ON A FUNCTIONAL EQUATION APPEARING ON THE MARGINS OF A MEAN INVARIANCE PROBLEM

Justyna Jarczyk, Witold Jarczyk (iD

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract. Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function $\omega: I \rightarrow(0,+\infty)$ we denote by B_{ω}^{α} the Bajraktarević mean generated by α and weighted by ω :

$$
B_{\omega}^{\alpha}(x, y)=\alpha^{-1}\left(\frac{\omega(x)}{\omega(x)+\omega(y)} \alpha(x)+\frac{\omega(y)}{\omega(x)+\omega(y)} \alpha(y)\right), \quad x, y \in I
$$

We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation

$$
r(x) B_{s}^{\varphi}(x, y)+r(y) B_{t}^{\psi}(x, y)=r(x) x+r(y) y
$$

where $r, s, t: I \rightarrow(0,+\infty)$ are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.

Received: 26.12.2019. Accepted: 03.06.2020. Published online: 09.07.2020. (2010) Mathematics Subject Classification: 26E60, 39B22.

Key words and phrases: functional equation, mean, invariance, Bajraktarević mean.

1. Introduction

Given an interval I, a continuous strictly monotonic function $\alpha: I \rightarrow \mathbb{R}$, and any $\kappa: I^{2} \rightarrow(0,1)$ we define the quasi-arithmetic mean $A_{\kappa}^{\alpha}: I^{2} \rightarrow I$ generated by α and weighted by κ :

$$
A_{\kappa}^{\alpha}(x, y)=\alpha^{-1}(\kappa(x, y) \alpha(x)+(1-\kappa(x, y)) \alpha(y))
$$

In [9] the first author of the present paper studied the functional equation

$$
\begin{equation*}
\lambda(x, y) A_{\mu}^{\varphi}(x, y)+(1-\lambda(x, y)) A_{\nu}^{\psi}(x, y)=\lambda(x, y) x+(1-\lambda(x, y)) y \tag{1}
\end{equation*}
$$

with given $(0,1)$-valued functions λ, μ and ν defined on I^{2}, and unknown increasing continuous functions φ and ψ defined on I.

Let us note that (1) is the invariance equation of $A_{\lambda}:=A_{\lambda}^{\mathrm{id}}$ with respect to the pair $\left(A_{\mu}^{\varphi}, A_{\nu}^{\psi}\right)$ expressed as

$$
\begin{equation*}
A_{\lambda} \circ\left(A_{\mu}^{\varphi}, A_{\nu}^{\psi}\right)=A_{\lambda} \tag{2}
\end{equation*}
$$

In the case of scalars λ, μ, ν equation (2) was investigated by several authors (cf. [13], [4], [5], [6). The final solution was found by the first author (see [8]; cf. also [12] and [2]).

In this note we exploit the results of [9]-11] for considering the special case of equation (1) concerned with the so-called fraction weights, i.e. functions of the form like

$$
\lambda(x, y)=\frac{r(x)}{r(x)+r(y)}
$$

where $r: I \rightarrow(0,+\infty)$ is said to be the generator of the weight λ. Assuming that λ, μ, ν are generated by functions $r, s, t: I \rightarrow(0,+\infty)$, respectively. Then the functional equation (1) can be rewritten as

$$
\begin{aligned}
\frac{r(x)}{r(x)+r(y)} \varphi^{-1}(& \left.\frac{s(x)}{s(x)+s(y)} \varphi(x)+\frac{s(y)}{s(x)+s(y)} \varphi(y)\right) \\
& +\frac{r(y)}{r(x)+r(y)} \psi^{-1}\left(\frac{t(x)}{t(x)+t(y)} \psi(x)+\frac{t(y)}{t(x)+t(y)} \psi(y)\right) \\
= & \frac{r(x)}{r(x)+r(y)} x+\frac{r(y)}{r(x)+r(y)} y
\end{aligned}
$$

