

Annales Mathematicae Silesianae **34** (2020), no. 1, 96–103 DOI: 10.2478/amsil-2020-0012

# ON A FUNCTIONAL EQUATION APPEARING ON THE MARGINS OF A MEAN INVARIANCE PROBLEM

# JUSTYNA JARCZYK, WITOLD JARCZYK

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

**Abstract.** Given a continuous strictly monotonic real-valued function  $\alpha$ , defined on an interval I, and a function  $\omega: I \to (0, +\infty)$  we denote by  $B^{\alpha}_{\omega}$  the Bajraktarević mean generated by  $\alpha$  and weighted by  $\omega$ :

$$B^{\alpha}_{\omega}(x,y) = \alpha^{-1} \left( \frac{\omega(x)}{\omega(x) + \omega(y)} \alpha(x) + \frac{\omega(y)}{\omega(x) + \omega(y)} \alpha(y) \right), \quad x, y \in I.$$

We find a necessary integral formula for all possible three times differentiable solutions  $(\varphi, \psi)$  of the functional equation

$$r(x)B_s^{\varphi}(x,y) + r(y)B_t^{\psi}(x,y) = r(x)x + r(y)y,$$

where  $r, s, t: I \to (0, +\infty)$  are three times differentiable functions and the first derivatives of  $\varphi, \psi$  and r do not vanish. However, we show that not every pair  $(\varphi, \psi)$  given by the found formula actually satisfies the above equation.

*Received: 26.12.2019. Accepted: 03.06.2020. Published online: 09.07.2020.* (2010) Mathematics Subject Classification: 26E60, 39B22.

Key words and phrases: functional equation, mean, invariance, Bajraktarević mean. ©2020 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

### 1. Introduction

Given an interval I, a continuous strictly monotonic function  $\alpha: I \to \mathbb{R}$ , and any  $\kappa: I^2 \to (0,1)$  we define the quasi-arithmetic mean  $A_{\kappa}^{\alpha}: I^2 \to I$ generated by  $\alpha$  and weighted by  $\kappa$ :

$$A^{\alpha}_{\kappa}(x,y) = \alpha^{-1} \left( \kappa(x,y)\alpha(x) + (1 - \kappa(x,y))\alpha(y) \right).$$

In [9] the first author of the present paper studied the functional equation

(1) 
$$\lambda(x,y)A^{\varphi}_{\mu}(x,y) + (1 - \lambda(x,y))A^{\psi}_{\nu}(x,y) = \lambda(x,y)x + (1 - \lambda(x,y))y$$

with given (0, 1)-valued functions  $\lambda, \mu$  and  $\nu$  defined on  $I^2$ , and unknown increasing continuous functions  $\varphi$  and  $\psi$  defined on I.

Let us note that (1) is the invariance equation of  $A_{\lambda} := A_{\lambda}^{\text{id}}$  with respect to the pair  $(A_{\mu}^{\varphi}, A_{\nu}^{\psi})$  expressed as

(2) 
$$A_{\lambda} \circ \left(A_{\mu}^{\varphi}, A_{\nu}^{\psi}\right) = A_{\lambda}.$$

In the case of scalars  $\lambda, \mu, \nu$  equation (2) was investigated by several authors (cf. [13], [4], [5], [6]). The final solution was found by the first author (see [8]; cf. also [12] and [2]).

In this note we exploit the results of [9]-[11] for considering the special case of equation (1) concerned with the so-called *fraction weights*, i.e. functions of the form like

$$\lambda(x,y) = \frac{r(x)}{r(x) + r(y)},$$

where  $r: I \to (0, +\infty)$  is said to be the generator of the weight  $\lambda$ . Assuming that  $\lambda, \mu, \nu$  are generated by functions  $r, s, t: I \to (0, +\infty)$ , respectively. Then the functional equation (1) can be rewritten as

$$\begin{aligned} \frac{r(x)}{r(x) + r(y)} \varphi^{-1} \left( \frac{s(x)}{s(x) + s(y)} \varphi(x) + \frac{s(y)}{s(x) + s(y)} \varphi(y) \right) \\ &+ \frac{r(y)}{r(x) + r(y)} \psi^{-1} \left( \frac{t(x)}{t(x) + t(y)} \psi(x) + \frac{t(y)}{t(x) + t(y)} \psi(y) \right) \\ &= \frac{r(x)}{r(x) + r(y)} x + \frac{r(y)}{r(x) + r(y)} y. \end{aligned}$$

Given a continuous strictly monotonic function  $\alpha \colon I \to \mathbb{R}$  and any function  $\omega \colon I \to (0, +\infty)$  we define the Bajraktarević mean  $B^{\alpha}_{\omega} \colon I^2 \to I$  by

$$B^{\alpha}_{\omega}(x,y) = \alpha^{-1} \left( \frac{\omega(x)}{\omega(x) + \omega(y)} \alpha(x) + \frac{\omega(y)}{\omega(x) + \omega(y)} \alpha(y) \right)$$

