,

D2[X1] = 0, D2[X2] =
(b− a)2

4
,

and

D2[Y ] =
1

b− a

∫ b

a

x2dx−
( 1

b− a

∫ b

a

x dx
)2

=
(b− a)2

12
.

Therefore, by Theorem 2, we obtain (15). �
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