Given a continuous strictly monotonic function $\alpha: I \rightarrow \mathbb{R}$ and any function $\omega: I \rightarrow(0,+\infty)$ we define the Bajraktarević mean $B_{\omega}^{\alpha}: I^{2} \rightarrow I$ by

$$
B_{\omega}^{\alpha}(x, y)=\alpha^{-1}\left(\frac{\omega(x)}{\omega(x)+\omega(y)} \alpha(x)+\frac{\omega(y)}{\omega(x)+\omega(y)} \alpha(y)\right)
$$

(see [1] and [3]; also [11]). Finally equation (1) takes the form

$$
\begin{equation*}
r(x) B_{s}^{\varphi}(x, y)+r(y) B_{t}^{\psi}(x, y)=r(x) x+r(y) y . \tag{3}
\end{equation*}
$$

A special case of equation (3), namely if $I \subset(0,+\infty), r$ is constant and $s=t=\left.\mathrm{id}\right|_{I}$, was considered in [7]. Another case, when $s=t$ and s satisfies the harmonic oscillator equation, was considered by the first present author in [10]. Recently Bajraktarević means and their generalizations are again extensively investigated. This concerns both the comparison problem (see [16]) and various invariance problems (see [14, [15] and [17]).

2. Main result

In what follows we need the below technical lemma which can be easily derived from [10, Remark 1] and [9, Lemmas 1 and 3]. Making this remember that every mean is reflexive, that is takes the value x at diagonal points (x, x).

Lemma 1. Let $\lambda: I^{2} \rightarrow(0,1)$ be a fraction weight generated by a function $\omega: I \rightarrow(0,+\infty)$ and let $\alpha: I \rightarrow \mathbb{R}$ be a continuous strictly monotonic function. If ω and α are differentiable and $\alpha^{\prime}(x) \neq 0$ for each $x \in I$, then

$$
\begin{equation*}
\partial_{1} \lambda(x, x)=\frac{\omega^{\prime}(x)}{4 \omega(x)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{1} B_{\omega}^{\alpha}(x, x)=\lambda(x, x)=\frac{1}{2} \tag{5}
\end{equation*}
$$

for all $x \in I$. Moreover, if ω and α are twice differentiable, then

$$
\begin{equation*}
\partial_{1,1}^{2} \lambda(x, x)=\frac{\omega^{\prime \prime}(x) \omega(x)-\omega^{\prime}(x)^{2}}{4 \omega(x)^{2}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{1,1}^{2} B_{\omega}^{\alpha}(x, x)=\frac{\alpha^{\prime \prime}(x)}{4 \alpha^{\prime}(x)}+\frac{\omega^{\prime}(x)}{2 \omega(x)} \tag{7}
\end{equation*}
$$

for all $x \in I$. If, in addition, ω and α are three times differentiable, then

$$
\partial_{1,1,1}^{3} \lambda(x, x)=\frac{3 \omega^{\prime}(x)^{3}-6 \omega^{\prime \prime}(x) \omega^{\prime}(x) \omega(x)+2 \omega^{\prime \prime \prime}(x) \omega(x)^{2}}{8 \omega(x)^{3}}
$$

and
(8) $\partial_{1,1,1}^{3} B_{\omega}^{\alpha}(x, x)=\frac{3}{8} \frac{\alpha^{\prime \prime \prime}(x) \alpha^{\prime}(x)-\alpha^{\prime \prime}(x)^{2}}{\alpha^{\prime}(x)^{2}}+\frac{3}{4} \frac{\omega^{\prime \prime}(x) \omega(x)-\omega^{\prime}(x)^{2}}{\omega(x)^{2}}$
for all $x \in I$.
The next fact follows immediately from [9, Lemma 2].
Lemma 2. Let $r, s, t: I \rightarrow(0,1)$ be twice differentiable functions. If $\varphi: I \rightarrow \mathbb{R}$ and $\psi: I \rightarrow \mathbb{R}$ are twice differentiable functions with non-vanishing first derivatives and the pair (φ, ψ) satisfies equation (3), then

$$
\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}+\frac{\psi^{\prime \prime}(x)}{\psi^{\prime}(x)}=4 \frac{r^{\prime}(x)}{r(x)}-2 \frac{s^{\prime}(x)}{s(x)}-2 \frac{t^{\prime}(x)}{t(x)}
$$

for all $x \in I$.
The following result will play a fundamental role in next considerations.