(see [1] and [3]; also [11]). Finally equation (1) takes the form

(3) 
$$r(x)B_s^{\varphi}(x,y) + r(y)B_t^{\psi}(x,y) = r(x)x + r(y)y.$$

A special case of equation (3), namely if  $I \subset (0, +\infty)$ , r is constant and  $s = t = \mathrm{id}|_I$ , was considered in [7]. Another case, when s = t and s satisfies the harmonic oscillator equation, was considered by the first present author in [10]. Recently Bajraktarević means and their generalizations are again extensively investigated. This concerns both the comparison problem (see [16]) and various invariance problems (see [14], [15] and [17]).

# 2. Main result

In what follows we need the below technical lemma which can be easily derived from [10, Remark 1] and [9, Lemmas 1 and 3]. Making this remember that every mean is reflexive, that is takes the value x at diagonal points (x, x).

LEMMA 1. Let  $\lambda: I^2 \to (0,1)$  be a fraction weight generated by a function  $\omega: I \to (0, +\infty)$  and let  $\alpha: I \to \mathbb{R}$  be a continuous strictly monotonic function. If  $\omega$  and  $\alpha$  are differentiable and  $\alpha'(x) \neq 0$  for each  $x \in I$ , then

(4) 
$$\partial_1 \lambda(x,x) = \frac{\omega'(x)}{4\omega(x)}$$

and

(5) 
$$\partial_1 B^{\alpha}_{\omega}(x,x) = \lambda(x,x) = \frac{1}{2}$$

for all  $x \in I$ . Moreover, if  $\omega$  and  $\alpha$  are twice differentiable, then

(6) 
$$\partial_{1,1}^2 \lambda(x,x) = \frac{\omega''(x)\omega(x) - \omega'(x)^2}{4\omega(x)^2}$$

and

(7) 
$$\partial_{1,1}^2 B^{\alpha}_{\omega}(x,x) = \frac{\alpha''(x)}{4\alpha'(x)} + \frac{\omega'(x)}{2\omega(x)}$$

for all  $x \in I$ . If, in addition,  $\omega$  and  $\alpha$  are three times differentiable, then

$$\partial_{1,1,1}^{3}\lambda(x,x) = \frac{3\omega'(x)^{3} - 6\omega''(x)\omega'(x)\omega(x) + 2\omega'''(x)\omega(x)^{2}}{8\omega(x)^{3}}$$

and

(8) 
$$\partial_{1,1,1}^3 B^{\alpha}_{\omega}(x,x) = \frac{3}{8} \frac{\alpha'''(x)\alpha'(x) - \alpha''(x)^2}{\alpha'(x)^2} + \frac{3}{4} \frac{\omega''(x)\omega(x) - \omega'(x)^2}{\omega(x)^2}$$

for all  $x \in I$ .

The next fact follows immediately from [9, Lemma 2].

LEMMA 2. Let  $r, s, t: I \to (0, 1)$  be twice differentiable functions. If  $\varphi: I \to \mathbb{R}$  and  $\psi: I \to \mathbb{R}$  are twice differentiable functions with non-vanishing first derivatives and the pair  $(\varphi, \psi)$  satisfies equation (3), then

$$\frac{\varphi''(x)}{\varphi'(x)} + \frac{\psi''(x)}{\psi'(x)} = 4\frac{r'(x)}{r(x)} - 2\frac{s'(x)}{s(x)} - 2\frac{t'(x)}{t(x)}$$

for all  $x \in I$ .

The following result will play a fundamental role in next considerations.

PROPOSITION 3. Let  $r, s, t: I \to (0, +\infty)$  be three times differentiable functions. If  $\varphi: I \to \mathbb{R}$  and  $\psi: I \to \mathbb{R}$  are three times differentiable functions with non-vanishing first derivatives and the pair  $(\varphi, \psi)$  is a solution of equation (3), then the equality

(9) 
$$r'(x)\left(\frac{\varphi''(x)}{\varphi'(x)} - 2\frac{r'(x)}{r(x)} + 2\frac{s'(x)}{s(x)}\right) = 0$$

holds for all  $x \in I$ .