Proposition 3. Let $r, s, t: I \rightarrow(0,+\infty)$ be three times differentiable functions. If $\varphi: I \rightarrow \mathbb{R}$ and $\psi: I \rightarrow \mathbb{R}$ are three times differentiable functions with non-vanishing first derivatives and the pair (φ, ψ) is a solution of equation (3), then the equality

$$
\begin{equation*}
r^{\prime}(x)\left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}-2 \frac{r^{\prime}(x)}{r(x)}+2 \frac{s^{\prime}(x)}{s(x)}\right)=0 \tag{9}
\end{equation*}
$$

holds for all $x \in I$.

Proof. Keep in mind that each mean equals x at the diagonal points (x, x). Let λ be a fraction weight with a generator r. According to equalities (5)

$$
\partial_{1} B_{s}^{\varphi}(x, x)=\partial_{1} B_{t}^{\psi}(x, x)=\frac{1}{2}, \quad x \in I
$$

so, taking into account the second formula of the proof of [9, Theorem 2], we see that

$$
\begin{aligned}
3 \partial_{1} \lambda(x, x) & \left(\partial_{11}^{2} B_{s}^{\varphi}(x, x)-\partial_{11}^{2} B_{t}^{\psi}(x, x)\right) \\
& +\frac{1}{2}\left(\partial_{111}^{3} B_{s}^{\varphi}(x, x)+\partial_{111}^{3} B_{t}^{\psi}(x, x)\right)=3 \partial_{11}^{2} \lambda(x, x)
\end{aligned}
$$

for all $x \in I$. Hence, making use of (4) and (6)-(8) and multiplying the obtained equality by 16 , we get

$$
\begin{aligned}
& 3 \frac{r^{\prime}(x)}{r(x)}\left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}+2 \frac{s^{\prime}(x)}{s(x)}-\frac{\psi^{\prime \prime}(x)}{\psi^{\prime}(x)}-2 \frac{t^{\prime}(x)}{t(x)}\right) \\
& \quad+3\left(\left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}\right)^{\prime}+2\left(\frac{s^{\prime}(x)}{s(x)}\right)^{\prime}+\left(\frac{\psi^{\prime \prime}(x)}{\psi^{\prime}(x)}\right)^{\prime}+2\left(\frac{t^{\prime}(x)}{t(x)}\right)^{\prime}\right)=12\left(\frac{r^{\prime}(x)}{r(x)}\right)^{\prime}
\end{aligned}
$$

for every $x \in I$. Using Lemma 2 we eliminate the term $\psi^{\prime \prime}(x) / \psi^{\prime}(x)$ and for all $x \in I$ we obtain

$$
\begin{aligned}
3 \frac{r^{\prime}(x)}{r(x)} & \left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}+2 \frac{s^{\prime}(x)}{s(x)}+\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}-4 \frac{r^{\prime}(x)}{r(x)}+2 \frac{s^{\prime}(x)}{s(x)}+2 \frac{t^{\prime}(x)}{t(x)}-2 \frac{t^{\prime}(x)}{t(x)}\right) \\
& +3\left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}\right)^{\prime}+6\left(\frac{s^{\prime}(x)}{s(x)}\right)^{\prime}-3\left(\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}\right)^{\prime}+12\left(\frac{r^{\prime}(x)}{r(x)}\right)^{\prime} \\
& -6\left(\frac{s^{\prime}(x)}{s(x)}\right)^{\prime}-6\left(\frac{t^{\prime}(x)}{t(x)}\right)^{\prime}+6\left(\frac{t^{\prime}(x)}{t(x)}\right)^{\prime}=12\left(\frac{r^{\prime}(x)}{r(x)}\right)^{\prime},
\end{aligned}
$$

which is (9).
In what follows we consider the case when the equation $r^{\prime}(x)=0$ has no roots, postponing the research in the remaining case to another paper.