PROOF. Keep in mind that each mean equals x at the diagonal points (x, x). Let  $\lambda$  be a fraction weight with a generator r. According to equalities (5)

$$\partial_1 B_s^{\varphi}(x,x) = \partial_1 B_t^{\psi}(x,x) = \frac{1}{2}, \quad x \in I,$$

so, taking into account the second formula of the proof of [9, Theorem 2], we see that

$$\begin{aligned} 3\partial_1\lambda(x,x)\left(\partial_{11}^2B_s^\varphi(x,x) - \partial_{11}^2B_t^\psi(x,x)\right) \\ &+ \frac{1}{2}\left(\partial_{111}^3B_s^\varphi(x,x) + \partial_{111}^3B_t^\psi(x,x)\right) = 3\partial_{11}^2\lambda(x,x) \end{aligned}$$

for all  $x \in I$ . Hence, making use of (4) and (6)–(8) and multiplying the obtained equality by 16, we get

$$3\frac{r'(x)}{r(x)} \left(\frac{\varphi''(x)}{\varphi'(x)} + 2\frac{s'(x)}{s(x)} - \frac{\psi''(x)}{\psi'(x)} - 2\frac{t'(x)}{t(x)}\right) + 3\left(\left(\frac{\varphi''(x)}{\varphi'(x)}\right)' + 2\left(\frac{s'(x)}{s(x)}\right)' + \left(\frac{\psi''(x)}{\psi'(x)}\right)' + 2\left(\frac{t'(x)}{t(x)}\right)'\right) = 12\left(\frac{r'(x)}{r(x)}\right)'$$

for every  $x \in I$ . Using Lemma 2 we eliminate the term  $\psi''(x)/\psi'(x)$  and for all  $x \in I$  we obtain

$$3\frac{r'(x)}{r(x)} \left(\frac{\varphi''(x)}{\varphi'(x)} + 2\frac{s'(x)}{s(x)} + \frac{\varphi''(x)}{\varphi'(x)} - 4\frac{r'(x)}{r(x)} + 2\frac{s'(x)}{s(x)} + 2\frac{t'(x)}{t(x)} - 2\frac{t'(x)}{t(x)}\right) + 3\left(\frac{\varphi''(x)}{\varphi'(x)}\right)' + 6\left(\frac{s'(x)}{s(x)}\right)' - 3\left(\frac{\varphi''(x)}{\varphi'(x)}\right)' + 12\left(\frac{r'(x)}{r(x)}\right)' - 6\left(\frac{s'(x)}{s(x)}\right)' - 6\left(\frac{t'(x)}{t(x)}\right)' + 6\left(\frac{t'(x)}{t(x)}\right)' = 12\left(\frac{r'(x)}{r(x)}\right)',$$

which is (9).

In what follows we consider the case when the equation r'(x) = 0 has no roots, postponing the research in the remaining case to another paper.

The following theorem provides some necessary conditions on the generating functions  $\varphi$  and  $\psi$  and the weights r, s, t under three times differentiability assumptions with non-vanishing first derivatives of the functions  $\varphi, \psi$  and r. THEOREM 4. Let  $r, s, t: I \to (0, +\infty)$  be three times differentiable functions and assume that the equation r'(x) = 0 has no roots. If  $\varphi: I \to \mathbb{R}$  and  $\psi: I \to \mathbb{R}$  are three times differentiable functions with non-vanishing first derivatives and the pair  $(\varphi, \psi)$  satisfies equation (3), then there exist numbers  $c, d \in \mathbb{R} \setminus \{0\}$  such that

(10) 
$$\varphi'(x) = c \left(\frac{r(x)}{s(x)}\right)^2, \quad x \in I,$$

and

(11) 
$$\psi'(x) = d\left(\frac{r(x)}{t(x)}\right)^2, \quad x \in I.$$

PROOF. By Proposition 3 we claim that  $\varphi$  satisfies equation (9). Therefore, since  $r'(x) \neq 0$  for all  $x \in I$  we have

$$\frac{\varphi''(x)}{\varphi'(x)} = 2\left(\frac{r'(x)}{r(x)} - \frac{s'(x)}{s(x)}\right), \quad x \in I,$$

hence

$$(\log |\varphi'(x)|)' = (\log r(x)^2)' - (\log s(x)^2)', \quad x \in I,$$

and, consequently,

$$|\varphi'(x)| = |c_0| \left(\frac{r(x)}{s(x)}\right)^2, \quad x \in I,$$

with some nonzero  $c_0$ . Thus, since  $\varphi'$  is continuous and does not vanish, we come to (10) either with  $c = |c_0|$ , or with  $c = -|c_0|$ . Using Lemma 2 we obtain

$$\frac{\psi^{\prime\prime}(x)}{\psi^{\prime}(x)} = 2\left(\frac{r^{\prime}(x)}{r(x)} - \frac{t^{\prime}(x)}{t(x)}\right), \qquad x \in I.$$

Repeating the argument used to  $\varphi'$  we come to (11) with some nonzero d.  $\Box$ 

The opposite implication in general is not true, that is unfortunately not every pair  $(\varphi, \psi)$  with  $\varphi$  and  $\psi$  satisfying (10) and (11), respectively, is a solution of equation (3). This can be observed in the example below.

EXAMPLE 5. Put  $I = \mathbb{R}$  and define functions  $r, s, t: I \to (0, +\infty)$  by

$$r(x) = e^x, \qquad s(x) = t(x) = 1,$$

and functions  $\varphi, \psi \colon I \to \mathbb{R}$  by the equalities

$$\varphi(x) = \psi(x) = \mathrm{e}^{2x}$$

Then (10) and (11) are satisfied with c = d = 2. If  $(\varphi, \psi)$  were a solution of equation (3), then we would have

$$\frac{1}{2}e^x \log\left(\frac{1}{2}e^{2x} + \frac{1}{2}e^{2y}\right) + \frac{1}{2}e^y \log\left(\frac{1}{2}e^{2x} + \frac{1}{2}e^{2y}\right) = e^x x + e^y y,$$

hence

$$(e^{x} + e^{y})\log \frac{e^{2x} + e^{2y}}{2} = 2(e^{x}x + e^{y}y)$$

for all  $x, y \in \mathbb{R}$ . Tending here with y to  $-\infty$  and dividing both sides of the equality by  $e^x$  we get

$$\log \frac{\mathrm{e}^{2x}}{2} = 2x, \quad x \in \mathbb{R}$$

that is

$$\frac{\mathrm{e}^{2x}}{2} = \mathrm{e}^{2x}, \quad x \in \mathbb{R},$$

which is impossible.

Example 5 shows that we are still far from sufficient conditions for the pair  $(\varphi, \psi)$  to be a solution of equation (3). Theorem 4 provides the form of its derivative  $(\varphi', \psi')$ . Having it we can find the forms of  $\varphi$  and  $\psi$  containing, in general, the integral operator. Consequently, it is usually hard to determine the exact form of the inverses  $\varphi^{-1}$ ,  $\psi^{-1}$  and to verify if equality (3) holds true everywhere in I.

OPEN PROBLEM. Find further necessary conditions for the pair  $(\varphi, \psi)$  to satisfy equation (3) under higher differentiability conditions.

#### References

103

- M. Bajraktarević, Sur une équation fonctionelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske. Ser. II 13 (1958), 243–248.
- [2] P. Burai, A Matkowski-Sutô type equation, Publ. Math. Debrecen 70 (2007), 233-247.
- [3] Z. Daróczy, Gy. Maksa and Zs. Páles, On two variable means with variable weights, Aequationes Math. 67 (2004), 154–159.
- [4] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), 271–282.
- [5] Z. Daróczy and Zs. Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157–218.
- [6] Z. Daróczy and Zs. Páles, A Matkowski-Sutô problem for weight quasi-arithmetic means, Ann. Univ. Sci. Budapest. Sci. Comput. 22 (2003), 69–81.
- [7] J. Domsta and J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type mappings, Aequationes Math. 71 (2006), 70–85.
- [8] J. Jarczyk, Invariance in the class of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007), 279–294.
- J. Jarczyk, Invariance of quasi-arithmetic means with function weights. J. Math. Anal. Appl. 353 (2009), 134–140.
- [10] J. Jarczyk, Invariance in a class of Bajraktarević means, Nonlinear Anal. 72 (2010), 2608–2619.
- [11] J. Jarczyk and W. Jarczyk, *Invariance of means*, Aequationes Math. 92 (2018), 801–872.
- [12] J. Jarczyk and J. Matkowski, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88 (2006), 39–51.
- [13] J. Matkowski, Invariant and complementary quasi-arithmetic means. Aequationes Math. 57 (1999), 87–107.
- [14] J. Matkowski, Invariance of Bajraktarević mean with respect to quasi-arithmetic means, Publ. Math. Debrecen 80 (2012), 441–45.
- [15] J. Matkowski, Invariance of Bajraktarević means with respect to the Beckenbach-Gini means, Math. Slovaca 63 (2013), 493–502.
- [16] Zs. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl. 455 (2017), 792–815.
- [17] Zs. Páles and A. Zakaria, On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means, Aequationes Math. 93 (2019), 37–57.

Justyna Jarczyk Institute of Mathematics University of Zielona Góra Szafrana 4A 65-516 Zielona Góra Poland e-mail: j.jarczyk@wmie.uz.zgora.pl WITOLD JARCZYK INSTITUTE OF MATHEMATICS, INFORMATICS AND LANDSCAPE ARCHITECTURE JOHN PAUL II CATHOLIC UNIVERSITY OF LUBLIN KONSTANTYNÓW 1H 20-708 LUBLIN POLAND e-mail: wjarczyk@kul.lublin.pl