The following theorem provides some necessary conditions on the generating functions φ and ψ and the weights r, s, t under three times differentiability assumptions with non-vanishing first derivatives of the functions φ, ψ and r.

ThEOREM 4. Let $r, s, t: I \rightarrow(0,+\infty)$ be three times differentiable functions and assume that the equation $r^{\prime}(x)=0$ has no roots. If $\varphi: I \rightarrow \mathbb{R}$ and $\psi: I \rightarrow \mathbb{R}$ are three times differentiable functions with non-vanishing first derivatives and the pair (φ, ψ) satisfies equation (3), then there exist numbers $c, d \in \mathbb{R} \backslash\{0\}$ such that

$$
\begin{equation*}
\varphi^{\prime}(x)=c\left(\frac{r(x)}{s(x)}\right)^{2}, \quad x \in I \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{\prime}(x)=d\left(\frac{r(x)}{t(x)}\right)^{2}, \quad x \in I \tag{11}
\end{equation*}
$$

Proof. By Proposition 3 we claim that φ satisfies equation (9). Therefore, since $r^{\prime}(x) \neq 0$ for all $x \in I$ we have

$$
\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}=2\left(\frac{r^{\prime}(x)}{r(x)}-\frac{s^{\prime}(x)}{s(x)}\right), \quad x \in I
$$

hence

$$
\left(\log \left|\varphi^{\prime}(x)\right|\right)^{\prime}=\left(\log r(x)^{2}\right)^{\prime}-\left(\log s(x)^{2}\right)^{\prime}, \quad x \in I
$$

and, consequently,

$$
\left|\varphi^{\prime}(x)\right|=\left|c_{0}\right|\left(\frac{r(x)}{s(x)}\right)^{2}, \quad x \in I
$$

with some nonzero c_{0}. Thus, since φ^{\prime} is continuous and does not vanish, we come to $10 \mid$ either with $c=\left|c_{0}\right|$, or with $c=-\left|c_{0}\right|$. Using Lemma 2 we obtain

$$
\frac{\psi^{\prime \prime}(x)}{\psi^{\prime}(x)}=2\left(\frac{r^{\prime}(x)}{r(x)}-\frac{t^{\prime}(x)}{t(x)}\right), \quad x \in I
$$

Repeating the argument used to φ^{\prime} we come to with some nonzero d.
The opposite implication in general is not true, that is unfortunately not every pair (φ, ψ) with φ and ψ satisfying (10) and (11), respectively, is a solution of equation (3). This can be observed in the example below.

Example 5. Put $I=\mathbb{R}$ and define functions $r, s, t: I \rightarrow(0,+\infty)$ by

$$
r(x)=\mathrm{e}^{x}, \quad s(x)=t(x)=1
$$

and functions $\varphi, \psi: I \rightarrow \mathbb{R}$ by the equalities

$$
\varphi(x)=\psi(x)=\mathrm{e}^{2 x}
$$

Then (10) and (11) are satisfied with $c=d=2$. If (φ, ψ) were a solution of equation (3), then we would have

$$
\frac{1}{2} \mathrm{e}^{x} \log \left(\frac{1}{2} \mathrm{e}^{2 x}+\frac{1}{2} \mathrm{e}^{2 y}\right)+\frac{1}{2} \mathrm{e}^{y} \log \left(\frac{1}{2} \mathrm{e}^{2 x}+\frac{1}{2} \mathrm{e}^{2 y}\right)=\mathrm{e}^{x} x+\mathrm{e}^{y} y
$$

hence

$$
\left(\mathrm{e}^{x}+\mathrm{e}^{y}\right) \log \frac{\mathrm{e}^{2 x}+\mathrm{e}^{2 y}}{2}=2\left(\mathrm{e}^{x} x+\mathrm{e}^{y} y\right)
$$

for all $x, y \in \mathbb{R}$. Tending here with y to $-\infty$ and dividing both sides of the equality by e^{x} we get

$$
\log \frac{\mathrm{e}^{2 x}}{2}=2 x, \quad x \in \mathbb{R}
$$

that is

$$
\frac{\mathrm{e}^{2 x}}{2}=\mathrm{e}^{2 x}, \quad x \in \mathbb{R}
$$

which is impossible.

Example 5 shows that we are still far from sufficient conditions for the pair (φ, ψ) to be a solution of equation (3). Theorem 4 provides the form of its derivative $\left(\varphi^{\prime}, \psi^{\prime}\right)$. Having it we can find the forms of φ and ψ containing, in general, the integral operator. Consequently, it is usually hard to determine the exact form of the inverses φ^{-1}, ψ^{-1} and to verify if equality (3) holds true everywhere in I.

Open Problem. Find further necessary conditions for the pair (φ, ψ) to satisfy equation (3) under higher differentiability conditions.

References

[1] M. Bajraktarević, Sur une équation fonctionelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske. Ser. II 13 (1958), 243-248.
[2] P. Burai, A Matkowski-Sutô type equation, Publ. Math. Debrecen 70 (2007), 233-247.
[3] Z. Daróczy, Gy. Maksa and Zs. Páles, On two variable means with variable weights, Aequationes Math. 67 (2004), 154-159.
[4] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), 271-282.
[5] Z. Daróczy and Zs. Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157-218.
[6] Z. Daróczy and Zs. Páles, A Matkowski-Sutô problem for weight quasi-arithmetic means, Ann. Univ. Sci. Budapest. Sci. Comput. 22 (2003), 69-81.
[7] J. Domsta and J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type mappings, Aequationes Math. 71 (2006), 70-85.
[8] J. Jarczyk, Invariance in the class of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007), 279-294.
[9] J. Jarczyk, Invariance of quasi-arithmetic means with function weights. J. Math. Anal. Appl. 353 (2009), 134-140.
[10] J. Jarczyk, Invariance in a class of Bajraktarević means, Nonlinear Anal. 72 (2010), 2608-2619.
[11] J. Jarczyk and W. Jarczyk, Invariance of means, Aequationes Math. 92 (2018), 801-872.
[12] J. Jarczyk and J. Matkowski, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88 (2006), 39-51.
[13] J. Matkowski, Invariant and complementary quasi-arithmetic means. Aequationes Math. 57 (1999), 87-107.
[14] J. Matkowski, Invariance of Bajraktarević mean with respect to quasi-arithmetic means, Publ. Math. Debrecen 80 (2012), 441-45.
[15] J. Matkowski, Invariance of Bajraktarević means with respect to the Beckenbach-Gini means, Math. Slovaca 63 (2013), 493-502.
[16] Zs. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl. 455 (2017), 792-815.
[17] Zs. Páles and A. Zakaria, On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means, Aequationes Math. 93 (2019), 37-57.

Justyna Jarczyk
Institute of Mathematics University of Zielona Góra Szafrana 4A
65-516 Zielona Góra
Poland
e-mail: j.jarczyk@wmie.uz.zgora.pl

Witold Jarczyk
Institute of Mathematics, Informatics
and Landscape Architecture
John Paul II Catholic University of Lublin
Konstantynów 1h
20-708 Lublin
Poland
e-mail: wjarczyk@kul.lublin.pl

